Search results for: text preprocessing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1462

Search results for: text preprocessing

1282 Intertextuality as a Dialogue Between Postmodern Writer J. Fowles and Mid-English Writer J. Donne

Authors: Isahakyan Heghine

Abstract:

Intertextuality, being in the centre of attention of both linguists and literary critics, is vividly expressed in the outstanding British novelist and philosopher J. Fowles' works. 'The Magus’ is a deep psychological and philosophical novel with vivid intertextual links with the Greek mythology and authors from different epochs. The aim of the paper is to show how intertextuality might serve as a dialogue between two authors (J. Fowles and J. Donne) disguised in the dialogue of two protagonists of the novel : Conchis and Nicholas. Contrastive viewpoints concerning man's isolation, loneliness are stated in the dialogue. Due to the conceptual analysis of the text it becomes possible both to decode the conceptual information of the text and find out its intertextual links.

Keywords: dialogue, conceptual analysis, isolation, intertextuality

Procedia PDF Downloads 329
1281 A Multivariate Exploratory Data Analysis of a Crisis Text Messaging Service in Order to Analyse the Impact of the COVID-19 Pandemic on Mental Health in Ireland

Authors: Hamda Ajmal, Karen Young, Ruth Melia, John Bogue, Mary O'Sullivan, Jim Duggan, Hannah Wood

Abstract:

The Covid-19 pandemic led to a range of public health mitigation strategies in order to suppress the SARS-CoV-2 virus. The drastic changes in everyday life due to lockdowns had the potential for a significant negative impact on public mental health, and a key public health goal is to now assess the evidence from available Irish datasets to provide useful insights on this issue. Text-50808 is an online text-based mental health support service, established in Ireland in 2020, and can provide a measure of revealed distress and mental health concerns across the population. The aim of this study is to explore statistical associations between public mental health in Ireland and the Covid-19 pandemic. Uniquely, this study combines two measures of emotional wellbeing in Ireland: (1) weekly text volume at Text-50808, and (2) emotional wellbeing indicators reported by respondents of the Amárach public opinion survey, carried out on behalf of the Department of Health, Ireland. For this analysis, a multivariate graphical exploratory data analysis (EDA) was performed on the Text-50808 dataset dated from 15th June 2020 to 30th June 2021. This was followed by time-series analysis of key mental health indicators including: (1) the percentage of daily/weekly texts at Text-50808 that mention Covid-19 related issues; (2) the weekly percentage of people experiencing anxiety, boredom, enjoyment, happiness, worry, fear and stress in Amárach survey; and Covid-19 related factors: (3) daily new Covid-19 case numbers; (4) daily stringency index capturing the effect of government non-pharmaceutical interventions (NPIs) in Ireland. The cross-correlation function was applied to measure the relationship between the different time series. EDA of the Text-50808 dataset reveals significant peaks in the volume of texts on days prior to level 3 lockdown and level 5 lockdown in October 2020, and full level 5 lockdown in December 2020. A significantly high positive correlation was observed between the percentage of texts at Text-50808 that reported Covid-19 related issues and the percentage of respondents experiencing anxiety, worry and boredom (at a lag of 1 week) in Amárach survey data. There is a significant negative correlation between percentage of texts with Covid-19 related issues and percentage of respondents experiencing happiness in Amárach survey. Daily percentage of texts at Text-50808 that reported Covid-19 related issues to have a weak positive correlation with daily new Covid-19 cases in Ireland at a lag of 10 days and with daily stringency index of NPIs in Ireland at a lag of 2 days. The sudden peaks in text volume at Text-50808 immediately prior to new restrictions in Ireland indicate an association between a rise in mental health concerns following the announcement of new restrictions. There is also a high correlation between emotional wellbeing variables in the Amárach dataset and the number of weekly texts at Text-50808, and this confirms that Text-50808 reflects overall public sentiment. This analysis confirms the benefits of the texting service as a community surveillance tool for mental health in the population. This initial EDA will be extended to use multivariate modeling to predict the effect of additional Covid-19 related factors on public mental health in Ireland.

Keywords: COVID-19 pandemic, data analysis, digital health, mental health, public health, digital health

Procedia PDF Downloads 144
1280 Predicting Success and Failure in Drug Development Using Text Analysis

Authors: Zhi Hao Chow, Cian Mulligan, Jack Walsh, Antonio Garzon Vico, Dimitar Krastev

Abstract:

Drug development is resource-intensive, time-consuming, and increasingly expensive with each developmental stage. The success rates of drug development are also relatively low, and the resources committed are wasted with each failed candidate. As such, a reliable method of predicting the success of drug development is in demand. The hypothesis was that some examples of failed drug candidates are pushed through developmental pipelines based on false confidence and may possess common linguistic features identifiable through sentiment analysis. Here, the concept of using text analysis to discover such features in research publications and investor reports as predictors of success was explored. R studios were used to perform text mining and lexicon-based sentiment analysis to identify affective phrases and determine their frequency in each document, then using SPSS to determine the relationship between our defined variables and the accuracy of predicting outcomes. A total of 161 publications were collected and categorised into 4 groups: (i) Cancer treatment, (ii) Neurodegenerative disease treatment, (iii) Vaccines, and (iv) Others (containing all other drugs that do not fit into the 3 categories). Text analysis was then performed on each document using 2 separate datasets (BING and AFINN) in R within the category of drugs to determine the frequency of positive or negative phrases in each document. A relative positivity and negativity value were then calculated by dividing the frequency of phrases with the word count of each document. Regression analysis was then performed with SPSS statistical software on each dataset (values from using BING or AFINN dataset during text analysis) using a random selection of 61 documents to construct a model. The remaining documents were then used to determine the predictive power of the models. Model constructed from BING predicts the outcome of drug performance in clinical trials with an overall percentage of 65.3%. AFINN model had a lower accuracy at predicting outcomes compared to the BING model at 62.5% but was not effective at predicting the failure of drugs in clinical trials. Overall, the study did not show significant efficacy of the model at predicting outcomes of drugs in development. Many improvements may need to be made to later iterations of the model to sufficiently increase the accuracy.

Keywords: data analysis, drug development, sentiment analysis, text-mining

Procedia PDF Downloads 160
1279 Social Media Mining with R. Twitter Analyses

Authors: Diana Codat

Abstract:

Tweets' analysis is part of text mining. Each document is a written text. It's possible to apply the usual text search techniques, in particular by switching to the bag-of-words representation. But the tweets induce peculiarities. Some may enrich the analysis. Thus, their length is calibrated (at least as far as public messages are concerned), special characters make it possible to identify authors (@) and themes (#), the tweet and retweet mechanisms make it possible to follow the diffusion of the information. Conversely, other characteristics may disrupt the analyzes. Because space is limited, authors often use abbreviations, emoticons to express feelings, and they do not pay much attention to spelling. All this creates noise that can complicate the task. The tweets carry a lot of potentially interesting information. Their exploitation is one of the main axes of the analysis of the social networks. We show how to access Twitter-related messages. We will initiate a study of the properties of the tweets, and we will follow up on the exploitation of the content of the messages. We will work under R with the package 'twitteR'. The study of tweets is a strong focus of analysis of social networks because Twitter has become an important vector of communication. This example shows that it is easy to initiate an analysis from data extracted directly online. The data preparation phase is of great importance.

Keywords: data mining, language R, social networks, Twitter

Procedia PDF Downloads 185
1278 An Adaptive Oversampling Technique for Imbalanced Datasets

Authors: Shaukat Ali Shahee, Usha Ananthakumar

Abstract:

A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.

Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling

Procedia PDF Downloads 418
1277 Study on the Focus of Attention of Special Education Students in Primary School

Authors: Tung-Kuang Wu, Hsing-Pei Hsieh, Ying-Ru Meng

Abstract:

Special Education in Taiwan has been facing difficulties including shortage of teachers and lack in resources. Some students need to receive special education are thus not identified or admitted. Fortunately, information technologies can be applied to relieve some of the difficulties. For example, on-line multimedia courseware can be used to assist the learning of special education students and take pretty much workload from special education teachers. However, there may exist cognitive variations between students in special or regular educations, which suggests the design of online courseware requires different considerations. This study aims to investigate the difference in focus of attention (FOA) between special and regular education students of primary school in viewing the computer screen. The study is essential as it helps courseware developers in determining where to put learning elements that matter the most on the right position of screen. It may also assist special education specialists to better understand the subtle differences among various subtypes of learning disabilities. This study involves 76 special education students (among them, 39 are students with mental retardation, MR, and 37 are students with learning disabilities, LDs) and 42 regular education students. The participants were asked to view a computer screen showing a picture partitioned into 3 × 3 areas with each area filled with text or icon. The subjects were then instructed to mark on the prior given paper sheets, which are also partitioned into 3 × 3 grids, the areas corresponding to the pictures on the computer screen that they first set their eyes on. The data are then collected and analyzed. Major findings are listed: 1. In both text and icon scenario, significant differences exist in the first preferred FOA between special and regular education students. The first FOA for the former is mainly on area 1 (upper left area, 53.8% / 51.3% for MR / LDs students in text scenario; and 53.8% / 56.8% for MR / LDs students in icons scenario), while the latter on area 5 (middle area, 50.0% and 57.1% in text and icons scenarios). 2. The second most preferred area in text scenario for students with MR and LDs are area 2 (upper-middle, 20.5%) and 5 (middle area, 24.3%). In icons scenario, the results are similar, but lesser in percentage. 3. Students with LDs that show similar preference (either in text or icons scenarios) in FOA to regular education students tend to be of some specific sub-type of learning disabilities. For instance, students with LDs that chose area 5 (middle area, either in text or icon scenario) as their FOA are mostly ones that have reading or writing disability. Also, three (out of 13) subjects in this category, after going through the rediagnosis process, were excluded from being learning disabilities. In summary, the findings suggest when designing multimedia courseware for students with MR and LDs, the essential learning elements should be placed on area 1, 2 and 5. In addition, FOV preference may also potentially be used as an indicator for diagnosing students with LDs.

Keywords: focus of attention, learning disabilities, mental retardation, on-line multimedia courseware, special education

Procedia PDF Downloads 164
1276 Understanding the Challenges of Lawbook Translation via the Framework of Functional Theory of Language

Authors: Tengku Sepora Tengku Mahadi

Abstract:

Where the speed of book writing lags behind the high need for such material for tertiary studies, translation offers a way to enhance the equilibrium in this demand-supply equation. Nevertheless, translation is confronted by obstacles that threaten its effectiveness. The primary challenge to the production of efficient translations may well be related to the text-type and in terms of its complexity. A text that is intricately written with unique rhetorical devices, subject-matter foundation and cultural references will undoubtedly challenge the translator. Longer time and greater effort would be the consequence. To understand these text-related challenges, the present paper set out to analyze a lawbook entitled Learning the Law by David Melinkoff. The book is chosen because it has often been used as a textbook or for reference in many law courses in the United Kingdom and has seen over thirteen editions; therefore, it can be said to be a worthy book for studies in law. Another reason is the existence of a ready translation in Malay. Reference to this translation enables confirmation to some extent of the potential problems that might occur in its translation. Understanding the organization and the language of the book will help translators to prepare themselves better for the task. They can anticipate the research and time that may be needed to produce an effective translation. Another premise here is that this text-type implies certain ways of writing and organization. Accordingly, it seems practicable to adopt the functional theory of language as suggested by Michael Halliday as its theoretical framework. Concepts of the context of culture, the context of situation and measures of the field, tenor and mode form the instruments for analysis. Additional examples from similar materials can also be used to validate the findings. Some interesting findings include the presence of several other text-types or sub-text-types in the book and the dependence on literary discourse and devices to capture the meanings better or add color to the dry field of law. In addition, many elements of culture can be seen, for example, the use of familiar alternatives, allusions, and even terminology and references that date back to various periods of time and languages. Also found are parts which discuss origins of words and terms that may be relevant to readers within the United Kingdom but make little sense to readers of the book in other languages. In conclusion, the textual analysis in terms of its functions and the linguistic and textual devices used to achieve them can then be applied as a guide to determine the effectiveness of the translation that is produced.

Keywords: functional theory of language, lawbook text-type, rhetorical devices, culture

Procedia PDF Downloads 151
1275 Application of Reception Theory to Analyze the Translation as a Continuous Reception

Authors: Mina Darabi Amin

Abstract:

In 1972, Hans Robert Jauss introduced the Reception Theory a version of Reader-response criticism, that suggests the literary critics to re-examine the relationship between the author, the work and the reader. The revealing of these relationships has shown that, besides the creation, the reception and the reading of the text have different levels which exempt it from a continuous reference to the meaning intended by the artist and could lead to multiplicity of possible interpretations according to the ‘Horizon of Expectations’. This theory could be associated with another intellectual process called ‘translation’, a process that is always confronted by different levels of readers in the target language and different levels of reception by these readers. By adopting the perspective of Reception theory in translation, we could ignore a particular kind of translation and consider the initiation to a literary text, its translation and its reception as a continuous process. Just like the creation of the text, the translation and its reception, are not made once and for all; they are confronted with different levels of reception and interpretation which are made and remade endlessly. After having known and crossing the first levels, the Horizons of Expectation could be extended and the reader could be initiated to the higher levels. On the other hand, we could say that the faithful and free translation are not opposed to each other, but depending on the type of reception by the readers and in a particular moment, the existence of both is necessary. In fact, it is the level of reception in readers and their Horizon of Expectations that determine the degree of fidelity and freedom of translation.

Keywords: reception theory, reading, literary translation, horizons of expectation, reader

Procedia PDF Downloads 182
1274 A Comparative Study of Natural Language Processing Models for Detecting Obfuscated Text

Authors: Rubén Valcarce-Álvarez, Francisco Jáñez-Martino, Rocío Alaiz-Rodríguez

Abstract:

Cybersecurity challenges, including scams, drug sales, the distribution of child sexual abuse material, fake news, and hate speech on both the surface and deep web, have significantly increased over the past decade. Users who post such content often employ strategies to evade detection by automated filters. Among these tactics, text obfuscation plays an essential role in deceiving detection systems. This approach involves modifying words to make them more difficult for automated systems to interpret while remaining sufficiently readable for human users. In this work, we aim at spotting obfuscated words and the employed techniques, such as leetspeak, word inversion, punctuation changes, and mixed techniques. We benchmark Named Entity Recognition (NER) using models from the BERT family as well as two large language models (LLMs), Llama and Mistral, on XX_NER_WordCamouflage dataset. Our experiments evaluate these models by comparing their precision, recall, F1 scores, and accuracy, both overall and for each individual class.

Keywords: natural language processing (NLP), text obfuscation, named entity recognition (NER), deep learning

Procedia PDF Downloads 10
1273 An Emphasis on Creativity-Speak Words Increases Crowdfunding Success

Authors: Trayan Kushev, E. Shaunn Mattingly, Andrew S. Manikas

Abstract:

This study utilizes computer-aided text analysis (CATA) on the descriptions of 248,614 Kickstarter crowdfunding campaigns to reveal that backers are more likely to provide funding to projects that contain a higher percentage of creativity-speak words. Further, this relationship is observed to be stronger for product-based campaigns (e.g., games, technology, design) and weaker for content-based campaigns (e.g., film, music, publishing). In addition, both positive linguistic tone and the use of words expressing gratitude in the text of the campaign strengthen the positive effect of creativity-speak on campaign success.

Keywords: creativity-speak, crowdfunding, entrepreneurship, gratitude, tone

Procedia PDF Downloads 80
1272 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation

Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang

Abstract:

Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.

Keywords: CCS concepts, computing methodologies, interest point, salient region detections, image segmentation

Procedia PDF Downloads 132
1271 Reconstruction of Visual Stimuli Using Stable Diffusion with Text Conditioning

Authors: ShyamKrishna Kirithivasan, Shreyas Battula, Aditi Soori, Richa Ramesh, Ramamoorthy Srinath

Abstract:

The human brain, among the most complex and mysterious aspects of the body, harbors vast potential for extensive exploration. Unraveling these enigmas, especially within neural perception and cognition, delves into the realm of neural decoding. Harnessing advancements in generative AI, particularly in Visual Computing, seeks to elucidate how the brain comprehends visual stimuli observed by humans. The paper endeavors to reconstruct human-perceived visual stimuli using Functional Magnetic Resonance Imaging (fMRI). This fMRI data is then processed through pre-trained deep-learning models to recreate the stimuli. Introducing a new architecture named LatentNeuroNet, the aim is to achieve the utmost semantic fidelity in stimuli reconstruction. The approach employs a Latent Diffusion Model (LDM) - Stable Diffusion v1.5, emphasizing semantic accuracy and generating superior quality outputs. This addresses the limitations of prior methods, such as GANs, known for poor semantic performance and inherent instability. Text conditioning within the LDM's denoising process is handled by extracting text from the brain's ventral visual cortex region. This extracted text undergoes processing through a Bootstrapping Language-Image Pre-training (BLIP) encoder before it is injected into the denoising process. In conclusion, a successful architecture is developed that reconstructs the visual stimuli perceived and finally, this research provides us with enough evidence to identify the most influential regions of the brain responsible for cognition and perception.

Keywords: BLIP, fMRI, latent diffusion model, neural perception.

Procedia PDF Downloads 69
1270 Developing a Model of Teaching Writing Based On Reading Approach through Reflection Strategy for EFL Students of STKIP YPUP

Authors: Eny Syatriana, Ardiansyah

Abstract:

The purpose of recent study was to develop a learning model on writing, based on the reading texts which will be read by the students using reflection strategy. The strategy would allow the students to read the text and then they would write back the main idea and to develop the text by using their own sentences. So, the writing practice was begun by reading an interesting text, then the students would develop the text which has been read into their writing. The problem questions are (1) what kind of learning model that can develop the students writing ability? (2) what is the achievement of the students of STKIP YPUP through reflection strategy? (3) is the using of the strategy effective to develop students competence In writing? (4) in what level are the students interest toward the using of a strategy In writing subject? This development research consisted of some steps, they are (1) need analysis (2) model design (3) implementation (4) model evaluation. The need analysis was applied through discussion among the writing lecturers to create a learning model for writing subject. To see the effectiveness of the model, an experiment would be delivered for one class. The instrument and learning material would be validated by the experts. In every steps of material development, there was a learning process, where would be validated by an expert. The research used development design. These Principles and procedures or research design and development .This study, researcher would do need analysis, creating prototype, content validation, and limited empiric experiment to the sample. In each steps, there should be an assessment and revision to the drafts before continue to the next steps. The second year, the prototype would be tested empirically to four classes in STKIP YPUP for English department. Implementing the test greatly was done through the action research and followed by evaluation and validation from the experts.

Keywords: learning model, reflection, strategy, reading, writing, development

Procedia PDF Downloads 365
1269 Translation of Culture-Specific References in the Turkish Translation of Shakespeare's Macbeth

Authors: Feride Sumbul

Abstract:

Drama is a literary genre that mirrors the people and society and transfers the human nature and life to the reader or the audience within its own social-cultural structure. Each play takes on a new reality in the time and culture of the staging, and each performance actually brings a new interpretation to the play. Similarly, each translation adds a new meaning to the source text. In other words, the translated theatrical text transcends the boundaries of its language and culture and finds a new interpretation. Thus the translation of drama takes place as a transfer from one culture to another as a cross cultural communication. In this context, translating culture specific references play a key role in terms of reflecting cultural aspects of a target society. This study aims to explore the use of Venuti's translation principles of domestication and foreignization in the transfer of culture specific references in the Turkish translation of Shakespeare's Macbeth. Macbeth is to be compared with its Turkish version in terms of the transference of culture specific references such as religious, witchcraft, and mythological, which have no equivalent in the target language and culture. To evaluate these principles of Venuti, Davies’s translation strategies are also conducted. As a method, for the most part, he predominantly uses Davies’ method of ‘addition’ through adding extra information in the notes. For instance, rather than finding the Turkish renderings of them, the translator mostly chooses to transfer witchcraft references through retaining them in the target text, but he mainly adds extra information about the references in the notes. Therefore, the translator Nutku mostly uses Venuti’s translation principle of foreignization so that he preserves the foreignness of the theatrical text.

Keywords: drama translation, theatrical texts, culture specific references, Macbeth

Procedia PDF Downloads 158
1268 An Experience of Translating an Excerpt from Sophie Adonon’s Echos de Femmes from French to English, Using Reverso.

Authors: Michael Ngongeh Mombe

Abstract:

This Paper seeks to investigate an assertion made by some colleagues that there is no need paying a human translator to translate their literary texts, that there are softwares such as Reverso that can be used to do the translation. The main objective of this study is to examine the veracity of this assertion using Reverso to translate a literary text without any post-editing by a human translator. The work is based on two theories: Skopos and Communicative theories of translation. The work is a documentary research where data were collected from published documents in libraries, on the internet and from the translation produced by Reverso. We made a comparative text analyses of both source and target texts in a bid to highlight the weaknesses and strengths of the software. Findings of this work revealed that those who advocate the use of only Machine translation do so in ignorance of the translation mistakes usually made by the software. From the review of all the 268 segments of translation, we found out that the translation produced by Reverso is fraught with errors. We therefore recommend the use of human translators to either do the translation of their literary texts or revise the translation produced by machine to conform to the skopos of the work. This paper is based on Reverso translation. Similar works in the near future will be based on the other translation softwares to determine their weaknesses and strengths.

Keywords: machine translation, human translator, Reverso, literary text

Procedia PDF Downloads 96
1267 The Influence of Japanese Poetry in Spanish Piano Music: Benet Casablancas and Mercedes Zavala’s Haikus

Authors: Isabel Pérez Dobarro

Abstract:

In the mid-twentieth century, Spanish composers started looking beyond the national folkloric tradition (adopted by Albéniz, Granados, and Falla) and Rodrigo’s neoclassicism, and searched for other sources of inspiration. Japanese Haikus fascinated Spanish musicians, who found in their brevity and imagination a new avenue to develop their creativity. The goal of this research is to study how two renowned Spanish authors, Benet Casablancas and Mercedes Zavala, incorporated Haikus into their piano works. Based on Bruhn’s methodology on text and instrumental music relations, and developing a score and text analysis complemented by interviews with both composers, this study has revealed three possible interactions between the Haikus and these composers’ piano writing: inspiration, transmedialization, and mimesis. Findings also include specific technical gestures to support each of these approaches. Commonalities between their pieces and those by other non-Spanish composers such as Jonathan Harvey, John Cage, and Michael Berkeley have also been explored. According to the author's knowledge, this is the first study on the Japanese influence in Spanish piano music. Thus, it opens a new path for understanding musical exchanges between both countries as well as contemporary piano tools that support the interaction between text and music.

Keywords: Haiku, Spanish piano music, Benet Casablancas, Mercedes Zavala

Procedia PDF Downloads 153
1266 Animated Poetry-Film: Poetry in Action

Authors: Linette van der Merwe

Abstract:

It is known that visual artists, performing artists, and literary artists have inspired each other since time immemorial. The enduring, symbiotic relationship between the various art genres is evident where words, colours, lines, and sounds act as metaphors, a physical separation of the transcendental reality of art. Simonides of Keos (c. 556-468 BC) confirmed this, stating that a poem is a talking picture, or, in a more modern expression, a picture is worth a thousand words. It can be seen as an ancient relationship, originating from the epigram (tombstone or artefact inscriptions), the carmen figuratum (figure poem), and the ekphrasis (a description in the form of a poem of a work of art). Visual artists, including Michelangelo, Leonardo da Vinci, and Goethe, wrote poems and songs. Goya, Degas, and Picasso are famous for their works of art and for trying their hands at poetry. Afrikaans writers whose fine art is often published together with their writing, as in the case of Andries Bezuidenhout, Breyten Breytenbach, Sheila Cussons, Hennie Meyer, Carina Stander, and Johan van Wyk, among others, are not a strange phenomenon either. Imitating one art form into another art form is a form of translation, transposition, contemplation, and discovery of artistic impressions, showing parallel interpretations rather than physical comparison. It is especially about the harmony that exists between the different art genres, i.e., a poem that describes a painting or a visual text that portrays a poem that becomes a translation, interpretation, and rediscovery of the verbal text, or rather, from the word text to the image text. Poetry-film, as a form of such a translation of the word text into an image text, can be considered a hybrid, transdisciplinary art form that connects poetry and film. Poetry-film is regarded as an intertwined entity of word, sound, and visual image. It is an attempt to transpose and transform a poem into a new artwork that makes the poem more accessible to people who are not necessarily open to the written word and will, in effect, attract a larger audience to a genre that usually has a limited market. Poetry-film is considered a creative expression of an inverted ekphrastic inspiration, a visual description, interpretation, and expression of a poem. Research also emphasises that animated poetry-film is not widely regarded as a genre of anything and is thus severely under-theorized. This paper will focus on Afrikaans animated poetry-films as a multimodal transposition of a poem text to an animated poetry film, with specific reference to animated poetry-films in Filmverse I (2014) and Filmverse II (2016).

Keywords: poetry film, animated poetry film, poetic metaphor, conceptual metaphor, monomodal metaphor, multimodal metaphor, semiotic metaphor, multimodality, metaphor analysis, target domain, source domain

Procedia PDF Downloads 66
1265 Recognition of Spelling Problems during the Text in Progress: A Case Study on the Comments Made by Portuguese Students Newly Literate

Authors: E. Calil, L. A. Pereira

Abstract:

The acquisition of orthography is a complex process, involving both lexical and grammatical questions. This learning occurs simultaneously with the domain of multiple textual aspects (e.g.: graphs, punctuation, etc.). However, most of the research on orthographic acquisition focus on this acquisition from an autonomous point of view, separated from the process of textual production. This means that their object of analysis is the production of words selected by the researcher or the requested sentences in an experimental and controlled setting. In addition, the analysis of the Spelling Problems (SP) are identified by the researcher on the sheet of paper. Considering the perspective of Textual Genetics, from an enunciative approach, this study will discuss the SPs recognized by dyads of newly literate students, while they are writing a text collaboratively. Six proposals of textual production were registered, requested by a 2nd year teacher of a Portuguese Primary School between January and March 2015. In our case study we discuss the SPs recognized by the dyad B and L (7 years old). We adopted as a methodological tool the Ramos System audiovisual record. This system allows real-time capture of the text in process and of the face-to-face dialogue between both students and their teacher, and also captures the body movements and facial expressions of the participants during textual production proposals in the classroom. In these ecological conditions of multimodal registration of collaborative writing, we could identify the emergence of SP in two dimensions: i. In the product (finished text): SP identification without recursive graphic marks (without erasures) and the identification of SPs with erasures, indicating the recognition of SP by the student; ii. In the process (text in progress): identification of comments made by students about recognized SPs. Given this, we’ve analyzed the comments on identified SPs during the text in progress. These comments characterize a type of reformulation referred to as Commented Oral Erasure (COE). The COE has two enunciative forms: Simple Comment (SC) such as ' 'X' is written with 'Y' '; or Unfolded Comment (UC), such as ' 'X' is written with 'Y' because...'. The spelling COE may also occur before or during the SP (Early Spelling Recognition - ESR) or after the SP has been entered (Later Spelling Recognition - LSR). There were 631 words entered in the 6 stories written by the B-L dyad, 145 of them containing some type of SP. During the text in progress, the students recognized orally 174 SP, 46 of which were identified in advance (ESRs) and 128 were identified later (LSPs). If we consider that the 88 erasure SPs in the product indicate some form of SP recognition, we can observe that there were twice as many SPs recognized orally. The ESR was characterized by SC when students asked their colleague or teacher how to spell a given word. The LSR presented predominantly UC, verbalizing meta-orthographic arguments, mostly made by L. These results indicate that writing in dyad is an important didactic strategy for the promotion of metalinguistic reflection, favoring the learning of spelling.

Keywords: collaborative writing, erasure, learning, metalinguistic awareness, spelling, text production

Procedia PDF Downloads 164
1264 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models

Authors: Danielle Shackley, Yetunde Folajimi

Abstract:

As more people turn to the internet seeking health-related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores to text, ranging from positive, neutral, and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing and tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial, and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced, and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process and substituting the Naive Bayes for a deep learning neural network model.

Keywords: sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model

Procedia PDF Downloads 97
1263 Applying Different Stenography Techniques in Cloud Computing Technology to Improve Cloud Data Privacy and Security Issues

Authors: Muhammad Muhammad Suleiman

Abstract:

Cloud Computing is a versatile concept that refers to a service that allows users to outsource their data without having to worry about local storage issues. However, the most pressing issues to be addressed are maintaining a secure and reliable data repository rather than relying on untrustworthy service providers. In this study, we look at how stenography approaches and collaboration with Digital Watermarking can greatly improve the system's effectiveness and data security when used for Cloud Computing. The main requirement of such frameworks, where data is transferred or exchanged between servers and users, is safe data management in cloud environments. Steganography is the cloud is among the most effective methods for safe communication. Steganography is a method of writing coded messages in such a way that only the sender and recipient can safely interpret and display the information hidden in the communication channel. This study presents a new text steganography method for hiding a loaded hidden English text file in a cover English text file to ensure data protection in cloud computing. Data protection, data hiding capability, and time were all improved using the proposed technique.

Keywords: cloud computing, steganography, information hiding, cloud storage, security

Procedia PDF Downloads 193
1262 Prosody of Text Communication: Inducing Synchronization and Coherence in Chat Conversations

Authors: Karolina Ziembowicz, Andrzej Nowak

Abstract:

In the current study, we examined the consequences of adding prosodic cues to text communication by allowing users to observe the process of message creation while engaged in dyadic conversations. In the first condition, users interacted through a traditional chat that requires pressing ‘enter’ to make a message visible to an interlocutor. In another, text appeared on the screen simultaneously as the sender was writing it, letter after letter (Synchat condition), so that users could observe the varying rhythm of message production, precise timing of message appearance, typos and their corrections. The results show that the ability to observe the dynamics of message production had a twofold effect on the social interaction process. First, it enhanced the relational aspect of communication – interlocutors synchronized their emotional states during the interaction, their communication included more statements on relationship building, and they evaluated the Synchat medium as more personal and emotionally engaging. Second, it increased the coherence of communication, reflected in greater continuity of the topics raised in Synchat conversations. The results are discussed from the interaction design (IxD) perspective.

Keywords: chat communication, online conversation, prosody, social synchronization, interaction incoherence, relationship building

Procedia PDF Downloads 142
1261 Optimizing the Readability of Orthopaedic Trauma Patient Education Materials Using ChatGPT-4

Authors: Oscar Covarrubias, Diane Ghanem, Christopher Murdock, Babar Shafiq

Abstract:

Introduction: ChatGPT is an advanced language AI tool designed to understand and generate human-like text. The aim of this study is to assess the ability of ChatGPT-4 to re-write orthopaedic trauma patient education materials at the recommended 6th-grade level. Methods: Two independent reviewers accessed ChatGPT-4 (chat.openai.com) and gave identical instructions to simplify the readability of provided text to a 6th-grade level. All trauma-related articles by the Orthopaedic Trauma Association (OTA) and American Academy of Orthopaedic Surgeons (AAOS) were sequentially provided. The academic grade level was determined using the Flesh-Kincaid Grade Level (FKGL) and Flesch Reading Ease (FRE). Paired t-tests and Wilcox-rank sum tests were used to compare the FKGL and FRE between the ChatGPT-4 revised and original text. Inter-rater correlation coefficient (ICC) was used to assess variability in ChatGPT-4 generated text between the two reviewers. Results: ChatGPT-4 significantly reduced FKGL and increased FRE scores in the OTA (FKGL: 5.7±0.5 compared to the original 8.2±1.1, FRE: 76.4±5.7 compared to the original 65.5±6.6, p < 0.001) and AAOS articles (FKGL: 5.8±0.8 compared to the original 8.9±0.8, FRE: 76±5.5 compared to the original 56.7±5.9, p < 0.001). On average, 14.6% of OTA and 28.6% of AAOS articles required at least two revisions by ChatGPT-4 to achieve a 6th-grade reading level. ICC demonstrated poor reliability for FKGL (OTA 0.24, AAOS 0.45) and moderate reliability for FRE (OTA 0.61, AAOS 0.73). Conclusion: This study provides a novel, simple and efficient method using language AI to optimize the readability of patient education content which may only require the surgeon’s final proofreading. This method would likely be as effective for other medical specialties.

Keywords: artificial intelligence, AI, chatGPT, patient education, readability, trauma education

Procedia PDF Downloads 73
1260 Architectural Experience of the Everyday in Phuket Old Town

Authors: Thirayu Jumsai na Ayudhya

Abstract:

Initial attempts to understand about what architecture means to people as they go about their everyday life through my previous research revealed that knowledge such as environmental psychology, environmental perception, environmental aesthetics, did not adequately address a perceived need for the contextualized and holistic theoretical framework. In my previous research, it is found that people’s making senses of their everyday architecture can be described in terms of four super‐ordinate themes; (1) building in urban (text), (2) building in (text), (3) building in human (text), (4) and building in time (text). For more comprehensively understanding of how people make sense of their everyday architectural experience, in this ongoing research Phuket Old town was selected as the focal urban context where the distinguish character of Chino-Portuguese is remarkable. It is expected that in a unique urban context like Phuket old town unprecedented super-ordinate themes will be unveiled through the reflection of people’s everyday experiences. The ongoing research of people’s architectural experience conducted in Phuket Island, Thailand, will be presented succinctly. The research will address the question of how do people make sense of their everyday architecture/buildings especially in a unique urban context, Phuket Old town, and identify ways in which people make sense of their everyday architecture. Participant-Produced-Photograph (PPP) and Interpretative Phenomenological Analysis (IPA) are adopted as main methodologies. PPP allows people to express experiences of their everyday urban context freely without any interference or forced-data generating by researchers. With IPA methodology a small pool of participants is considered desirable given the detailed level of analysis required and its potential to produce a meaningful outcome.

Keywords: architectural experience, the everyday architecture, Phuket, Thailand

Procedia PDF Downloads 298
1259 Text Analysis to Support Structuring and Modelling a Public Policy Problem-Outline of an Algorithm to Extract Inferences from Textual Data

Authors: Claudia Ehrentraut, Osama Ibrahim, Hercules Dalianis

Abstract:

Policy making situations are real-world problems that exhibit complexity in that they are composed of many interrelated problems and issues. To be effective, policies must holistically address the complexity of the situation rather than propose solutions to single problems. Formulating and understanding the situation and its complex dynamics, therefore, is a key to finding holistic solutions. Analysis of text based information on the policy problem, using Natural Language Processing (NLP) and Text analysis techniques, can support modelling of public policy problem situations in a more objective way based on domain experts knowledge and scientific evidence. The objective behind this study is to support modelling of public policy problem situations, using text analysis of verbal descriptions of the problem. We propose a formal methodology for analysis of qualitative data from multiple information sources on a policy problem to construct a causal diagram of the problem. The analysis process aims at identifying key variables, linking them by cause-effect relationships and mapping that structure into a graphical representation that is adequate for designing action alternatives, i.e., policy options. This study describes the outline of an algorithm used to automate the initial step of a larger methodological approach, which is so far done manually. In this initial step, inferences about key variables and their interrelationships are extracted from textual data to support a better problem structuring. A small prototype for this step is also presented.

Keywords: public policy, problem structuring, qualitative analysis, natural language processing, algorithm, inference extraction

Procedia PDF Downloads 590
1258 National Image in the Age of Mass Self-Communication: An Analysis of Internet Users' Perception of Portugal

Authors: L. Godinho, N. Teixeira

Abstract:

Nowadays, massification of Internet access represents one of the major challenges to the traditional powers of the State, among which the power to control its external image. The virtual world has also sparked the interest of social sciences which consider it a new field of study, an immense open text where sense is expressed. In this paper, that immense text has been accessed to so as to understand the perception Internet users from all over the world have of Portugal. Ours is a quantitative and qualitative approach, as we have resorted to buzz, thematic and category analysis. The results confirm the predominance of sea stereotype in others' vision of the Portuguese people, and evidence that national image has adapted to network communication through processes of individuation and paganization.

Keywords: national image, internet, self-communication, perception

Procedia PDF Downloads 256
1257 One-Shot Text Classification with Multilingual-BERT

Authors: Hsin-Yang Wang, K. M. A. Salam, Ying-Jia Lin, Daniel Tan, Tzu-Hsuan Chou, Hung-Yu Kao

Abstract:

Detecting user intent from natural language expression has a wide variety of use cases in different natural language processing applications. Recently few-shot training has a spike of usage on commercial domains. Due to the lack of significant sample features, the downstream task performance has been limited or leads to an unstable result across different domains. As a state-of-the-art method, the pre-trained BERT model gathering the sentence-level information from a large text corpus shows improvement on several NLP benchmarks. In this research, we are proposing a method to change multi-class classification tasks into binary classification tasks, then use the confidence score to rank the results. As a language model, BERT performs well on sequence data. In our experiment, we change the objective from predicting labels into finding the relations between words in sequence data. Our proposed method achieved 71.0% accuracy in the internal intent detection dataset and 63.9% accuracy in the HuffPost dataset. Acknowledgment: This work was supported by NCKU-B109-K003, which is the collaboration between National Cheng Kung University, Taiwan, and SoftBank Corp., Tokyo.

Keywords: OSML, BERT, text classification, one shot

Procedia PDF Downloads 101
1256 From Text to Data: Sentiment Analysis of Presidential Election Political Forums

Authors: Sergio V Davalos, Alison L. Watkins

Abstract:

User generated content (UGC) such as website post has data associated with it: time of the post, gender, location, type of device, and number of words. The text entered in user generated content (UGC) can provide a valuable dimension for analysis. In this research, each user post is treated as a collection of terms (words). In addition to the number of words per post, the frequency of each term is determined by post and by the sum of occurrences in all posts. This research focuses on one specific aspect of UGC: sentiment. Sentiment analysis (SA) was applied to the content (user posts) of two sets of political forums related to the US presidential elections for 2012 and 2016. Sentiment analysis results in deriving data from the text. This enables the subsequent application of data analytic methods. The SASA (SAIL/SAI Sentiment Analyzer) model was used for sentiment analysis. The application of SASA resulted with a sentiment score for each post. Based on the sentiment scores for the posts there are significant differences between the content and sentiment of the two sets for the 2012 and 2016 presidential election forums. In the 2012 forums, 38% of the forums started with positive sentiment and 16% with negative sentiment. In the 2016 forums, 29% started with positive sentiment and 15% with negative sentiment. There also were changes in sentiment over time. For both elections as the election got closer, the cumulative sentiment score became negative. The candidate who won each election was in the more posts than the losing candidates. In the case of Trump, there were more negative posts than Clinton’s highest number of posts which were positive. KNIME topic modeling was used to derive topics from the posts. There were also changes in topics and keyword emphasis over time. Initially, the political parties were the most referenced and as the election got closer the emphasis changed to the candidates. The performance of the SASA method proved to predict sentiment better than four other methods in Sentibench. The research resulted in deriving sentiment data from text. In combination with other data, the sentiment data provided insight and discovery about user sentiment in the US presidential elections for 2012 and 2016.

Keywords: sentiment analysis, text mining, user generated content, US presidential elections

Procedia PDF Downloads 192
1255 Automatic Tagging and Accuracy in Assamese Text Data

Authors: Chayanika Hazarika Bordoloi

Abstract:

This paper is an attempt to work on a highly inflectional language called Assamese. This is also one of the national languages of India and very little has been achieved in terms of computational research. Building a language processing tool for a natural language is not very smooth as the standard and language representation change at various levels. This paper presents inflectional suffixes of Assamese verbs and how the statistical tools, along with linguistic features, can improve the tagging accuracy. Conditional random fields (CRF tool) was used to automatically tag and train the text data; however, accuracy was improved after linguistic featured were fed into the training data. Assamese is a highly inflectional language; hence, it is challenging to standardizing its morphology. Inflectional suffixes are used as a feature of the text data. In order to analyze the inflections of Assamese word forms, a list of suffixes is prepared. This list comprises suffixes, comprising of all possible suffixes that various categories can take is prepared. Assamese words can be classified into inflected classes (noun, pronoun, adjective and verb) and un-inflected classes (adverb and particle). The corpus used for this morphological analysis has huge tokens. The corpus is a mixed corpus and it has given satisfactory accuracy. The accuracy rate of the tagger has gradually improved with the modified training data.

Keywords: CRF, morphology, tagging, tagset

Procedia PDF Downloads 195
1254 Against Language Disorder: A Way of Reading Dialects in Yan Lianke’s Novels

Authors: Thuy Hanh Nguyen Thi

Abstract:

By the method of deep reading and text analysis, this article will analyze the use and creation of dialects as a way of demonstrating Yan Lianke's creative stance. This article indicates that this is the writer’s narrative strategy in a fight against aphasia, a language disorder of Chinese people and culture, demonstrating a sense of return to folklore and marks his own linguistic style. In terms of verbal text, the dialect in the Yan Lianke’s novels manifested through the use of words, sentences and dialects. There are two types of dialects that exist in Yan Lianke’s novels: the current dialect system and the particular dialect system of Pa Lau world created by the writer himself in order to enrich the vocabulary of Han Chinese.

Keywords: Yan Lianke , aphasia, dialect, Pa Lou world

Procedia PDF Downloads 125
1253 The Challenges of Hyper-Textual Learning Approach for Religious Education

Authors: Elham Shirvani–Ghadikolaei, Seyed Mahdi Sajjadi

Abstract:

State of the art technology has the tremendous impact on our life, in this situation education system have been influenced as well as. In this paper, tried to compare two space of learning text and hypertext with each other, and some challenges of using hypertext in religious education. Regarding the fact that, hypertext is an undeniable part of learning in this world and it has highly beneficial for the education process from class to office and home. In this paper tried to solve this question: the consequences and challenges of applying hypertext in religious education. Also, the consequences of this survey demonstrate the role of curriculum designer and planner of education to solve this problem.

Keywords: Hyper-textual, learning, religious education, learning text

Procedia PDF Downloads 313