Search results for: statistical data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 43115

Search results for: statistical data analysis

42935 Influence of Atmospheric Pollutants on Child Respiratory Disease in Cartagena De Indias, Colombia

Authors: Jose A. Alvarez Aldegunde, Adrian Fernandez Sanchez, Matthew D. Menden, Bernardo Vila Rodriguez

Abstract:

Up to five statistical pre-processings have been carried out considering the pollutant records of the stations present in Cartagena de Indias, Colombia, also taking into account the childhood asthma incidence surveys conducted in hospitals in the city by the Health Ministry of Colombia for this study. These pre-processings have consisted of different techniques such as the determination of the quality of data collection, determination of the quality of the registration network, identification and debugging of errors in data collection, completion of missing data and purified data, as well as the improvement of the time scale of records. The characterization of the quality of the data has been conducted by means of density analysis of the pollutant registration stations using ArcGis Software and through mass balance techniques, making it possible to determine inconsistencies in the records relating the registration data between stations following the linear regression. The results obtained in this process have highlighted the positive quality in the pollutant registration process. Consequently, debugging of errors has allowed us to identify certain data as statistically non-significant in the incidence and series of contamination. This data, together with certain missing records in the series recorded by the measuring stations, have been completed by statistical imputation equations. Following the application of these prior processes, the basic series of incidence data for respiratory disease and pollutant records have allowed the characterization of the influence of pollutants on respiratory diseases such as, for example, childhood asthma. This characterization has been carried out using statistical correlation methods, including visual correlation, simple linear regression correlation and spectral analysis with PAST Software which identifies maximum periodicity cycles and minimums under the formula of the Lomb periodgram. In relation to part of the results obtained, up to eleven maximums and minimums considered contemporary between the incidence records and the particles have been identified taking into account the visual comparison. The spectral analyses that have been performed on the incidence and the PM2.5 have returned a series of similar maximum periods in both registers, which are at a maximum during a period of one year and another every 25 days (0.9 and 0.07 years). The bivariate analysis has managed to characterize the variable "Daily Vehicular Flow" in the ninth position of importance of a total of 55 variables. However, the statistical correlation has not obtained a favorable result, having obtained a low value of the R2 coefficient. The series of analyses conducted has demonstrated the importance of the influence of pollutants such as PM2.5 in the development of childhood asthma in Cartagena. The quantification of the influence of the variables has been able to determine that there is a 56% probability of dependence between PM2.5 and childhood respiratory asthma in Cartagena. Considering this justification, the study could be completed through the application of the BenMap Software, throwing a series of spatial results of interpolated values of the pollutant contamination records that exceeded the established legal limits (represented by homogeneous units up to the neighborhood level) and results of the impact on the exacerbation of pediatric asthma. As a final result, an economic estimate (in Colombian Pesos) of the monthly and individual savings derived from the percentage reduction of the influence of pollutants in relation to visits to the Hospital Emergency Room due to asthma exacerbation in pediatric patients has been granted.

Keywords: Asthma Incidence, BenMap, PM2.5, Statistical Analysis

Procedia PDF Downloads 122
42934 A Web and Cloud-Based Measurement System Analysis Tool for the Automotive Industry

Authors: C. A. Barros, Ana P. Barroso

Abstract:

Any industrial company needs to determine the amount of variation that exists within its measurement process and guarantee the reliability of their data, studying the performance of their measurement system, in terms of linearity, bias, repeatability and reproducibility and stability. This issue is critical for automotive industry suppliers, who are required to be certified by the 16949:2016 standard (replaces the ISO/TS 16949) of International Automotive Task Force, defining the requirements of a quality management system for companies in the automotive industry. Measurement System Analysis (MSA) is one of the mandatory tools. Frequently, the measurement system in companies is not connected to the equipment and do not incorporate the methods proposed by the Automotive Industry Action Group (AIAG). To address these constraints, an R&D project is in progress, whose objective is to develop a web and cloud-based MSA tool. This MSA tool incorporates Industry 4.0 concepts, such as, Internet of Things (IoT) protocols to assure the connection with the measuring equipment, cloud computing, artificial intelligence, statistical tools, and advanced mathematical algorithms. This paper presents the preliminary findings of the project. The web and cloud-based MSA tool is innovative because it implements all statistical tests proposed in the MSA-4 reference manual from AIAG as well as other emerging methods and techniques. As it is integrated with the measuring devices, it reduces the manual input of data and therefore the errors. The tool ensures traceability of all performed tests and can be used in quality laboratories and in the production lines. Besides, it monitors MSAs over time, allowing both the analysis of deviations from the variation of the measurements performed and the management of measurement equipment and calibrations. To develop the MSA tool a ten-step approach was implemented. Firstly, it was performed a benchmarking analysis of the current competitors and commercial solutions linked to MSA, concerning Industry 4.0 paradigm. Next, an analysis of the size of the target market for the MSA tool was done. Afterwards, data flow and traceability requirements were analysed in order to implement an IoT data network that interconnects with the equipment, preferably via wireless. The MSA web solution was designed under UI/UX principles and an API in python language was developed to perform the algorithms and the statistical analysis. Continuous validation of the tool by companies is being performed to assure real time management of the ‘big data’. The main results of this R&D project are: MSA Tool, web and cloud-based; Python API; New Algorithms to the market; and Style Guide of UI/UX of the tool. The MSA tool proposed adds value to the state of the art as it ensures an effective response to the new challenges of measurement systems, which are increasingly critical in production processes. Although the automotive industry has triggered the development of this innovative MSA tool, other industries would also benefit from it. Currently, companies from molds and plastics, chemical and food industry are already validating it.

Keywords: automotive Industry, industry 4.0, Internet of Things, IATF 16949:2016, measurement system analysis

Procedia PDF Downloads 217
42933 Implementation of an IoT Sensor Data Collection and Analysis Library

Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee

Abstract:

Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.

Keywords: clustering, data mining, DBSCAN, k-means, k-medoids, sensor data

Procedia PDF Downloads 384
42932 Mediation Analysis of the Efficacy of the Nimotuzumab-Cisplatin-Radiation (NCR) Improve Overall Survival (OS): A HPV Negative Oropharyngeal Cancer Patient (HPVNOCP) Cohort

Authors: Akshay Patil

Abstract:

Objective: Mediation analysis identifies causal pathways by testing the relationships between the NCR, the OS, and an intermediate variable that mediates the relationship between the Nimotuzumab-cisplatin-radiation (NCR) and OS. Introduction: In randomized controlled trials, the primary interest is in the mechanisms by which an intervention exerts its effects on the outcomes. Clinicians are often interested in how the intervention works (or why it does not work) through hypothesized causal mechanisms. In this work, we highlight the value of understanding causal mechanisms in randomized trial by applying causal mediation analysis in a randomized trial in oncology. Methods: Data was obtained from a phase III randomized trial (Subgroup of HPVNOCP). NCR is reported to significantly improve the OS of patients locally advanced head and neck cancer patients undergoing definitive chemoradiation. Here, based on trial data, the mediating effect of NCR on patient overall survival was systematically quantified through progression-free survival(PFS), disease free survival (DFS), Loco-regional failure (LRF), and the disease control rate (DCR), Overall response rate (ORR). Effects of potential mediators on the HR for OS with NCR versus cisplatin-radiation (CR) were analyzed by Cox regression models. Statistical analyses were performed using R software Version 3.6.3 (The R Foundation for Statistical Computing) Results: Effects of potential mediator PFS was an association between NCR treatment and OS, with an indirect-effect (IE) 0.76(0.62 – 0.95), which mediated 60.69% of the treatment effect. Taking into account baseline confounders, the overall adjusted hazard ratio of death was 0.64 (95% CI: 0.43 – 0.96; P=0.03). The DFS was also a significant mediator and had an IE 0.77 (95% CI; 0.62-0.93), 58% mediated). Smaller mediation effects (maximum 27%) were observed for LRF with IE 0.88(0.74 – 1.06). Both DCR and ORR mediated 10% and 15%, respectively, of the effect of NCR vs. CR on the OS with IE 0.65 (95% CI; 0.81 – 1.08) and 0.94(95% CI; 0.79 – 1.04). Conclusion: Our findings suggest that PFS and DFS were the most important mediators of the OS with nimotuzumab to weekly cisplatin-radiation in HPVNOCP.

Keywords: mediation analysis, cancer data, survival, NCR, HPV negative oropharyngeal

Procedia PDF Downloads 149
42931 Intra-miR-ExploreR, a Novel Bioinformatics Platform for Integrated Discovery of MiRNA:mRNA Gene Regulatory Networks

Authors: Surajit Bhattacharya, Daniel Veltri, Atit A. Patel, Daniel N. Cox

Abstract:

miRNAs have emerged as key post-transcriptional regulators of gene expression, however identification of biologically-relevant target genes for this epigenetic regulatory mechanism remains a significant challenge. To address this knowledge gap, we have developed a novel tool in R, Intra-miR-ExploreR, that facilitates integrated discovery of miRNA targets by incorporating target databases and novel target prediction algorithms, using statistical methods including Pearson and Distance Correlation on microarray data, to arrive at high confidence intragenic miRNA target predictions. We have explored the efficacy of this tool using Drosophila melanogaster as a model organism for bioinformatics analyses and functional validation. A number of putative targets were obtained which were also validated using qRT-PCR analysis. Additional features of the tool include downloadable text files containing GO analysis from DAVID and Pubmed links of literature related to gene sets. Moreover, we are constructing interaction maps of intragenic miRNAs, using both micro array and RNA-seq data, focusing on neural tissues to uncover regulatory codes via which these molecules regulate gene expression to direct cellular development.

Keywords: miRNA, miRNA:mRNA target prediction, statistical methods, miRNA:mRNA interaction network

Procedia PDF Downloads 516
42930 Statistical Correlation between Ply Mechanical Properties of Composite and Its Effect on Structure Reliability

Authors: S. Zhang, L. Zhang, X. Chen

Abstract:

Due to the large uncertainty on the mechanical properties of FRP (fibre reinforced plastic), the reliability evaluation of FRP structures are currently receiving much attention in industry. However, possible statistical correlation between ply mechanical properties has been so far overlooked, and they are mostly assumed to be independent random variables. In this study, the statistical correlation between ply mechanical properties of uni-directional and plain weave composite is firstly analyzed by a combination of Monte-Carlo simulation and finite element modeling of the FRP unit cell. Large linear correlation coefficients between the in-plane mechanical properties are observed, and the correlation coefficients are heavily dependent on the uncertainty of the fibre volume ratio. It is also observed that the correlation coefficients related to Poisson’s ratio are negative while others are positive. To experimentally achieve the statistical correlation coefficients between in-plane mechanical properties of FRP, all concerned in-plane mechanical properties of the same specimen needs to be known. In-plane shear modulus of FRP is experimentally derived by the approach suggested in the ASTM standard D5379M. Tensile tests are conducted using the same specimens used for the shear test, and due to non-uniform tensile deformation a modification factor is derived by a finite element modeling. Digital image correlation is adopted to characterize the specimen non-uniform deformation. The preliminary experimental results show a good agreement with the numerical analysis on the statistical correlation. Then, failure probability of laminate plates is calculated in cases considering and not considering the statistical correlation, using the Monte-Carlo and Markov Chain Monte-Carlo methods, respectively. The results highlight the importance of accounting for the statistical correlation between ply mechanical properties to achieve accurate failure probability of laminate plates. Furthermore, it is found that for the multi-layer laminate plate, the statistical correlation between the ply elastic properties significantly affects the laminate reliability while the effect of statistical correlation between the ply strength is minimal.

Keywords: failure probability, FRP, reliability, statistical correlation

Procedia PDF Downloads 166
42929 Customer Data Analysis Model Using Business Intelligence Tools in Telecommunication Companies

Authors: Monica Lia

Abstract:

This article presents a customer data analysis model using business intelligence tools for data modelling, transforming, data visualization and dynamic reports building. Economic organizational customer’s analysis is made based on the information from the transactional systems of the organization. The paper presents how to develop the data model starting for the data that companies have inside their own operational systems. The owned data can be transformed into useful information about customers using business intelligence tool. For a mature market, knowing the information inside the data and making forecast for strategic decision become more important. Business Intelligence tools are used in business organization as support for decision-making.

Keywords: customer analysis, business intelligence, data warehouse, data mining, decisions, self-service reports, interactive visual analysis, and dynamic dashboards, use cases diagram, process modelling, logical data model, data mart, ETL, star schema, OLAP, data universes

Procedia PDF Downloads 437
42928 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery

Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene

Abstract:

Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.

Keywords: multi-objective, analysis, data flow, freight delivery, methodology

Procedia PDF Downloads 182
42927 Multi-Elemental Analysis Using Inductively Coupled Plasma Mass Spectrometry for the Geographical Origin Discrimination of Greek Giant Beans “Gigantes Elefantes”

Authors: Eleni C. Mazarakioti, Anastasios Zotos, Anna-Akrivi Thomatou, Efthimios Kokkotos, Achilleas Kontogeorgos, Athanasios Ladavos, Angelos Patakas

Abstract:

“Gigantes Elefantes” is a particularly dynamic crop of giant beans cultivated in western Macedonia (Greece). This variety of large beans growing in this area and specifically in the regions of Prespes and Kastoria is a protected designation of origin (PDO) species with high nutritional quality. Mislabeling of geographical origin and blending with unidentified samples are common fraudulent practices in Greek food market with financial and possible health consequences. In the last decades, multi-elemental composition analysis has been used in identifying the geographical origin of foods and agricultural products. In an attempt to discriminate the authenticity of Greek beans, multi-elemental analysis (Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Ge, K, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, Se, Sr, Ta, Ti, Tl, U, V, W, Zn, Zr) was performed by inductively coupled plasma mass spectrometry (ICP-MS) on 320 samples of beans, originated from Greece (Prespes and Kastoria), China and Poland. All samples were collected during the autumn of 2021. The obtained data were analysed by principal component analysis (PCA), an unsupervised statistical method, which allows for to reduce of the dimensionality of the enormous datasets. Statistical analysis revealed a clear separation of beans that had been cultivated in Greece compared with those from China and Poland. An adequate discrimination of geographical origin between bean samples originating from the two Greece regions, Prespes and Kastoria, was also evident. Our results suggest that multi-elemental analysis combined with the appropriate multivariate statistical method could be a useful tool for bean’s geographical authentication. Acknowledgment: This research has been financed by the Public Investment Programme/General Secretariat for Research and Innovation, under the call “YPOERGO 3, code 2018SE01300000: project title: ‘Elaboration and implementation of methodology for authenticity and geographical origin assessment of agricultural products.

Keywords: geographical origin, authenticity, multi-elemental analysis, beans, ICP-MS, PCA

Procedia PDF Downloads 84
42926 Ethnic and National Determinants in the Process of Building Peace in Afghanistan After the Withdrawal of Western Forces in 2021

Authors: Małgorzata Cichy

Abstract:

Afghanistan is a source of conflicts that affect security on a global scale. The role of ethnic and national determinants in the peacebuilding process in this country remains an extremely important factor in this respect. Research methods include literature and data analysis (scientific literature, documents of governmental and non-governmental organizations, statistical data and media reports), institutional and legal analysis, as well as decision-making method. The main objective of the research is a comprehensive answer to the question of how ethnic and national factors affect the process of building peace in Afghanistan after 2021 and what impact it has on international security.

Keywords: Afghanistan, pashtuns, peace, taliban

Procedia PDF Downloads 103
42925 Clinical Feature Analysis and Prediction on Recurrence in Cervical Cancer

Authors: Ravinder Bahl, Jamini Sharma

Abstract:

The paper demonstrates analysis of the cervical cancer based on a probabilistic model. It involves technique for classification and prediction by recognizing typical and diagnostically most important test features relating to cervical cancer. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases. The combination of the conventional statistical and machine learning tools is applied for the analysis. Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.

Keywords: cervical cancer, recurrence, no recurrence, probabilistic, classification, prediction, machine learning

Procedia PDF Downloads 363
42924 Confirmatory Factor Analysis of Smartphone Addiction Inventory (SPAI) in the Yemeni Environment

Authors: Mohammed Al-Khadher

Abstract:

Currently, we are witnessing rapid advancements in the field of information and communications technology, forcing us, as psychologists, to combat the psychological and social effects of such developments. It also drives us to continually look for the development and preparation of measurement tools compatible with the changes brought about by the digital revolution. In this context, the current study aimed to identify the factor analysis of the Smartphone Addiction Inventory (SPAI) in the Republic of Yemen. The sample consisted of (1920) university students (1136 males and 784 females) who answered the inventory, and the data was analyzed using the statistical software (AMOS V25). The factor analysis results showed a goodness-of-fit of the data five-factor model with excellent indicators, as RMSEA-(.052), CFI-(.910), GFI-(.931), AGFI-(.915), TLI-(.897), NFI-(.895), RFI-(.880), and RMR-(.032). All within the ideal range to prove the model's fit of the scale’s factor analysis. The confirmatory factor analysis results showed factor loading in (4) items on (Time Spent), (4) items on (Compulsivity), (8) items on (Daily Life Interference), (5) items on (Craving), and (3) items on (Sleep interference); and all standard values of factor loading were statistically significant at the significance level (>.001).

Keywords: smartphone addiction inventory (SPAI), confirmatory factor analysis (CFA), yemeni students, people at risk of smartphone addiction

Procedia PDF Downloads 102
42923 The Influence of Celebrity Endorsement on Consumers’ Attitude and Purchas Intention Towards Skincare Products in Malaysia

Authors: Tew Leh Ghee

Abstract:

The study's goal is to determine how celebrity endorsement affects Malaysian consumers' attitudes and intentions to buy skincare products. Since customers now largely rely on celebrity endorsement to influence purchasing decisions in almost every business, celebrity endorsement is not, in reality, a new phenomenon. Even though the market for skincare products has a vast potential to be exploited, corporations have yet to seize this niche via celebrity endorsement. Basically, there hasn't been much study done to recognize the significance of celebrity endorsement in this industry. This research combined descriptive and quantitative methods with a self-administered survey as the primary data-gathering tool. All of the characteristics under study were measured using a 5-point Likert scale, and the questionnaire was written in English. A convenience sample method was used to choose respondents, and 360 sets of valid questionnaires were gathered for the study's statistical analysis. Preliminary statistical analyses were analyzed using SPSS version 20.0 (Statistical Package for the Social Sciences). The backdrop of the respondents' demographics was examined using descriptive analysis. All concept assessments' validity and reliability were examined using exploratory factor analysis, item-total statistics, and reliability statistics. Pearson correlation and regression analysis were used, respectively, to assess relationships and impacts between the variables under study. The research showed that, apart from competence, celebrity endorsements of skincare products in Malaysia had a favorable impact on attitudes and purchase intentions as evaluated by attractiveness and dependability. The research indicated that the most significant element influencing attitude and buy intention was the credibility of a celebrity endorsement. The study offered implications in order to provide potential improvements of celebrity endorsement in skincare goods in Malaysia. The study's last portion includes its limits and ideas for the future.

Keywords: trustworthiness, influential, phenomenon, celebrity emdorsement

Procedia PDF Downloads 87
42922 Investigating Real Ship Accidents with Descriptive Analysis in Turkey

Authors: İsmail Karaca, Ömer Söner

Abstract:

The use of advanced methods has been increasing day by day in the maritime sector, which is one of the sectors least affected by the COVID-19 pandemic. It is aimed to minimize accidents, especially by using advanced methods in the investigation of marine accidents. This research aimed to conduct an exploratory statistical analysis of particular ship accidents in the Transport Safety Investigation Center of Turkey database. 46 ship accidents, which occurred between 2010-2018, have been selected from the database. In addition to the availability of a reliable and comprehensive database, taking advantage of the robust statistical models for investigation is critical to improving the safety of ships. Thus, descriptive analysis has been used in the research to identify causes and conditional factors related to different types of ship accidents. The research outcomes underline the fact that environmental factors and day and night ratio have great influence on ship safety.

Keywords: descriptive analysis, maritime industry, maritime safety, ship accident statistics

Procedia PDF Downloads 142
42921 AniMoveMineR: Animal Behavior Exploratory Analysis Using Association Rules Mining

Authors: Suelane Garcia Fontes, Silvio Luiz Stanzani, Pedro L. Pizzigatti Corrła Ronaldo G. Morato

Abstract:

Environmental changes and major natural disasters are most prevalent in the world due to the damage that humanity has caused to nature and these damages directly affect the lives of animals. Thus, the study of animal behavior and their interactions with the environment can provide knowledge that guides researchers and public agencies in preservation and conservation actions. Exploratory analysis of animal movement can determine the patterns of animal behavior and with technological advances the ability of animals to be tracked and, consequently, behavioral studies have been expanded. There is a lot of research on animal movement and behavior, but we note that a proposal that combines resources and allows for exploratory analysis of animal movement and provide statistical measures on individual animal behavior and its interaction with the environment is missing. The contribution of this paper is to present the framework AniMoveMineR, a unified solution that aggregates trajectory analysis and data mining techniques to explore animal movement data and provide a first step in responding questions about the animal individual behavior and their interactions with other animals over time and space. We evaluated the framework through the use of monitored jaguar data in the city of Miranda Pantanal, Brazil, in order to verify if the use of AniMoveMineR allows to identify the interaction level between these jaguars. The results were positive and provided indications about the individual behavior of jaguars and about which jaguars have the highest or lowest correlation.

Keywords: data mining, data science, trajectory, animal behavior

Procedia PDF Downloads 149
42920 Earthquake Classification in Molluca Collision Zone Using Conventional Statistical Methods

Authors: H. J. Wattimanela, U. S. Passaribu, A. N. T. Puspito, S. W. Indratno

Abstract:

Molluca Collision Zone is located at the junction of the Eurasian plate, Australian, Pacific, and the Philippines. Between the Sangihe arc, west of the collision zone, and to the east of Halmahera arc is active collision and convex toward the Molluca Sea. This research will analyze the behavior of earthquake occurrence in Molluca Collision Zone related to the distributions of an earthquake in each partition regions, determining the type of distribution of a occurrence earthquake of partition regions, and the mean occurrence of earthquakes each partition regions, and the correlation between the partitions region. We calculate number of earthquakes using partition method and its behavioral using conventional statistical methods. The data used is the data type of shallow earthquakes with magnitudes ≥ 4 SR for the period 1964-2013 in the Molluca Collision Zone. From the results, we can classify partitioned regions based on the correlation into two classes: strong and very strong. This classification can be used for early warning system in disaster management.

Keywords: molluca collision zone, partition regions, conventional statistical methods, earthquakes, classifications, disaster management

Procedia PDF Downloads 501
42919 Graduates Perceptions Towards the Image of Suan Sunandha Rajabhat University on the Graduation Rehearsal Day

Authors: Suangsuda Subjaroen, Chutikarn Sriviboon, Rosjana Chandhasa

Abstract:

This research aims to examine the graduates' overall satisfaction and influential factors that affect the image of Suan Sunandha Rajabhat University, according to the graduates' viewpoints on the graduation rehearsal day. In accordance with the graduates' perceptions, the study is related to the levels of graduates' satisfaction, their perceived quality, perceived value, and the image of Suan Sunandha Rajabhat University. The sample group in this study involved 1,129 graduates of Suan Sunandha Rajabhat University who attended on 2019 graduation rehearsal day. A questionnaire was used as an instrument in order to collect data. By the use of computing software, the statistics used for data analysis were various, ranging from frequencies, percentage, mean, and standard deviation, One-Way ANOVA, and Multiple Regression Analysis. The majority of participants were graduates with a bachelor's degree, followed by masters graduates and PhD graduates, respectively. Among the participants, most of them graduated from the Faculty of Management Sciences, followed by the Faculty of Humanities and Social Sciences and Faculty of Education, respectively. Overall, the graduates were satisfied with the graduation rehearsal day, and each aspect was rated at a satisfactory level. Formality, steps, and procedures were the aspects that graduates were most satisfied with, followed by graduation rehearsal personnel and staff, venue, and facilities. Referring to graduates' perceptions, the perceived quality was rated at a very good level, the perceived value was at a good level, whereas the image of Suan Sunandha Rajabhat University was perceived at a good level, respectively. There were differences in satisfaction levels among graduates with a bachelor's degree, graduates with a master's degree and a doctoral degree with statistical significance at the level of 0.05. There was a statistical significance at the level of 0.05 in perceived quality and perceived value affecting the image of Suan Sunandha Rajabhat University. The image of Suan Sunandha Rajabhat University influenced graduates' satisfaction level with statistical significance at the level of 0.01.

Keywords: university image, perceived quality, perceived value, intention to study higher education, intention to recommend the university to others

Procedia PDF Downloads 116
42918 The Image of Suan Sunandha Rajabhat University in Accordance with Graduates' Perceptions on the Graduation Ceremony Day

Authors: Waraphorn Sribuakaew, Chutikarn Sriviboon, Rosjana Chandhasa

Abstract:

The purpose of this research is to study the satisfaction level of graduates and factors that affect the image of Suan Sunandha Rajabhat University based on the perceptions of graduates on the graduation ceremony day. By studying the satisfaction of graduates, the image of Suan Sunandha Rajabhat University according to the graduates' perceptions and the loyalty to the university (in the aspects of intention to continue studying at a higher level, intention to recommend the university to a friend), the sample group used in this study was 1,000 graduates of Suan Sunandha Rajabhat University who participated on the 2019 graduation ceremony day. A questionnaire was utilized as a tool for data collection. By the use of computing software, the statistics used for data analysis were frequencies, percentage, mean, and standard deviation, One-Way ANOVA, and multiple regression analysis. Most of the respondents were graduates with a bachelor's degree, followed by graduates with a master's degree and PhD graduates, respectively. Major participants graduated from the Faculty of Management Sciences, followed by the Faculty of Humanities and Social Sciences and Faculty of Education, respectively. The graduates were satisfied on the ceremony day as a whole and rated each aspect at a satisfactory level. Formality, steps, and procedures were the aspects that graduates were most satisfied with, followed by graduation ceremony personnel and staff, venue, and facilities. On the perception of the graduates, the image of Suan Sunandha Rajabhat University was at a good level, while loyalty to the university was at a very high level. The intention of recommendation to others was at the highest level, followed by the intention to pursue further education at a very high level. The graduates graduating from different faculties have different levels of satisfaction on the graduation day with statistical significance at the level of 0.05. The image of Suan Sunandha Rajabhat University affected the satisfaction of graduates with statistical significance at the level of 0.01. The satisfactory level of graduates on the graduation ceremony day influenced the level of loyalty to the university with statistical significance at the level of 0.05.

Keywords: university image, loyalty to the university, intention to study higher education, intention to recommend the university to others, graduates' satisfaction

Procedia PDF Downloads 137
42917 Prediction of Anticancer Potential of Curcumin Nanoparticles by Means of Quasi-Qsar Analysis Using Monte Carlo Method

Authors: Ruchika Goyal, Ashwani Kumar, Sandeep Jain

Abstract:

The experimental data for anticancer potential of curcumin nanoparticles was calculated by means of eclectic data. The optimal descriptors were examined using Monte Carlo method based CORAL SEA software. The statistical quality of the model is following: n = 14, R² = 0.6809, Q² = 0.5943, s = 0.175, MAE = 0.114, F = 26 (sub-training set), n =5, R²= 0.9529, Q² = 0.7982, s = 0.086, MAE = 0.068, F = 61, Av Rm² = 0.7601, ∆R²m = 0.0840, k = 0.9856 and kk = 1.0146 (test set) and n = 5, R² = 0.6075 (validation set). This data can be used to build predictive QSAR models for anticancer activity.

Keywords: anticancer potential, curcumin, model, nanoparticles, optimal descriptors, QSAR

Procedia PDF Downloads 324
42916 A Safety Analysis Method for Multi-Agent Systems

Authors: Ching Louis Liu, Edmund Kazmierczak, Tim Miller

Abstract:

Safety analysis for multi-agent systems is complicated by the, potentially nonlinear, interactions between agents. This paper proposes a method for analyzing the safety of multi-agent systems by explicitly focusing on interactions and the accident data of systems that are similar in structure and function to the system being analyzed. The method creates a Bayesian network using the accident data from similar systems. A feature of our method is that the events in accident data are labeled with HAZOP guide words. Our method uses an Ontology to abstract away from the details of a multi-agent implementation. Using the ontology, our methods then constructs an “Interaction Map,” a graphical representation of the patterns of interactions between agents and other artifacts. Interaction maps combined with statistical data from accidents and the HAZOP classifications of events can be converted into a Bayesian Network. Bayesian networks allow designers to explore “what it” scenarios and make design trade-offs that maintain safety. We show how to use the Bayesian networks, and the interaction maps to improve multi-agent system designs.

Keywords: multi-agent system, safety analysis, safety model, integration map

Procedia PDF Downloads 422
42915 Process Capability Analysis by Using Statistical Process Control of Rice Polished Cylinder Turning Practice

Authors: S. Bangphan, P. Bangphan, T.Boonkang

Abstract:

Quality control helps industries in improvements of its product quality and productivity. Statistical Process Control (SPC) is one of the tools to control the quality of products that turning practice in bringing a department of industrial engineering process under control. In this research, the process control of a turning manufactured at workshops machines. The varying measurements have been recorded for a number of samples of a rice polished cylinder obtained from a number of trials with the turning practice. SPC technique has been adopted by the process is finally brought under control and process capability is improved.

Keywords: rice polished cylinder, statistical process control, control charts, process capability

Procedia PDF Downloads 492
42914 The Effectiveness of Teaching Emotional Intelligence on Reducing Marital Conflicts and Marital Adjustment in Married Students of Tehran University

Authors: Elham Jafari

Abstract:

The aim of this study was to evaluate the effectiveness of emotional intelligence training on reducing marital conflict and marital adjustment in married students of the University of Tehran. This research is an applied type in terms of purpose and a semi-experimental design of pre-test-post-test type with the control group and with follow-up test in terms of the data collection method. The statistical population of the present study consisted of all married students of the University of Tehran. In this study, 30 married students of the University of Tehran were selected by convenience sampling method as a sample that 15 people in the experimental group and 15 people in the control group were randomly selected. The method of data collection in this research was field and library. The data collection tool in the field section was two questionnaires of marital conflict and marital adjustment. To analyze the collected data, first at the descriptive level, using statistical indicators, the demographic characteristics of the sample were described by SPSS software. In inferential statistics, the statistical method used was the test of analysis of covariance. The results showed that the effect of the independent variable of emotional intelligence on the reduction of marital conflicts is statistically significant. And it can be inferred that emotional intelligence training has reduced the marital conflicts of married students of the University of Tehran in the experimental group compared to the control group. Also, the effect of the independent variable of emotional intelligence on marital adjustment was statistically significant. It can be inferred that emotional intelligence training has adjusted the marital adjustment of married students of the University of Tehran in the experimental group compared to the control group.

Keywords: emotional intelligence, marital conflicts, marital compatibility, married students

Procedia PDF Downloads 256
42913 Statistical Analysis of the Factors that Influence the Properties of Blueberries from Cultivar Bluecrop

Authors: Raquel P. F. Guiné, Susana R. Matos, Daniela V. T. A. Costa, Fernando J. Gonçalves

Abstract:

Because blueberries are worldwide recognized as a good source of beneficial components, their consumption has increased in the past decades, and so have the scientific works about their properties. Hence this work was undertaken to evaluate the effect of some production and conservation factors on the properties of blueberries from cultivar Bluecrop. The physical and chemical analyses were done according to established methodologies and then all data was treated using software SPSS for assessment of the possible differences among the factors investigated and/or the correlations between the variables at study. The results showed that location of production influenced some of the berries properties (caliber, sugars, antioxidant activity, color and texture) and that the age of the bushes was correlated with moisture, sugars and acidity, as well as lightness. On the other hand, altitude of the farm only was correlated to sugar content. With regards to conservation, it influenced only anthocyanins content and DPPH antioxidant activity. Finally, the type of extract and the order of extraction had a pronounced influence on all the phnolic properties evaluated.

Keywords: Antioxidant activity, blueberry, conservation, geographical origin, phenolic compounds, statistical analysis

Procedia PDF Downloads 481
42912 Stochastic Optimization of a Vendor-Managed Inventory Problem in a Two-Echelon Supply Chain

Authors: Bita Payami-Shabestari, Dariush Eslami

Abstract:

The purpose of this paper is to develop a multi-product economic production quantity model under vendor management inventory policy and restrictions including limited warehouse space, budget, and number of orders, average shortage time and maximum permissible shortage. Since the “costs” cannot be predicted with certainty, it is assumed that data behave under uncertain environment. The problem is first formulated into the framework of a bi-objective of multi-product economic production quantity model. Then, the problem is solved with three multi-objective decision-making (MODM) methods. Then following this, three methods had been compared on information on the optimal value of the two objective functions and the central processing unit (CPU) time with the statistical analysis method and the multi-attribute decision-making (MADM). The results are compared with statistical analysis method and the MADM. The results of the study demonstrate that augmented-constraint in terms of optimal value of the two objective functions and the CPU time perform better than global criteria, and goal programming. Sensitivity analysis is done to illustrate the effect of parameter variations on the optimal solution. The contribution of this research is the use of random costs data in developing a multi-product economic production quantity model under vendor management inventory policy with several constraints.

Keywords: economic production quantity, random cost, supply chain management, vendor-managed inventory

Procedia PDF Downloads 132
42911 Statistical Invariants for Classification on Tiny Datasets

Authors: Carlo Ruiz, Gustavo Cruz

Abstract:

We investigate the influence of statistical invariants for classification problems on tiny datasets. A review of the current state-of-the-art methods for classification is presented, with a brief discussion of the differences and trade-offs between the proposed method and existing classifiers. Subsequently, the philosophical and mathematical foundations of the statistical theory of learning are laid out, incorporating the recent addition of statistical invariants. We show algorithmic implementations for binary, multiclass, and multilabel classification alongside technical details and recommendations for practitioners. Evidence of the efficacy of the proposed algorithm is demonstrated through comparative studies against state-of-the-art AutoML frameworks on a benchmark suite.

Keywords: learning, tinyml, invariants, supervised

Procedia PDF Downloads 1
42910 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles

Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi

Abstract:

Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.

Keywords: artificial neural networks, fuel consumption, friedman test, machine learning, statistical hypothesis testing

Procedia PDF Downloads 186
42909 Comparative Study to Evaluate Chronological Age and Dental Age in North Indian Population Using Cameriere Method

Authors: Ranjitkumar Patil

Abstract:

Age estimation has its importance in forensic dentistry. Dental age estimation has emerged as an alternative to skeletal age determination. The methods based on stages of tooth formation, as appreciated on radiographs, seems to be more appropriate in the assessment of age than those based on skeletal development. The study was done to evaluate dental age in north Indian population using Cameriere’s method. Aims/Objectives: The study was conducted to assess the dental age of North Indian children using Cameriere’smethodand to compare the chronological age and dental age for validation of the Cameriere’smethod in the north Indian population. A comparative study of 02 year duration on the OPG (using PLANMECA Promax 3D) data of 497 individuals with age ranging from 5 to 15 years was done based on simple random technique ethical approval obtained from the institutional ethical committee. The data was obtained based on inclusion and exclusion criteria was analyzed by a software for dental age estimation. Statistical analysis: Student’s t test was used to compare the morphological variables of males with those of females and to compare observed age with estimated age. Regression formula was also calculated. Results: Present study was a comparative study of 497 subjects with a distribution between male and female, with their dental age assessed by using Panoramic radiograph, following the method described by Cameriere, which is widely accepted. Statistical analysis in our study indicated that gender does not have a significant influence on age estimation. (R2= 0.787). Conclusion: This infers that cameriere’s method can be effectively applied in north Indianpopulation.

Keywords: Forensic, Chronological Age, Dental Age, Skeletal Age

Procedia PDF Downloads 92
42908 Investigating the Relationship Between Corporate Governance and Financial Performance Considering the Moderating Role of Opinion and Internal Control Weakness

Authors: Fatemeh Norouzi

Abstract:

Today, financial performance has become one of the important issues in accounting and auditing that companies and their managers have paid attention to this issue and for this reason to the variables that are influential in this field. One of the things that can affect financial performance is corporate governance, which is examined in this research, although some things such as issues related to auditing can also moderate this relationship; Therefore, this research has been conducted with the aim of investigating the relationship between corporate governance and financial performance with regard to the moderating role of feedback and internal control weakness. The research is practical in terms of purpose, and in terms of method, it has been done in a post-event descriptive manner, in which the data has been analyzed using stock market data. Data collection has been done by using stock exchange data which has been extracted from the website of the Iraqi Stock Exchange, the statistical population of this research is all the companies admitted to the Iraqi Stock Exchange. . The statistical sample in this research is considered from 2014 to 2021, which includes 34 companies. Four different models have been considered for the research hypotheses, which are eight hypotheses, in this research, the analysis has been done using EXCEL and STATA15 software. In this article, collinearity test, integration test ,determination of fixed effects and correlation matrix results, have been used. The research results showed that the first four hypotheses were rejected and the second four hypotheses were confirmed.

Keywords: size of the board of directors, duality of the CEO, financial performance, internal control weakness

Procedia PDF Downloads 92
42907 Evaluation of Egg Quality Parameters in the Isa Brown Line in Intensive Production Systems in the Ocaña Region, Norte de Santander

Authors: Meza-Quintero Myriam, Lobo Torrado Katty Andrea, Sanchez Picon Yesenia, Hurtado-Lugo Naudin

Abstract:

The objective of the study was to evaluate the internal and external quality of the egg in the three production housing systems: floor, cage, and grazing of laying birds of the Isa Brown line, in the laying period between weeks 35 to 41; 135 hens distributed in 3 treatments of 45 birds per repetition were used (the replicas were the seven weeks of the trial). The feeding treatment supplied in the floor and cage systems contained 114 g/bird/day; for the grazing system, 14 grams less concentrate was provided. Nine eggs were collected to be studied and analyzed in the animal nutrition laboratory (3 eggs per housing system). The random statistical model was implemented: for the statistical analysis of the data, the statistical software of IBM® Statistical Products and Services Solution (SPSS) version 2.3 was used. The evaluation and follow-up instruments were the vernier caliper for the measurement in millimeters, a YolkFan™16 from Roche DSM for the evaluation of the egg yolk pigmentation, a digital scale for the measurement in grams, a micrometer for the measurement in millimeters and evaluation in the laboratory using dry matter, ashes, and ethereal extract. The results suggested that equivalent to the size of the egg (0.04 ± 3.55) and the thickness of the shell (0.46 ± 3.55), where P-Value> 0.05 was obtained, weight albumen (0.18 ± 3.55), albumen height (0.38 ± 3.55), yolk weight (0.64 ± 3.55), yolk height (0.54 ± 3.55) and for yolk pigmentation (1.23 ± 3.55). It was concluded that the hens in the three production systems, floor, cage, and grazing, did not show significant statistical differences in the internal and external quality of the chicken in the parameters studied egg for the production system.

Keywords: biological, territories, genetic resource, egg

Procedia PDF Downloads 87
42906 Statistical Models and Time Series Forecasting on Crime Data in Nepal

Authors: Dila Ram Bhandari

Abstract:

Throughout the 20th century, new governments were created where identities such as ethnic, religious, linguistic, caste, communal, tribal, and others played a part in the development of constitutions and the legal system of victim and criminal justice. Acute issues with extremism, poverty, environmental degradation, cybercrimes, human rights violations, crime against, and victimization of both individuals and groups have recently plagued South Asian nations. Everyday massive number of crimes are steadfast, these frequent crimes have made the lives of common citizens restless. Crimes are one of the major threats to society and also for civilization. Crime is a bone of contention that can create a societal disturbance. The old-style crime solving practices are unable to live up to the requirement of existing crime situations. Crime analysis is one of the most important activities of the majority of intelligent and law enforcement organizations all over the world. The South Asia region lacks such a regional coordination mechanism, unlike central Asia of Asia Pacific regions, to facilitate criminal intelligence sharing and operational coordination related to organized crime, including illicit drug trafficking and money laundering. There have been numerous conversations in recent years about using data mining technology to combat crime and terrorism. The Data Detective program from Sentient as a software company, uses data mining techniques to support the police (Sentient, 2017). The goals of this internship are to test out several predictive model solutions and choose the most effective and promising one. First, extensive literature reviews on data mining, crime analysis, and crime data mining were conducted. Sentient offered a 7-year archive of crime statistics that were daily aggregated to produce a univariate dataset. Moreover, a daily incidence type aggregation was performed to produce a multivariate dataset. Each solution's forecast period lasted seven days. Statistical models and neural network models were the two main groups into which the experiments were split. For the crime data, neural networks fared better than statistical models. This study gives a general review of the applied statistics and neural network models. A detailed image of each model's performance on the available data and generalizability is provided by a comparative analysis of all the models on a comparable dataset. Obviously, the studies demonstrated that, in comparison to other models, Gated Recurrent Units (GRU) produced greater prediction. The crime records of 2005-2019 which was collected from Nepal Police headquarter and analysed by R programming. In conclusion, gated recurrent unit implementation could give benefit to police in predicting crime. Hence, time series analysis using GRU could be a prospective additional feature in Data Detective.

Keywords: time series analysis, forecasting, ARIMA, machine learning

Procedia PDF Downloads 169