Search results for: vertical and lateral loads
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2664

Search results for: vertical and lateral loads

2484 Comparison of the Glidescope Visualization and Neck Flexion with Lateral Neck Pressure Nasogastric Tube Insertion Techniques in Anaesthetized Patients: A Prospective Randomized Clinical Study

Authors: Pitchaporn Purngpiputtrakul, Suttasinee Petsakul, Sunisa Chatmongkolchart

Abstract:

Nasogastric tube (NGT) insertion in anaesthetized and intubated patients can be challenging even for experienced anesthesiologists. Various techniques have been proposed to facilitate NGT insertion in these patients. This study aimed to compare the success rate and time required for NGT insertion between the GlideScope visualization and neck flexion with lateral neck pressure techniques. This randomized clinical trial was performed at a teaching hospital on 86 adult patients undergoing abdominal surgery under relaxant general anaesthesia who required intraoperative NGT insertion. The patients were randomized into two groups, the GlideScope group (group G) and the neck flexion with lateral neck pressure group (group F). The success rate of first and second attempts, duration of insertion, and complications were recorded. The total success rate was 79.1% in Group G compared with 76.7% in Group F (P=1) The median time required for NGT insertion was significantly longer in Group G, for both first and second attempts (97 vs 42 seconds P<0.001) and (70 vs 48.5 seconds P=0.015), respectively. Complications were reported in 23 patients (53.5%) in group G and 13 patients (30.2%) in group F. Bleeding and kinking were the most common complications in both techniques. Using GlideScope visualization to facilitate NGT insertion was comparable to neck flexion with lateral neck pressure technique in degree of success rate of insertion, while neck flexion with lateral neck pressure technique had fewer complications and was less time-consuming.

Keywords: anaesthesia, nasogastric tube, GlideScope, intubation

Procedia PDF Downloads 155
2483 Metal Layer Based Vertical Hall Device in a Complementary Metal Oxide Semiconductor Process

Authors: Se-Mi Lim, Won-Jae Jung, Jin-Sup Kim, Jun-Seok Park, Hyung-Il Chae

Abstract:

This paper presents a current-mode vertical hall device (VHD) structure using metal layers in a CMOS process. The proposed metal layer based vertical hall device (MLVHD) utilizes vertical connection among metal layers (from M1 to the top metal) to facilitate hall effect. The vertical metal structure unit flows a bias current Ibias from top to bottom, and an external magnetic field changes the current distribution by Lorentz force. The asymmetric current distribution can be detected by two differential-mode current outputs on each side at the bottom (M1), and each output sinks Ibias/2 ± Ihall. A single vertical metal structure generates only a small amount of hall effect of Ihall due to the short length from M1 to the top metal as well as the low conductivity of the metal, and a series connection between thousands of vertical structure units can solve the problem by providing NxIhall. The series connection between two units is another vertical metal structure flowing current in the opposite direction, and generates negative hall effect. To mitigate the negative hall effect from the series connection, the differential current outputs at the bottom (M1) from one unit merges on the top metal level of the other unit. The proposed MLVHD is simulated in a 3-dimensional model simulator in COMSOL Multiphysics, with 0.35 μm CMOS process parameters. The simulated MLVHD unit size is (W) 10 μm × (L) 6 μm × (D) 10 μm. In this paper, we use an MLVHD with 10 units; the overall hall device size is (W) 10 μm × (L)78 μm × (D) 10 μm. The COMSOL simulation result is as following: the maximum hall current is approximately 2 μA with a 12 μA bias current and 100mT magnetic field; This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIP) (No.R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device).

Keywords: CMOS, vertical hall device, current mode, COMSOL

Procedia PDF Downloads 290
2482 Powered Two-Wheeler Rider’s Comfort over Road Sections with Skew Superelevation

Authors: Panagiotis Lemonakis, Nikolaos Moisiadis, Andromachi Gkoutzini, George Kaliabetsos, Nikos Eliou

Abstract:

The proper surface water drainage not only affects vehicle movement dynamics but also increases the likelihood of an accident due to the fact that inadequate drainage is associated with potential hydroplaning and splash and spray driving conditions. Nine solutions have been proposed to address hydroplaning in sections with inadequate drainage, e.g., augmented superelevation and longitudinal rates, reduction of runoff length, and skew superelevation. The latter has been extensively implemented in highways recently, enhancing the safety level in the applied road segments in regards to the effective drainage of the rainwater. However, the concept of the skew superelevation has raised concerns regarding the driver’s comfort when traveling over skew superelevation sections, particularly at high speeds. These concerns alleviated through the concept of the round-up skew superelevation, which reduces both the lateral and the vertical acceleration imposed to the drivers and hence, improves comfort and traffic safety. Various research studies aimed at investigating driving comfort by evaluating the lateral and vertical accelerations sustained by the road users and vehicles. These studies focused on the influence of the skew superelevation to passenger cars, buses and trucks, and the drivers themselves, traveling at a certain range of speeds either below or above the design speed. The outcome of these investigations which based on the use of simulations, revealed that the imposed accelerations did not exceed the statutory thresholds even when the travelling speed was significantly greater than the design speed. Nevertheless, the effect of the skew superelevation to other vehicle types for instance, motorcycles, has not been investigated so far. The present research study aims to bridge this gap by investigating the impact of skew superelevation on the motorcycle rider’s comfort. Power two-wheeler riders are susceptible to any changes on the pavement surface and therefore a comparison between the traditional superelevation practice and the skew superelevation concept is of paramount importance. The methodology based on the utilization of sophisticated software in order to design the model of the road for several values of the longitudinal slope. Based on the values of the slopes and the use of a mathematical equation, the accelerations imposed on the wheel of the motorcycle were calculated. Due to the fact that the final aim of the study is the influence of the skew superelevation to the rider, it was deemed necessary to convey the calculated accelerations from the wheel to the rider. That was accomplished by implementing the quarter car suspension model adjusted to the features of two-wheeler vehicles. Finally, the accelerations derived from this process evaluated according to specific thresholds originated from the International Organization for Standardization, which correspond to certain levels of comfort. The most important conclusion drawn is that the comfort of the riders is not dependent on the form of road gradient to a great extent due to the fact that the vertical acceleration imposed to the riders took similar values regardless of the value of the longitudinal slope.

Keywords: acceleration, comfort, motorcycle, safety, skew superelevation

Procedia PDF Downloads 148
2481 Experimental and Analytical Investigation of Seismic Behavior of Concrete Beam-Column Joints Strengthened by Fiber-Reinforced Polymers Jacketing

Authors: Ebrahim Zamani Beydokhti, Hashem Shariatmadar

Abstract:

This paper presents an experimental and analytical investigation on the behavior of retrofitted beam-column joints subjected to reversed cyclic loading. The experimental program comprises 8 external beam–column joint connection subassemblages tested in 2 phases; one was the damaging phase and second was the repairing phase. The beam-column joints were no seismically designed, i.e. the joint, beam and column critical zones had no special transverse stirrups. The joins were tested under cyclic loading in previous research. The experiment had two phases named damage phase and retrofit phase. Then the experimental results compared with analytical results achieved from modeling in OpenSees software. The presence of lateral slab and the axial load amount were analytically investigated. The results showed that increasing the axial load and presence of lateral slab increased the joint capacity. The presence of lateral slab increased the dissipated energy, while the axial load had no significant effect on it.

Keywords: concrete beam-column joints, CFRP sheets, lateral slab, axial load

Procedia PDF Downloads 136
2480 Enhanced Flight Dynamics Model to Simulate the Aircraft Response to Gust Encounters

Authors: Castells Pau, Poetsch Christophe

Abstract:

The effect of gust and turbulence encounters on aircraft is a wide field of study which allows different approaches, from high-fidelity multidisciplinary simulations to more simplified models adapted to industrial applications. The typical main goal is to predict the gust loads on the aircraft in order to ensure a safe design and achieve certification. Another topic widely studied is the gust loads reduction through an active control law. The impact of gusts on aircraft handling qualities is of interest as well in the analysis of in-service events so as to evaluate the aircraft response and the performance of the flight control laws. Traditionally, gust loads and handling qualities are addressed separately with different models adapted to the specific needs of each discipline. In this paper, an assessment of the differences between both models is presented and a strategy to better account for the physics of gust encounters in a typical flight dynamics model is proposed based on the model used for gust loads analysis. The applied corrections aim to capture the gust unsteady aerodynamics and propagation as well as the effect of dynamic flexibility at low frequencies. Results from the gust loads model at different flight conditions and measures from real events are used for validation. An assessment of a possible extension of steady aerodynamic nonlinearities to low frequency range is also addressed. The proposed corrections provide meaningful means to evaluate the performance and possible adjustments of the flight control laws.

Keywords: flight dynamics, gust loads, handling qualities, unsteady aerodynamics

Procedia PDF Downloads 141
2479 Mathieu Stability of Offshore Buoyant Leg Storage and Regasification Platform

Authors: S. Chandrasekaran, P. A. Kiran

Abstract:

Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). BLSRP consists of a circular deck supported by six buoyant legs placed symmetrically with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotational response from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. The present study investigates Mathieu stability of BLSRP under the postulated tether pullout cases by inducing additional tension in the tethers. From the numerical studies carried out, it is seen that postulated tether pullout on any one of the buoyant legs does not result in Mathieu type instability even under excessive tether tension. This is due to the presence of hinged joints, which are capable of dissipating the unbalanced loads to other legs. However, under tether pullout of consecutive buoyant legs, Mathieu-type instability is observed.

Keywords: offshore platforms, stability, postulated failure, dynamic tether tension

Procedia PDF Downloads 172
2478 Seismic Assessment of an Existing Dual System RC Buildings in Madinah City

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

A 15-storey RC building, studied in this paper, is representative of modern building type constructed in Madina City in Saudi Arabia before 10 years ago. These buildings are almost consisting of reinforced concrete skeleton, i. e. columns, beams and flat slab as well as shear walls in the stairs and elevator areas arranged in the way to have a resistance system for lateral loads (wind–earthquake loads). In this study, the dynamic properties of the 15-storey RC building were identified using ambient motions recorded at several spatially-distributed locations within each building. After updating the mathematical models for this building with the experimental results, three dimensional pushover analysis (nonlinear static analysis) was carried out using SAP2000 software incorporating inelastic material properties for concrete, infill and steel. The effect of modeling the building with and without infill walls on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madina area has been investigated. The response modification factor (R) for the 15 storey RC building is evaluated from capacity and demand spectra (ATC-40). The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results are summarized and discussed.

Keywords: seismic assessment, pushover analysis, ambient vibration, modal update

Procedia PDF Downloads 384
2477 An Exemption for Vertical Restraint Regarding Intellectual Property Licensing: Case Study of Thailand

Authors: Sanpetchuda Krutkrua, Suphawatchara Malanond

Abstract:

Throughout the history of Antitrust regimes in Thailand, Thailand has been trying to prevent collusive practices in the market through the amendments of the Trade Competition Act, and Thailand just passed the current Trade Competition Act of B.E. 2560 in 2017 of which several aspects of the law were amended in order to enhance the prevention of collusive outcome through both vertical trade restraints and horizontal trade restraints. An agreement is vertical when it involves arrangements that are in a complementary relationship. In Section 55 of the Act, any agreements to reduce the price, quantity, or quality of the goods, agreements to assign a sole retailer for the goods, and the agreement to impose conditions on the retailers are not allowed. However, Section 56 provides exemptions for the vertical relationship between the business operators, the franchise agreement, and the licensing agreement as long as such agreements do not surpass the necessity to do so, create monopolization, or affect the consumers in terms of price, quality, quantity, or options. The paper aims to explore the extent of the exemption under Section 56 and sequential regulations in terms of the vertical trade restraints regarding intellectual property licensing, and, at the same time, compare with the exemptions under the European Union competition law, and Singapore competition law. Comparative legal analysis with leading jurisdiction will illustrate the application of the newly enacted Thai Competition Act in terms of its enforcement in the global impact of IP rights, which, by nature are de jure or de facto international protection.

Keywords: antitrust, competition law, vertical restraint, intellectual property, IP licensing

Procedia PDF Downloads 146
2476 Experimental Performance of Vertical Diffusion Stills Utilizing Folded Sheets for Water Desalination

Authors: M. Mortada, A. Seleem, M. El-Morsi, M. Younan

Abstract:

The present study introduces the folding technology to be utilized for the first time in vertical diffusion stills. This work represents a model of the distillation process by utilizing chevron pattern of folded structure. An experimental setup has been constructed, to investigate the performance of the folded sheets in the vertical effect diffusion still for a specific range of operating conditions. An experimental comparison between the folded type and the flat type sheets has been carried out. The folded pattern showed a higher performance and there is an increase in the condensate to feed ratio that ranges from 20-30 % through the operating hot plate temperature that ranges through 60-90°C. In addition, a parametric analysis of the system using Design of Experiments statistical technique, has been developed using the experimental results to determine the effect of operating conditions on the system's performance and the best operating conditions of the system has been evaluated.

Keywords: chevron pattern, fold structure, solar distillation, vertical diffusion still

Procedia PDF Downloads 451
2475 Hysteresis in Sustainable Two-layer Circular Tube under a Lateral Compression Load

Authors: Ami Nomura, Ken Imanishi, Etsuko Ueda, Tadahiro Wada, Shinichi Enoki

Abstract:

Recently, there have been a lot of earthquakes in Japan. It is necessary to promote seismic isolation devices for buildings. The devices have been hardly diffused in attached houses, because the devices are very expensive. We should develop a low-cost seismic isolation device for detached houses. We suggested a new seismic isolation device which uses a two-layer circular tube as a unit. If hysteresis is produced in the two-layer circular tube under lateral compression load, we think that the two-layer circular tube can have energy absorbing capacity. It is necessary to contact the outer layer and the inner layer to produce hysteresis. We have previously reported how the inner layer comes in contact with the outer layer from a perspective of analysis used mechanics of materials. We have clarified that the inner layer comes in contact with the outer layer under a lateral compression load. In this paper, we explored contact area between the outer layer and the inner layer under a lateral compression load by using FEA. We think that changing the inner layer’s thickness is effective in increase the contact area. In order to change the inner layer’s thickness, we changed the shape of the inner layer. As a result, the contact area changes depending on the inner layer’s thickness. Additionally, we experimented to check whether hysteresis occurs in fact. As a consequence, we can reveal hysteresis in the two-layer circular tube under the condition.

Keywords: contact area, energy absorbing capacity, hysteresis, seismic isolation device

Procedia PDF Downloads 288
2474 Structural Analysis and Detail Design of APV Module Structure Using Topology Optimization Design

Authors: Hyun Kyu Cho, Jun Soo Kim, Young Hoon Lee, Sang Hoon Kang, Young Chul Park

Abstract:

In the study, structure for one of offshore drilling system APV(Air Pressure Vessle) modules was designed by using topology optimum design and performed structural safety evaluation according to DNV rules. 3D model created base on design area and non-design area separated by using topology optimization for the environmental loads. This model separated 17 types for wind loads and dynamic loads and performed structural analysis evaluation for each model. As a result, the maximum stress occurred 181.25MPa.

Keywords: APV, topology optimum design, DNV, structural analysis, stress

Procedia PDF Downloads 416
2473 Task Kicking Performance with Biomechanical Instrumentation

Authors: T. Hirata, M. G. Silva, L. M. Rosa

Abstract:

The balance ability during task kick in soccer is a determining factor in the execution of functional movements that require a high-performance motor coordination. The current experiment explored it during an instep soccer kick and functional task kicking. Their kicking performance was measured in terms of the sway characteristics using lateral and antero-posterior balance of the center of pressure (COP) for the supporting leg and the kinematic data, the supporting leg’s knee angle. The motion was realized with one-legged stance of five male indoor soccer players and using the trigger device ball controller. The results showed large balance in antero-posterior direction than in lateral direction. However, each player adopts a different way to kick the ball, and the media-lateral displacement of the COP showed no correlation with the balance skill.

Keywords: kicking performance, center of pressure, one-legged stance, balance ability

Procedia PDF Downloads 612
2472 Effects of Blast Load on Historic Stone Masonry Buildings in Canada: A Review and Analytical Study

Authors: Abass Braimah, Maha Hussein Abdallah

Abstract:

The global ascendancy of terrorist attacks on building infrastructure with economic and heritage significance has increased awareness of the possibility of terrorism in Canada. Many structures in Canada that are at risk of terrorist attacks include government buildings, built many years ago of historic stone masonry construction. Although many researchers are investigating ways to retrofit masonry stone buildings to mitigate the effect of blast loadings, lack of knowledge on the dynamic behavior of historic stone masonry structures under blast loads makes it difficult to ascertain the effectiveness of the retrofitting techniques. This paper presents a review of open-source literature for the experimental and numerical stone masonry structures under blast loads. This review yielded very little information of the response of the historic stone masonry structures under blast loads. Thus, a comprehensive study is needed to understand the blast load effects on historic stone masonry buildings. The out-of-plane response of historic masonry structures to blast loads is investigated by using single-degree-of-freedom analysis. This approach presents equations that can be used effectively in the analysis of historic masonry walls to out-of-plane blast loading.

Keywords: blast loads, historical buildings, masonry structure, single-degree-of-freedom analysis

Procedia PDF Downloads 172
2471 Vertical Accuracy Evaluation of Indian National DEM (CartoDEM v3) Using Dual Frequency GNSS Derived Ground Control Points for Lower Tapi Basin, Western India

Authors: Jaypalsinh B. Parmar, Pintu Nakrani, Ashish Chaurasia

Abstract:

Digital Elevation Model (DEM) is considered as an important data in GIS-based terrain analysis for many applications and assessment of processes such as environmental and climate change studies, hydrologic modelling, etc. Vertical accuracy of DEM having geographically dynamic nature depends on different parameters which affect the model simulation outcomes. Vertical accuracy assessment in Indian landscape especially in low-lying coastal urban terrain such as lower Tapi Basin is very limited. In the present study, attempt has been made to evaluate the vertical accuracy of 30m resolution open source Indian National Cartosat-1 DEM v3 for Lower Tapi Basin (LTB) from western India. The extensive field investigation is carried out using stratified random fast static DGPS survey in the entire study region, and 117 high accuracy ground control points (GCPs) have been obtained. The above open source DEM was compared with obtained GCPs, and different statistical attributes were envisaged, and vertical error histograms were also evaluated.

Keywords: CartoDEM, Digital Elevation Model, GPS, lower Tapi basin

Procedia PDF Downloads 352
2470 Study on Hysteresis in Sustainable Two-Layer Circular Tube under a Lateral Compression Load

Authors: Ami Nomura, Ken Imanishi, Yukinori Taniguchi, Etsuko Ueda, Tadahiro Wada, Shinichi Enoki

Abstract:

Recently, there have been a lot of earthquakes in Japan. It is necessary to promote seismic isolation devices for buildings. The devices have been hardly diffused in attached houses, because the devices are very expensive. We should develop a low-cost seismic isolation device for detached houses. We suggested a new seismic isolation device which uses a two-layer circular tube as a unit. If hysteresis is produced in the two-layer circular tube under lateral compression load, we think that the two-layer circular tube can have energy absorbing capacity. It is necessary to contact the outer layer and the inner layer to produce hysteresis. We have previously reported how the inner layer comes in contact with the outer layer from a perspective of analysis used mechanics of materials. We have clarified that the inner layer comes in contact with the outer layer under a lateral compression load. In this paper, we explored contact area between the outer layer and the inner layer under a lateral compression load by using FEA. We think that changing the inner layer’s thickness is effective in increase the contact area. In order to change the inner layer’s thickness, we changed the shape of the inner layer. As a result, the contact area changes depending on the inner layer’s thickness. Additionally, we experimented to check whether hysteresis occurs in fact. As a consequence, we can reveal hysteresis in the two-layer circular tube under the condition.

Keywords: contact area, energy absorbing capacity, hysteresis, seismic isolation device

Procedia PDF Downloads 351
2469 A Vertical-Axis Unidirectional Rotor with Nested Blades for Wave Energy Conversion

Authors: Yingchen Yang

Abstract:

In the present work, development of a new vertical-axis unidirectional wave rotor is reported. The wave rotor is a key component of a wave energy converter (WEC), which harvests energy from ocean waves. Differing from the huge majority of WEC designs that perform reciprocating motions (heaving up and down, swaying back and forth, etc.), our wave rotor performs unidirectional rotation about a vertical axis when directly exposed in waves. The unidirectional feature of the rotor makes the rotor respond well in a wide range of the wave frequency. The vertical axis arrangement of the rotor makes the rotor insensitive to the wave propagation direction. The rotor employs blades with a cross-section in an airfoil shape and a span curled into a semi-oval shape. Two sets of blades, with one nested inside the other, constitute the rotor. In waves, water particles perform an omnidirectional motion that constantly changes in both spatial and temporal domains. The blade nesting permits a compact rotor configuration that ‘sees’ a relatively uniform local flow in the spatial domain. The rotor was experimentally tested in simulated waves in a wave flume under various conditions. The testing results show a promising unidirectional rotor that is capable of extracting energy from waves at a capture width ratio of 0.08 to 0.15, depending on detailed wave conditions.

Keywords: unidirectional, vertical axis, wave energy converter, wave rotor

Procedia PDF Downloads 229
2468 Numerical Study of 5kW Vertical Axis Wind Turbine Using DOE Method

Authors: Yan-Ting Lin, Wei-Nian Su

Abstract:

The purpose of this paper is to demonstrate the design of 5kW vertical axis wind turbine (VAWT) using DOE method. The NACA0015 airfoil was implemented for the design and 3D simulation. The critical design parameters are chord length, tip speed ratio (TSR), aspect ratio (AR) and pitch angle in this investigation. The RNG k-ε turbulent model and the sliding mesh method are adopted in the CFD simulation. The results show that the model with zero pitch, 0.3 m in chord length, TSR of 3, and AR of 10 demonstrated the optimum aerodynamic power under the uniform 10m/s inlet velocity. The aerodynamic power is 3.61kW and 3.89kW under TSR of 3 and 4 respectively. The aerodynamic power decreased dramatically while TSR increased to 5.

Keywords: vertical axis wind turbine, CFD, DOE, VAWT

Procedia PDF Downloads 428
2467 Steady State Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates

Authors: Djalal Hamed

Abstract:

The aim of this paper is to perform an analytic solution of steady state natural convection in a narrow rectangular channel between two vertical parallel MTR-type fuel plates, imposed under a cosine shape heat flux to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not be reach the specific safety limits (90 °C). For this purpose, a simple computer program is developed to determine the principal parameter related to the nuclear core safety such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor power. Our results are validated throughout a comparison against the results of another published work, which is considered like a reference of this study.

Keywords: buoyancy force, friction force, natural convection, thermal hydraulic analysis, vertical heated rectangular channel

Procedia PDF Downloads 305
2466 Pullout Capacity of Hybrid Anchor Piles

Authors: P. Hari Krishna, V. Ramana Murty

Abstract:

Different types of foundations are subjected to pullout or tensile loads depending on the soil in which they are embedded or due to the structural loads coming on them. In those circumstances, anchors were generally used to resist these loads. This paper presents the field pullout studies on hybrid anchor piles embedded in different types of soils. The pullout capacity and resistance of the hybrid granular anchor piles installed in the native expansive soil which is available in the campus are compared with similar hybrid concrete anchor piles which were installed in similar field conditions.

Keywords: expansive soil, hybrid concrete anchor piles, hybrid granular anchor piles, pullout tests

Procedia PDF Downloads 402
2465 Dynamic Analysis of a Moderately Thick Plate on Pasternak Type Foundation under Impact and Moving Loads

Authors: Neslihan Genckal, Reha Gursoy, Vedat Z. Dogan

Abstract:

In this study, dynamic responses of composite plates on elastic foundations subjected to impact and moving loads are investigated. The first order shear deformation (FSDT) theory is used for moderately thick plates. Pasternak-type (two-parameter) elastic foundation is assumed. Elastic foundation effects are integrated into the governing equations. It is assumed that plate is first hit by a mass as an impact type loading then the mass continues to move on the composite plate as a distributed moving loading, which resembles the aircraft landing on airport pavements. Impact and moving loadings are modeled by a mass-spring-damper system with a wheel. The wheel is assumed to be continuously in contact with the plate after impact. The governing partial differential equations of motion for displacements are converted into the ordinary differential equations in the time domain by using Galerkin’s method. Then, these sets of equations are solved by using the Runge-Kutta method. Several parameters such as vertical and horizontal velocities of the aircraft, volume fractions of the steel rebar in the reinforced concrete layer, and the different touchdown locations of the aircraft tire on the runway are considered in the numerical simulation. The results are compared with those of the ABAQUS, which is a commercial finite element code.

Keywords: elastic foundation, impact, moving load, thick plate

Procedia PDF Downloads 300
2464 Effect of Thickness and Solidity on the Performance of Straight Type Vertical Axis Wind Turbine

Authors: Jianyang Zhu, Lin Jiang, Tixian Tian

Abstract:

Inspired by the increasing interesting on the wind power associated with production of clear electric power, a numerical experiment is applied to investigate the aerodynamic performance of straight type vertical axis wind turbine with different thickness and solidity, where the incompressible Navier-Stokes (N-S) equations coupled with dynamic mesh technique is solved. By analyzing the flow field, as well as energy coefficient of different thickness and solidity turbine, it is found that the thickness and solidity can significantly influence the performance of vertical axis wind turbine. For the turbine under low tip speed, the mean energy coefficient increase with the increasing of thickness and solidity, which may improve the self starting performance of the turbine. However for the turbine under high tip speed, the appropriate thickness and smaller solidity turbine possesses better performance. In addition, delay stall and no interaction of the blade and previous separated vortex are observed around appropriate thickness and solidity turbine, therefore lead better performance characteristics.

Keywords: vertical axis wind turbine, N-S equations, dynamic mesh technique, thickness, solidity

Procedia PDF Downloads 256
2463 DIAL Measurements of Vertical Distribution of Ozone at the Siberian Lidar Station in Tomsk

Authors: Oleg A. Romanovskii, Vladimir D. Burlakov, Sergey I. Dolgii, Olga V. Kharchenko, Alexey A. Nevzorov, Alexey V. Nevzorov

Abstract:

The paper presents the results of DIAL measurements of the vertical ozone distribution. The ozone lidar operate as part of the measurement complex at Siberian Lidar Station (SLS) of V.E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk (56.5ºN; 85.0ºE) and designed for study of the vertical ozone distribution in the upper troposphere–lower stratosphere. Most suitable wavelengths for measurements of ozone profiles are selected. We present an algorithm for retrieval of vertical distribution of ozone with temperature and aerosol correction during DIAL lidar sounding of the atmosphere. The temperature correction of ozone absorption coefficients is introduced in the software to reduce the retrieval errors. Results of lidar measurement at wavelengths of 299 and 341 nm agree with model estimates, which point to acceptable accuracy of ozone sounding in the 6–18 km altitude range.

Keywords: lidar, ozone distribution, atmosphere, DIAL

Procedia PDF Downloads 488
2462 Investigation of the Aerodynamic Characteristics of a Vertical Take-Off and Landing Mini Unmanned Aerial Vehicle Configuration

Authors: Amir Abdelqodus, Mario Shehata

Abstract:

The purpose of the paper is to model and evaluate the aerodynamic coefficients and stability derivatives of a Vertical, Take-off and Landing Unmanned Aerial Vehicle configuration (VTOL UAV), which is a fixed wing UAV and a quad-copter hybrid capable of both vertical and conventional take-off and/or landing. The aerodynamic analysis of this configuration was carried out using CFD commercial package Ansys Fluent. Also, the aerodynamic coefficients for the case of the UAV without the quad-copter is carried out analytically using MATLAB programmed codes, and the resulting data is verified using Lifting Line Theory and potential method programs. The two results are then compared to understand the effect of adding the quad-copter on the aerodynamic performance of the UAV.

Keywords: aerodynamics, CFD, potential flow, UAV, VTOL

Procedia PDF Downloads 427
2461 Influence of Ride Control Systems on the Motions Response and Passenger Comfort of High-Speed Catamarans in Irregular Waves

Authors: Ehsan Javanmardemamgheisi, Javad Mehr, Jason Ali-Lavroff, Damien Holloway, Michael Davis

Abstract:

During the last decades, a growing interest in faster and more efficient waterborne transportation has led to the development of high-speed vessels for both commercial and military applications. To satisfy this global demand, a wide variety of arrangements of high-speed crafts have been proposed by designers. Among them, high-speed catamarans have proven themselves to be a suitable Roll-on/Roll-off configuration for carrying passengers and cargo due to widely spaced demi hulls, a wide deck zone, and a high ratio of deadweight to displacement. To improve passenger comfort and crew workability and enhance the operability and performance of high-speed catamarans, mitigating the severity of motions and structural loads using Ride Control Systems (RCS) is essential.In this paper, a set of towing tank tests was conducted on a 2.5 m scaled model of a 112 m Incat Tasmania high-speed catamaran in irregular head seas to investigate the effect of different ride control algorithms including linear and nonlinear versions of the heave control, pitch control, and local control on motion responses and passenger comfort of the full-scale ship. The RCS included a centre bow-fitted T-Foil and two transom-mounted stern tabs. All the experiments were conducted at the Australian Maritime College (AMC) towing tank at a model speed of 2.89 m/s (37 knots full scale), a modal period of 1.5 sec (10 sec full scale) and two significant wave heights of 60 mm and 90 mm, representing full-scale wave heights of 2.7 m and 4 m, respectively. Spectral analyses were performed using Welch’s power spectral density method on the vertical motion time records of the catamaran model to calculate heave and pitch Response Amplitude Operators (RAOs). Then, noting that passenger discomfort arises from vertical accelerations and that the vertical accelerations vary at different longitudinal locations within the passenger cabin due to the variations in amplitude and relative phase of the pitch and heave motions, the vertical accelerations were calculated at three longitudinal locations (LCG, T-Foil, and stern tabs). Finally, frequency-weighted Root Mean Square (RMS) vertical accelerations were calculated to estimate Motion Sickness Dose Value (MSDV) of the ship based on ISO 2631-recommendations. It was demonstrated that in small seas, implementing a nonlinear pitch control algorithm reduces the peak pitch motions by 41%, the vertical accelerations at the forward location by 46%, and motion sickness at the forward position by around 20% which provides great potential for further improvement in passenger comfort, crew workability, and operability of high-speed catamarans.

Keywords: high-speed catamarans, ride control system, response amplitude operators, vertical accelerations, motion sickness, irregular waves, towing tank tests.

Procedia PDF Downloads 77
2460 Seismic Evaluation of Connected and Disconnected Piled Raft Foundations

Authors: Ali Fallah Yeznabad, Mohammad H. Baziar, Alireza Saedi Azizkandi

Abstract:

Rafts may be used when a low bearing capacity exists underneath the foundation and may be combined by piles in some special circumstances; such as to reduce settlements or high groundwater to control buoyancy. From structural point of view, these piles could be both connected or disconnected from the raft and are to be classified as Piled Rafts (PR) or Disconnected Piled Rafts (DPR). Although the researches about the behavior of piled rafts subjected to vertical loading is really extensive, in the context of dynamic load and earthquake loading, the studies are very limited. In this study, to clarify these foundations’ performance under dynamic loading, series of Shaking Table tests have been performed. The square raft and four piles in connected and disconnected configurations were used in dry silica sand and the model was experimented using a shaking table under 1-g conditions. Moreover, numerical investigation using finite element software have been conducted to better understand the differences and advantages. Our observations demonstrates that in connected Piled Rafts piles have to bear greater amount of moment in their upper parts, however this moments are approximately 40% lower in disconnected piled rafts in the same conditions and loading. Considering the Rafts’ lateral movement which be of crucial importance in foundations performance evaluation, connected piled rafts show much better performance with about 30% less lateral movement. Further, it was observed on confirmed both through laboratory tests and numerical analysis, that adding the superstructure over the piled raft foundation the raft separates from the soil and it significantly increases rocking of the raft which was observed to be the main reason of increase in piles’ moments under superstructure interaction with the foundation.

Keywords: Piled Rafts (PR), Disconnected Piled Rafts (DPR), dynamic loading, shaking table, seismic performance

Procedia PDF Downloads 423
2459 Dynamic Response Analyses for Human-Induced Lateral Vibration on Congested Pedestrian Bridges

Authors: M. Yoneda

Abstract:

In this paper, a lateral walking design force per person is proposed and compared with Imperial College test results. Numerical simulations considering the proposed walking design force which is incorporated into the neural-oscillator model are carried out placing much emphasis on the synchronization (the lock-in phenomenon) for a pedestrian bridge model with the span length of 50 m. Numerical analyses are also conducted for an existing pedestrian suspension bridge. As compared with full scale measurements for this suspension bridge, it is confirmed that the analytical method based on the neural-oscillator model might be one of the useful ways to explain the synchronization (the lock-in phenomenon) of pedestrians being on the bridge.

Keywords: pedestrian bridge, human-induced lateral vibration, neural-oscillator, full scale measurement, dynamic response analysis

Procedia PDF Downloads 193
2458 Double Row Taper Roller Bearing Wheel-end System in Rigid Rear Drive Axle in Heavy Duty SUV Passenger Vehicle

Authors: Mohd Imtiaz S, Saurabh Jain, Pothiraj K.

Abstract:

In today’s highly competitive passenger vehicle market, comfortable driving experience is one of the key parameters significantly weighed by the customer. Smooth ride and handling of the vehicle with exceptionally reliable wheel end solution is a paramount requirement in passenger Sports Utility Vehicle (SUV) vehicles subjected to challenging terrains and loads with rigid rear drive axle configuration. Traditional wheel-end bearing systems in passenger segment rigid rear drive axle utilizes the semi-floating layout, which imparts vertical bending loads and torsion to the axle shafts. The wheel-end bearing is usually a Single or Double Row Deep-Groove Ball Bearing (DRDGBB) or Double Row Angular Contact Ball Bearing (DRACBB). This solution is cost effective and simple in architecture. However, it lacks effectiveness against the heavy loads subjected to a SUV vehicle, especially the axial trust at high-speed cornering. This paper describes the solution of Double Row Taper Roller Bearing (DRTRB) wheel-end for a SUV vehicle in the rigid rear drive axle and improvement in terms of maximizing its load carrying capacity along with better reliability in terms of axial thrust in high-speed cornering. It describes the advantage of geometry of DRTRB over DRDGBB and DRACBB highlighting contact and load flow. The paper also highlights the vehicle level considerations affecting the B10 life of the bearing system for better selection of the DRTRB wheel-ends systems. This paper also describes real time vehicle level results along with theoretical improvements.

Keywords: axial thrust, b10 life, deep-groove ball bearing, taper roller bearing, semi-floating layout.

Procedia PDF Downloads 66
2457 Parametric Study on the Development of Earth Pressures Behind Integral Bridge Abutments Under Cyclic Translational Movements

Authors: Lila D. Sigdel, Chin J. Leo, Samanthika Liyanapathirana, Pan Hu, Minghao Lu

Abstract:

Integral bridges are a class of bridges with integral or semi-integral abutments, designed without expansion joints in the bridge deck of the superstructure. Integral bridges are economical alternatives to conventional jointed bridges with lower maintenance costs and greater durability, thereby improving social and economic stability for the community. Integral bridges have also been proven to be effective in lowering the overall construction cost compared to the conventional type of bridges. However, there is significant uncertainty related to the design and analysis of integral bridges in response to cyclic thermal movements induced due to deck expansion and contraction. The cyclic thermal movements of the abutments increase the lateral earth pressures on the abutment and its foundation, leading to soil settlement and heaving of the backfill soil. Thus, the primary objective of this paper is to investigate the soil-abutment interaction under the cyclic translational movement of the abutment. Results from five experiments conducted to simulate different magnitudes of cyclic translational movements of abutments induced by thermal changes are presented, focusing on lateral earth pressure development at the abutment-soil interface. Test results show that the cycle number and magnitude of cyclic translational movements have significant effects on the escalation of lateral earth pressures. Experimentally observed earth pressure distributions behind the integral abutment were compared with the current design approaches, which shows that the most of the practices has under predicted the lateral earth pressure.

Keywords: integral bridge, cyclic thermal movement, lateral earth pressure, soil-structure interaction

Procedia PDF Downloads 110
2456 Random Vertical Seismic Vibrations of the Long Span Cantilever Beams

Authors: Sergo Esadze

Abstract:

Seismic resistance norms require calculation of cantilevers on vertical components of the base seismic acceleration. Long span cantilevers, as a rule, must be calculated as a separate construction element. According to the architectural-planning solution, functional purposes and environmental condition of a designing buildings/structures, long span cantilever construction may be of very different types: both by main bearing element (beam, truss, slab), and by material (reinforced concrete, steel). A choice from these is always linked with bearing construction system of the building. Research of vertical seismic vibration of these constructions requires individual approach for each (which is not specified in the norms) in correlation with model of seismic load. The latest may be given both as deterministic load and as a random process. Loading model as a random process is more adequate to this problem. In presented paper, two types of long span (from 6m – up to 12m) reinforcement concrete cantilever beams have been considered: a) bearing elements of cantilevers, i.e., elements in which they fixed, have cross-sections with large sizes and cantilevers are made with haunch; b) cantilever beam with load-bearing rod element. Calculation models are suggested, separately for a) and b) types. They are presented as systems with finite quantity degree (concentrated masses) of freedom. Conditions for fixing ends are corresponding with its types. Vertical acceleration and vertical component of the angular acceleration affect masses. Model is based on assumption translator-rotational motion of the building in the vertical plane, caused by vertical seismic acceleration. Seismic accelerations are considered as random processes and presented by multiplication of the deterministic envelope function on stationary random process. Problem is solved within the framework of the correlation theory of random process. Solved numerical examples are given. The method is effective for solving the specific problems.

Keywords: cantilever, random process, seismic load, vertical acceleration

Procedia PDF Downloads 180
2455 Determining Components of Deflection of the Vertical in Owerri West Local Government, Imo State Nigeria Using Least Square Method

Authors: Chukwu Fidelis Ndubuisi, Madufor Michael Ozims, Asogwa Vivian Ndidiamaka, Egenamba Juliet Ngozi, Okonkwo Stephen C., Kamah Chukwudi David

Abstract:

Deflection of the vertical is a quantity used in reducing geodetic measurements related to geoidal networks to the ellipsoidal plane; and it is essential in Geoid modeling processes. Computing the deflection of the vertical component of a point in a given area is necessary in evaluating the standard errors along north-south and east-west direction. Using combined approach for the determination of deflection of the vertical component provides improved result but labor intensive without appropriate method. Least square method is a method that makes use of redundant observation in modeling a given sets of problem that obeys certain geometric condition. This research work is aimed to computing the deflection of vertical component of Owerri West local government area of Imo State using geometric method as field technique. In this method combination of Global Positioning System on static mode and precise leveling observation were utilized in determination of geodetic coordinate of points established within the study area by GPS observation and the orthometric heights through precise leveling. By least square using Matlab programme; the estimated deflections of vertical component parameters for the common station were -0.0286 and -0.0001 arc seconds for the north-south and east-west components respectively. The associated standard errors of the processed vectors of the network were computed. The computed standard errors of the North-south and East-west components were 5.5911e-005 and 1.4965e-004 arc seconds, respectively. Therefore, including the derived component of deflection of the vertical to the ellipsoidal model will yield high observational accuracy since an ellipsoidal model is not tenable due to its far observational error in the determination of high quality job. It is important to include the determined deflection of the vertical component for Owerri West Local Government in Imo State, Nigeria.

Keywords: deflection of vertical, ellipsoidal height, least square, orthometric height

Procedia PDF Downloads 196