Search results for: stabilized zirconia ceramics
333 Experimental Investigation of Performance Anode Side of PEM Fuel Cell with Spin Method Coated with YSZ+SDC
Authors: Gürol Önal, Kevser Dinçer, Salih Yayla
Abstract:
In this study, performance of proton exchange membrane PEM fuel cell was experimentally investigated. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using YSZ+SDC. A solution having 0,1 gr YttriaStabilized Zirconia (YSZ) + 0,1 Samarium-Doped Ceria (SDC) + 10 mL methanol was prepared. This solution was taken out and filled into a micro-pipette. Then the anode side of PEM fuel cell was coated with YSZ+ SDC by using spin method. In the experimental study, current, voltage and power performances before and after coating were recorded and then compared to each other. It was found that the efficiency of PEM fuel cell increases after the coating with YSZ+SDC.Keywords: fuel cell, Polymer Electrolyte Membrane (PEM), membrane, spin method
Procedia PDF Downloads 562332 A Sustainable Approach for Waste Management: Automotive Waste Transformation into High Value Titanium Nitride Ceramic
Authors: Mohannad Mayyas, Farshid Pahlevani, Veena Sahajwalla
Abstract:
Automotive shredder residue (ASR) is an industrial waste, generated during the recycling process of End-of-life vehicles. The large increasing production volumes of ASR and its hazardous content have raised concerns worldwide, leading some countries to impose more restrictions on ASR waste disposal and encouraging researchers to find efficient solutions for ASR processing. Although a great deal of research work has been carried out, all proposed solutions, to our knowledge, remain commercially and technically unproven. While the volume of waste materials continues to increase, the production of materials from new sustainable sources has become of great importance. Advanced ceramic materials such as nitrides, carbides and borides are widely used in a variety of applications. Among these ceramics, a great deal of attention has been recently paid to Titanium nitride (TiN) owing to its unique characteristics. In our study, we propose a new sustainable approach for ASR management where TiN nanoparticles with ideal particle size ranging from 200 to 315 nm can be synthesized as a by-product. In this approach, TiN is thermally synthesized by nitriding pressed mixture of automotive shredder residue (ASR) incorporated with titanium oxide (TiO2). Results indicated that TiO2 influences and catalyses degradation reactions of ASR and helps to achieve fast and full decomposition. In addition, the process resulted in titanium nitride (TiN) ceramic with several unique structures (porous nanostructured, polycrystalline, micro-spherical and nano-sized structures) that were simply obtained by tuning the ratio of TiO2 to ASR, and a product with appreciable TiN content of around 85% was achieved after only one hour nitridation at 1550 °C.Keywords: automotive shredder residue, nano-ceramics, waste treatment, titanium nitride, thermal conversion
Procedia PDF Downloads 295331 Preparation of Polymer-Stabilized Magnetic Iron Oxide as Selective Drug Nanocarriers to Human Acute Myeloid Leukemia
Authors: Kheireddine El-Boubbou
Abstract:
Drug delivery to target human acute myeloid leukemia (AML) using a nanoparticulate chemotherapeutic formulation that can deliver drugs selectively to AML cancer is hugely needed. In this work, we report the development of a nanoformulation made of polymeric-stabilized multifunctional magnetic iron oxide nanoparticles (PMNP) loaded with the anticancer drug Doxorubicin (Dox) as a promising drug carrier to treat AML. Dox@PMNP conjugates simultaneously exhibited high drug content, maximized fluorescence, and excellent release properties. Nanoparticulate uptake and cell death following addition of Dox@PMNPs were then evaluated in different types of human AML target cells, as well as on normal human cells. While the unloaded MNPs were not toxic to any of the cells, Dox@PMNPs were found to be highly toxic to the different AML cell lines, albeit at different inhibitory concentrations (IC50 values), but showed very little toxicity towards the normal cells. In comparison, free Dox showed significant potency concurrently to all the cell lines, suggesting huge potentials for the use of Dox@PMNPs as selective AML anticancer cargos. Live confocal imaging, fluorescence and electron microscopy confirmed that Dox is indeed delivered to the nucleus in relatively short periods of time, causing apoptotic cell death. Importantly, this targeted payload may potentially enhance the effectiveness of the drug in AML patients and may further allow physicians to image leukemic cells exposed to Dox@PMNPs using MRI.Keywords: magnetic nanoparticles, drug delivery, acute myeloid leukemia, iron oxide, cancer nanotherapy
Procedia PDF Downloads 229330 Modified Graphene Oxide in Ceramic Composite
Authors: Natia Jalagonia, Jimsher Maisuradze, Karlo Barbakadze, Tinatin Kuchukhidze
Abstract:
At present intensive scientific researches of ceramics, cermets and metal alloys have been conducted for improving materials physical-mechanical characteristics. In purpose of increasing impact strength of ceramics based on alumina, simple method of graphene homogenization was developed. Homogeneous distribution of graphene (homogenization) in pressing composite became possible through the connection of functional groups of graphene oxide (-OH, -COOH, -O-O- and others) and alumina superficial OH groups with aluminum organic compounds. These two components connect with each other with -O-Al–O- bonds, and by their thermal treatment (300–500°C), graphene and alumina phase are transformed. Thus, choosing of aluminum organic compounds for modification is stipulated by the following opinion: aluminum organic compounds fragments fixed on graphene and alumina finally are transformed into an integral part of the matrix. By using of other elements as modifier on the matrix surface (Al2O3) other phases are transformed, which change sharply physical-mechanical properties of ceramic composites, for this reason, effect caused by the inclusion of graphene will be unknown. Fixing graphene fragments on alumina surface by alumoorganic compounds result in new type graphene-alumina complex, in which these two components are connected by C-O-Al bonds. Part of carbon atoms in graphene oxide are in sp3 hybrid state, so functional groups (-OH, -COOH) are located on both sides of graphene oxide layer. Aluminum organic compound reacts with graphene oxide at the room temperature, and modified graphene oxide is obtained: R2Al-O-[graphene]–COOAlR2. Remaining Al–C bonds also reacts rapidly with surface OH groups of alumina. In a result of these process, pressing powdery composite [Al2O3]-O-Al-O-[graphene]–COO–Al–O–[Al2O3] is obtained. For the purpose, graphene oxide suspension in dry toluene have added alumoorganic compound Al(iC4H9)3 in toluene with equimolecular ratio. Obtained suspension has put in the flask and removed solution in a rotary evaporate presence nitrogen atmosphere. Obtained powdery have been researched and used to consolidation of ceramic materials based on alumina. Ceramic composites are obtained in high temperature vacuum furnace with different temperature and pressure conditions. Received ceramics do not have open pores and their density reaches 99.5 % of TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), device of spark-plasma synthesis, induction furnace, Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM-800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer and others.Keywords: graphene oxide, alumo-organic, ceramic
Procedia PDF Downloads 308329 An Analytical Approach of Computational Complexity for the Method of Multifluid Modelling
Authors: A. K. Borah, A. K. Singh
Abstract:
In this paper we deal building blocks of the computer simulation of the multiphase flows. Whole simulation procedure can be viewed as two super procedures; The implementation of VOF method and the solution of Navier Stoke’s Equation. Moreover, a sequential code for a Navier Stoke’s solver has been studied.Keywords: Bi-conjugate gradient stabilized (Bi-CGSTAB), ILUT function, krylov subspace, multifluid flows preconditioner, simple algorithm
Procedia PDF Downloads 528328 Studies on Distribution of the Doped Pr3+ Ions in the LaF3 Based Transparent Oxyfluoride Glass-Ceramic
Authors: Biswajit Pal, Amit Mallik, Anil K. Barik
Abstract:
Current years have witnessed a phenomenal growth in the research on the rare earth-doped transparent host materials, the essential components in optoelectronics that meet up the increasing demand for fabrication of high quality optical devices especially in telecommunication system. The combination of low phonon energy (because of fluoride environment) and high chemical durability with superior mechanical stability (due to oxide environment) makes the oxyfluoride glass–ceramics the promising and useful materials in optoelectronics. The present work reports on the undoped and doped (1 mol% Pr2O3) glass ceramics of composition 16.52 Al2O3•1.5AlF3• 12.65LaF3•4.33Na2O•64.85 SiO2 (mol%), prepared by melting technique initially that follows annealation at 450 ºC for 1 h. The glass samples so obtained were heat treated at constant 600 ºC with a variation in heat treatment schedule (10- 80 h). TEM techniques were employed to structurally characterize the glass samples. Pr2O3 affects the phase separation in the glass and delays the onset of crystallization in the glass ceramic. The modified crystallization mechanism is established from the analysis of advanced STEM/EDXS results. The phase separated droplets after annealing turn into 10-20 nm of LaF3 nano crystals those upon scrutiny are found to be dotted with the doped Pr3+ ions within the crystals themselves. The EDXS results also suggest that the inner LaF3 crystal core is swallowed by an Al enriched layer that follows a Si enriched surrounding shell as the outer core. This greatly increases the viscosity in the periphery of the crystals that restricts further crystal growth to account for the formation of nano sized crystals.Keywords: advanced STEM/EDXS, crystallization mechanism, nano crystals, pr3+ ion doped glass and glass ceramic, structural characterization
Procedia PDF Downloads 185327 A Three-Dimensional Investigation of Stabilized Turbulent Diffusion Flames Using Different Type of Fuel
Authors: Moataz Medhat, Essam E. Khalil, Hatem Haridy
Abstract:
In the present study, a numerical simulation study is used to 3-D model the steady-state combustion of a staged natural gas flame in a 300 kW swirl-stabilized burner, using ANSYS solver to find the highest combustion efficiency by changing the inlet air swirl number and burner quarl angle in a furnace and showing the effect of flue gas recirculation, type of fuel and staging. The combustion chamber of the gas turbine is a cylinder of diameter 1006.8 mm, and a height of 1651mm ending with a hood until the exhaust cylinder has been reached, where the exit of combustion products which have a diameter of 300 mm, with a height of 751mm. The model was studied by 15 degree of the circumference due to axisymmetric of the geometry and divided into a mesh of about 1.1 million cells. The numerical simulations were performed by solving the governing equations in a three-dimensional model using realizable K-epsilon equations to express the turbulence and non-premixed flamelet combustion model taking into consideration radiation effect. The validation of the results was done by comparing it with other experimental data to ensure the agreement of the results. The study showed two zones of recirculation. The primary one is at the center of the furnace, and the location of the secondary one varies by changing the quarl angle of the burner. It is found that the increase in temperature in the external recirculation zone is a result of increasing the swirl number of the inlet air stream. Also it was found that recirculating part of the combustion products back to the combustion zone decreases pollutants formation especially nitrogen monoxide.Keywords: burner selection, natural gas, analysis, recirculation
Procedia PDF Downloads 161326 Lightweight Ceramics from Clay and Ground Corncobs
Authors: N.Quaranta, M. Caligaris, R. Varoli, A. Cristobal, M. Unsen, H. López
Abstract:
Corncobs are agricultural wastes and they can be used as fuel or as raw material in different industrial processes like cement manufacture, contaminant adsorption, chemical compound synthesis, etc. The aim of this work is to characterize this waste and analyze the feasibility of its use as a pore-forming material in the manufacture of lightweight ceramics for the civil construction industry. The characterization of raw materials is carried out by using various techniques: electron diffraction analysis X-ray, differential and gravimetric thermal analyses, FTIR spectroscopy, ecotoxicity evaluation, among others. The ground corncobs, particle size less than 2 mm, are mixed with clay up to 30% in volume and shaped by uniaxial pressure of 25 MPa, with 6% humidity, in moulds of 70mm x 40mm x 18mm. Then the green bodies are heat treated at 950°C for two hours following the treatment curves used in ceramic industry. The ceramic probes are characterized by several techniques: density, porosity and water absorption, permanent volumetric variation, loss on ignition, microscopies analysis, and mechanical properties. DTA-TGA analysis of corncobs shows in the range 20°-250°C a small loss in TGA curve and exothermic peaks at 250°-500°C. FTIR spectrum of the corncobs sample shows the characteristic pattern of this kind of organic matter with stretching vibration bands of adsorbed water, methyl groups, C–O and C–C bonds, and the complex form of the cellulose and hemicellulose glycosidic bonds. The obtained ceramic bodies present external good characteristics without loose edges and adequate properties for the market requirements. The porosity values of the sintered pieces are higher than those of the reference sample without waste addition. The results generally indicate that it is possible to use corncobs as porosity former in ceramic bodies without modifying the usual sintering temperatures employed in the industry.Keywords: ceramic industry, biomass, recycling, hemicellulose glycosidic bonds
Procedia PDF Downloads 405325 Chitosan Stabilized Oil-in-Water Pickering Emulsion Optimized for Food-Grade Application
Authors: Ankit Patil, Tushar D. Deshpande, Yogesh M. Nimdeo
Abstract:
Pickering emulsions (PE) were developed in response to increased demand for organic, eco-friendly, and biocompatible products. These emulsions are usually stabilized by solid particles. In this research, we created chitosan-based sunflower oil-in-water (O/W) PE without the need for a surfactant. In our work, we employed chitosan, a biopolymer derived from chitin, as a stabilizer. This decision was influenced by chitosan's biocompatibility and biodegradability, as well as its anti-inflammatory and antibacterial capabilities. It also has other functional properties, such as antioxidant activity, a probiotic delivery mechanism, and the ability to encapsulate bioactive compounds. The purpose of this study was to govern key parameters that can be changed to obtain stable PE, such as the concentration of chitosan (0.3-0.5 wt.%), the concentration of oil (0.8-1 vol%), the pH of the emulsion (3-7) manipulated by the addition of 1M HCl/ 4M NaOH, and the amount of electrolyte (NaCl-0-300mM) added to increase or decrease ionic strength. A careful combination of these properties resulted in the production of the most stable and optimal PE. Particle size study found that emulsions with pH 6, 0.4% chitosan, and 300 mM salts were exceptionally stable, with droplet size 886 nm, PI of 0.1702, and zeta potential of 32.753.83 mV. It is fair to infer that when ionic strength rises, particle size, zeta potential, and PI value decrease. A lower PI value suggests that emulsion nanoparticles are more homogeneous. The addition of sodium chloride increases the ionic strength of the emulsion, facilitating the formation of more compact and ordered particle layers. These findings provide light on the creation of stimulus-responsive chitosan-based PE capable of encapsulating bioactive materials, functioning as antioxidants, and serving as food-grade emulsifiers.Keywords: pickering emulsion, biocompatibility, eco-friendly, chitosan
Procedia PDF Downloads 238324 Stabilization of Lateritic Soil Sample from Ijoko with Cement Kiln Dust and Lime
Authors: Akinbuluma Ayodeji Theophilus, Adewale Olutaiwo
Abstract:
When building roads and paved surfaces, a strong foundation is always essential. A durable material that can withstand years of traffic while staying trustworthy must be used to build the foundation. A frequent problem in the construction of roads and pavements is the lack of high-quality, long-lasting materials for the pavement structure (base, subbase, and subgrade). Hence, this study examined the stabilization of lateritic soil samples from Ijoko with cement kiln dust and lime. The study adopted the experimental design. Laboratory tests were conducted on classification, swelling potential, compaction, California bearing ratio (CBR), and unconfined compressive tests, among others, were conducted on the laterite sample treated with cement kiln dust (CKD) and lime in incremental order of 2% up to 10% of dry weight soft soil sample. The results of the test showed that the studied soil could be classified as an A-7-6 and CL soil using the American Association of State Highway and transport officials (AASHTO) and the unified soil classification system (USCS), respectively. The plasticity (PI) of the studied soil reduced from 30.5% to 29.9% at the application of CKD. The maximum dry density on the application of CKD reduced from 1.9.7 mg/m3 to 1.86mg/m3, and lime application yielded a reduction from 1.97mg/m3 to 1.88.mg/m3. The swell potential on CKD application was reduced from 0.05 to 0.039%. The study concluded that soil stabilizations are effective and economic way of improving road pavement for engineering benefit. The degree of effectiveness of stabilization in pavement construction was found to depend on the type of soil to be stabilized. The study therefore recommended that stabilized soil mixtures should be used to subbase material for flexible pavement since is a suitable.Keywords: lateritic soils, sand, cement, stabilization, road pavement
Procedia PDF Downloads 89323 Design of Low-Emission Catalytically Stabilized Combustion Chamber Concept
Authors: Annapurna Basavaraju, Andreas Marn, Franz Heitmeir
Abstract:
The Advisory Council for Aeronautics Research in Europe (ACARE) is cognizant for the overall reduction of NOx emissions by 80% in its vision 2020. Moreover small turbo engines have higher fuel specific emissions compared to large engines due to their limited combustion chamber size. In order to fulfill these requirements, novel combustion concepts are essential. This motivates to carry out the research on the current state of art, catalytic stabilized combustion chamber using hydrogen in small jet engines which are designed and investigated both numerically and experimentally during this project. Catalytic combustion concepts can also be adopted for low caloric fuels and are therefore not constrained to only hydrogen. However, hydrogen has high heating value and has the major advantage of producing only the nitrogen oxides as pollutants during the combustion, thus eliminating the interest on other emissions such as Carbon monoxides etc. In the present work, the combustion chamber is designed based on the ‘Rich catalytic Lean burn’ concept. The experiments are conducted for the characteristic operating range of an existing engine. This engine has been tested successfully at Institute of Thermal Turbomachinery and Machine Dynamics (ITTM), Technical University Graz. One of the facts that the efficient combustion is a result of proper mixing of fuel-air mixture, considerable significance is given to the selection of appropriate mixer. This led to the design of three diverse configurations of mixers and is investigated experimentally and numerically. Subsequently the best mixer would be equipped in the main combustion chamber and used throughout the experimentation. Furthermore, temperatures and pressures would be recorded at various locations inside the combustion chamber and the exhaust emissions will also be analyzed. The instrumented combustion chamber would be inspected at the engine relevant inlet conditions for nine different sets of catalysts at the Hot Flow Test Facility (HFTF) of the institute.Keywords: catalytic combustion, gas turbine, hydrogen, mixer, NOx emissions
Procedia PDF Downloads 305322 Effects of Sn and Al on Phase Stability and Mechanical Properties of Metastable Beta Ti Alloys
Authors: Yonosuke Murayama
Abstract:
We have developed and studied a metastable beta Ti alloy, which shows super-elasticity and low Young’s modulus according to the phase stability of its beta phase. The super-elasticity and low Young’s modulus are required in a wide range of applications in various industrial fields. For example, the metallic implant with low Young’s modulus and non-toxicity is desirable because the large difference of Young’s modulus between the human bone and the implant material may cause a stress-shielding phenomenon. We have investigated the role of Sn and Al in metastable beta Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys. The metastable beta Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys form during quenching from the beta field at high temperature. While Cr and V act as beta stabilizers, Sn and Al are considered as elements to suppress the athermal omega phase produced during quenching. The athermal omega phase degrades the properties of super-elasticity and Young’s modulus. Although Al and Sn as single elements are considered as an alpha stabilizer and neutral, respectively, Sn and Al acted also as beta stabilizers when added simultaneously with beta stabilized element of Cr or V in this experiment. The quenched microstructure of Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys shifts from martensitic structure to beta single-phase structure with increasing Cr or V. The Young’s modulus of Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys decreased and then increased with increasing Cr or V, each showing its own minimum value of Young's modulus respectively. The composition of the alloy with the minimum Young’s modulus is a near border composition where the quenched microstructure shifts from martensite to beta. The border composition of Ti-Cr-Sn and Ti-V-Sn alloys required only less amount of each beta stabilizer, Cr or V, than Ti-Cr-Al and Ti-V-Al alloys. This indicates that the effect of Sn as a beta stabilizer is stronger than Al. Sn and Al influenced the competitive relation between stress-induced martensitic transformation and slip deformation. Thus, super-elastic properties of metastable beta Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys varied depending on the alloyed element, Sn or Al.Keywords: metastable beta Ti alloy, super-elasticity, low Young’s modulus, stress-induced martensitic transformation, beta stabilized element
Procedia PDF Downloads 146321 Numerical Investigation of Multiphase Flow in Pipelines
Authors: Gozel Judakova, Markus Bause
Abstract:
We present and analyze reliable numerical techniques for simulating complex flow and transport phenomena related to natural gas transportation in pipelines. Such kind of problems are of high interest in the field of petroleum and environmental engineering. Modeling and understanding natural gas flow and transformation processes during transportation is important for the sake of physical realism and the design and operation of pipeline systems. In our approach a two fluid flow model based on a system of coupled hyperbolic conservation laws is considered for describing natural gas flow undergoing hydratization. The accurate numerical approximation of two-phase gas flow remains subject of strong interest in the scientific community. Such hyperbolic problems are characterized by solutions with steep gradients or discontinuities, and their approximation by standard finite element techniques typically gives rise to spurious oscillations and numerical artefacts. Recently, stabilized and discontinuous Galerkin finite element techniques have attracted researchers’ interest. They are highly adapted to the hyperbolic nature of our two-phase flow model. In the presentation a streamline upwind Petrov-Galerkin approach and a discontinuous Galerkin finite element method for the numerical approximation of our flow model of two coupled systems of Euler equations are presented. Then the efficiency and reliability of stabilized continuous and discontinous finite element methods for the approximation is carefully analyzed and the potential of the either classes of numerical schemes is investigated. In particular, standard benchmark problems of two-phase flow like the shock tube problem are used for the comparative numerical study.Keywords: discontinuous Galerkin method, Euler system, inviscid two-fluid model, streamline upwind Petrov-Galerkin method, twophase flow
Procedia PDF Downloads 328320 High Thermal Selective Detection of NOₓ Using High Electron Mobility Transistor Based on Gallium Nitride
Authors: Hassane Ouazzani Chahdi, Omar Helli, Bourzgui Nour Eddine, Hassan Maher, Ali Soltani
Abstract:
The real-time knowledge of the NO, NO₂ concentration at high temperature, would allow manufacturers of automobiles to meet the upcoming stringent EURO7 anti-pollution measures for diesel engines. Knowledge of the concentration of each of these species will also enable engines to run leaner (i.e., more fuel efficient) while still meeting the anti-pollution requirements. Our proposed technology is promising in the field of automotive sensors. It consists of nanostructured semiconductors based on gallium nitride and zirconia dioxide. The development of new technologies for selective detection of NO and NO₂ gas species would be a critical enabler of superior depollution. The current response was well correlated to the NO concentration in the range of 0–2000 ppm, 0-2500 ppm NO₂, and 0-300 ppm NH₃ at a temperature of 600.Keywords: NOₓ sensors, HEMT transistor, anti-pollution, gallium nitride, gas sensor
Procedia PDF Downloads 245319 Dielectric Properties of NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄ Ceramics at Microwave Frequency
Authors: Yih-Chien Chen, Tse-Lung Lin
Abstract:
The microwave characteristics of NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄ are studied to determine the feasibility of their use in the liquid sensor. The microwave characteristics of NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄ are determined using X-ray diffraction (XRD) patterns. The permittivity (𝜀r) of NdTi₍₀.₄₉₎Ge₀.₀₁Mo₀.₅O₄ that is sintered at 1425 ℃ for 4 h is 17.6, the unloaded quality factor (Qu×f) is 33,400 GHz, and it has a temperature coefficient at the resonance frequency (TCF) of -30.7 ppm/℃. The proposed liquid sensor is at the 5G FR1 bands.Keywords: NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄, X-ray diffraction pattern, permittivity, Unloaded quality factor
Procedia PDF Downloads 293318 The Fabrication and Characterization of a Honeycomb Ceramic Electric Heater with a Conductive Coating
Authors: Siming Wang, Qing Ni, Yu Wu, Ruihai Xu, Hong Ye
Abstract:
Porous electric heaters, compared to conventional electric heaters, exhibit excellent heating performance due to their large specific surface area. Porous electric heaters employ porous metallic materials or conductive porous ceramics as the heating element. The former attains a low heating power with a fixed current due to the low electrical resistivity of metal. Although the latter can bypass the inherent challenges of porous metallic materials, the fabrication process of the conductive porous ceramics is complicated and high cost. This work proposed a porous ceramic electric heater with dielectric honeycomb ceramic as a substrate and surface conductive coating as a heating element. The conductive coating was prepared by the sol-gel method using silica sol and methyl trimethoxysilane as raw materials and graphite powder as conductive fillers. The conductive mechanism and degradation reason of the conductive coating was studied by electrical resistivity and thermal stability analysis. The heating performance of the proposed heater was experimentally investigated by heating air and deionized water. The results indicate that the electron transfer is achieved by forming the conductive network through the contact of the graphite flakes. With 30 wt% of graphite, the electrical resistivity of the conductive coating can be as low as 0.88 Ω∙cm. The conductive coating exhibits good electrical stability up to 500°C but degrades beyond 600°C due to the formation of many cracks in the coating caused by the weight loss and thermal expansion. The results also show that the working medium has a great influence on the volume power density of the heater. With air under natural convection as the working medium, the volume power density attains 640.85 kW/m3, which can be increased by 5 times when using deionized water as the working medium. The proposed honeycomb ceramic electric heater has the advantages of the simple fabrication method, low cost, and high volume power density, demonstrating great potential in the fluid heating field.Keywords: conductive coating, honeycomb ceramic electric heater, high specific surface area, high volume power density
Procedia PDF Downloads 153317 The Effect of Curing Temperature and Rice Husk Ash Addition on the Behaviour of Sulfate-Rich Clay after Lime Stabilization
Authors: E. Bittar, A. Quiñonez, F. Mencia, E. Aguero, M. Delgado, V. Arriola, R. López
Abstract:
In the western region of Paraguay, the poor condition of the roads has negatively affected the development of this zone, where the absence of petrous material has led engineers to opt for the stabilization of soils with lime or cement as the main structure for bases and subbases of these roads. In several areas of this region, high sulfate contents have been found both in groundwater and in soils, which, when reacted with lime or cement, generate a new problem instead of solving it. On the other hand, the use of industrial waste as granulated slag and fly ash proved to be a sustainable practice widely used in the manufacture of cement, and now also, in the stabilization of soils worldwide. Works related to soils containing sulfates stabilized either with granulated slag or fly ash and lime shown a good performance in their mechanical behaviour. This research seeks to evaluate the mechanical behaviour of soils with high contents of sulfates stabilized with lime by curing them both, at the normalized temperature (23 ± 2 °C) and at 40 ± 2 °C. Moreover, it attempts to asses if the addition of rice husk ash has a positive influence on the new geomaterial. The 40 ± 2 °C curing temperature was selected trying to simulate the average local temperature in summer and part of spring session whereas rice husk ash is an affordable waste produced in the region. An extensive experimental work, which includes unconfined compression, durability and free swell tests were carried out considering different dry unit weights, lime content and the addition of 20% of rice husk ash. The results showed that the addition of rice husk ash increases the resistance and durability of the material and decreases the expansion of this, moreover, the specimens cured at a temperature of 40 ± 2 °C showed higher resistance, better durability and lower expansion compared to those cured at the normalized temperature of 23 ± 2 °C.Keywords: durability, expansion, lime stabilization, rice husk ash, sulfate
Procedia PDF Downloads 120316 Physical Properties of Alkali Resistant-Glass Fibers in Continuous Fiber Spinning Conditions
Authors: Ji-Sun Lee, Soong-Keun Hyun, Jin-Ho Kim
Abstract:
In this study, a glass fiber is fabricated using a continuous spinning process from alkali resistant (AR) glass with 4 wt% zirconia. In order to confirm the melting properties of the marble glass, the raw material is placed into a Pt crucible and melted at 1650 ℃ for 2 h, and then annealed. In order to confirm the transparency of the clear marble glass, the visible transmittance is measured, and the fiber spinning condition is investigated by using high temperature viscosity measurements. A change in the diameter is observed according to the winding speed in the range of 100–900 rpm; it is also verified as a function of the fiberizing temperature in the range of 1200–1260 ℃. The optimum winding speed and spinning temperature are 500 rpm and 1240 ℃, respectively. The properties of the prepared spinning fiber are confirmed using optical microscope, tensile strength, modulus, and alkali-resistant tests.Keywords: glass composition, fiber diameter, continuous filament fiber, continuous spinning, physical properties
Procedia PDF Downloads 317315 Long-Term Follow-Up of Dynamic Balance, Pain and Functional Performance in Cruciate Retaining, Posterior Stabilized Total Knee Arthroplasty
Authors: Ahmed R. Z. Baghdadi, Mona H. Gamal Eldein
Abstract:
Background: With the perceived pain and poor function experienced following knee arthroplasty, patients usually feel unsatisfied. Yet, a controversy still persists on the appropriate operative technique that doesn’t affect proprioception much. Purpose: This study compared the effects of Cruciate Retaining (CR) and Posterior Stabilized (PS) total knee arthroplasty (TKA on dynamic balance, pain and functional performance following rehabilitation. Methods: Thirty patients with CRTKA (group I), thirty with PSTKA (group II) and fifteen indicated for arthroplasty but weren’t operated on yet (group III) participated in the study. The mean age was 54.53±3.44, 55.13±3.48 and 55.33±2.32 years and BMI 35.7±3.03, 35.7±1.99 and 35.73±1.03 kg/m2 for group I, II, and III respectively. The Berg Balance Scale (BBS), WOMAC pain subscale and Timed-Up-and-Go (TUG) and Stair-Climbing (SC) tests were used for assessment. Assessments were conducted four weeks pre- and post-operatively, three, six and twelve months post-operatively with the control group being assessed at the same time intervals. The post-operative rehabilitation involved hospitalization (1st week), home-based (2nd-4th weeks), and outpatient clinic (5th-12th weeks) programs, follow-up to all groups for twelve months. Results: The Mixed design MANOVA revealed that group I had significantly lower pain scores and SC time compared with group II three, six and twelve months post-operatively. Moreover, the BBS scores increased significantly and the pain scores and TUG and SC time decreased significantly six months post-operatively compared with four weeks pre- and post-operatively and three months post-operatively in group I and II with the opposite being true four weeks post-operatively. But no significant differences in BBS scores, pain scores and TUG and SC time between six and twelve months post-operatively in group I and II. Interpretation/Conclusion: CRTKA is preferable to PSTKA, possibly due to the preserved human proprioceptors in the un-excised PCL.Keywords: dynamic balance, functional performance, knee arthroplasty, long-term
Procedia PDF Downloads 411314 Preparation and Characterization of Nickel-Tungsten Nanoparticles Using Microemulsion Mediated Synthesis
Authors: S. Pal, R. Singh, S. Sivakumar, D. Kunzru
Abstract:
AOT stabilized reverse micelles of deionized water, dispersed in isooctane have been used to synthesize bimetallic nickel tungsten nanoparticles. Prepared nanoparticles were supported on γ-Al2O3 followed by calcination at 500oC. Characterizations of the nanoparticles were done by TEM, XRD, FTIR, XRF, TGA and BET. XRF results showed that this method gave good composition control with W/Ni weight ratio equal to 3.2. TEM images showed particle size of 5-10 nm. Removal of surfactant after calcination was confirmed by TGA and FTIR.Keywords: nanoparticles, reverse micelles, nickel, tungsten
Procedia PDF Downloads 591313 Numerical Analysis of Gas-Particle Mixtures through Pipelines
Authors: G. Judakova, M. Bause
Abstract:
The ability to model and simulate numerically natural gas flow in pipelines has become of high importance for the design of pipeline systems. The understanding of the formation of hydrate particles and their dynamical behavior is of particular interest, since these processes govern the operation properties of the systems and are responsible for system failures by clogging of the pipelines under certain conditions. Mathematically, natural gas flow can be described by multiphase flow models. Using the two-fluid modeling approach, the gas phase is modeled by the compressible Euler equations and the particle phase is modeled by the pressureless Euler equations. The numerical simulation of compressible multiphase flows is an important research topic. It is well known that for nonlinear fluxes, even for smooth initial data, discontinuities in the solution are likely to occur in finite time. They are called shock waves or contact discontinuities. For hyperbolic and singularly perturbed parabolic equations the standard application of the Galerkin finite element method (FEM) leads to spurious oscillations (e.g. Gibb's phenomenon). In our approach, we use stabilized FEM, the streamline upwind Petrov-Galerkin (SUPG) method, where artificial diffusion acting only in the direction of the streamlines and using a special treatment of the boundary conditions in inviscid convective terms, is added. Numerical experiments show that the numerical solution obtained and stabilized by SUPG captures discontinuities or steep gradients of the exact solution in layers. However, within this layer the approximate solution may still exhibit overshoots or undershoots. To suitably reduce these artifacts we add a discontinuity capturing or shock capturing term. The performance properties of our numerical scheme are illustrated for two-phase flow problem.Keywords: two-phase flow, gas-particle mixture, inviscid two-fluid model, euler equation, finite element method, streamline upwind petrov-galerkin, shock capturing
Procedia PDF Downloads 311312 Effect of Dynamic Loading by Cyclic Triaxial Tests on Sand Stabilized with Cement
Authors: Priyanka Devi, Mohammad Muzzaffar Khan, G. Kalyan Kumar
Abstract:
Liquefaction of saturated soils due to dynamic loading is an important and interesting area in the field of geotechnical earthquake engineering. When the soil liquefies, the structures built on it develops uneven settlements thereby producing cracks in the structure and weakening the foundation. The 1964 Alaskan Good Friday earthquake, the 1989 San Francisco earthquake and 2011 Tōhoku earthquake are some of the examples of liquefaction occurred due to an earthquake. To mitigate the effect of liquefaction, several methods such use of stone columns, increasing the vertical stress, compaction and removal of liquefiable soil are practiced. Grouting is one of those methods used to increase the strength of the foundation and develop resistance to liquefaction of soil without affecting the superstructure. In the present study, an attempt has been made to investigate the undrained cyclic behavior of locally available soil, stabilized by cement to mitigate the seismically induced soil liquefaction. The specimens of 75mm diameter and 150mm height were reconstituted in the laboratory using water sedimentation technique. A series of strain-controlled cyclic triaxial tests were performed on saturated soil samples followed by consolidation. The effects of amplitude, confining pressure and relative density on the dynamic behavior of sand was studied for soil samples with varying cement content. The results obtained from the present study on loose specimens and medium dense specimens indicate that (i) the higher the relative density, the more will be the liquefaction resistance, (ii) with increase of effective confining pressure, a decrease in developing of excess pore water pressure during cyclic loading was observed and (iii) sand specimens treated with cement showed reduced excess pore pressures and increased liquefaction resistance suggesting it as one of the mitigation methods.Keywords: cyclic triaxial test, liquefaction, soil-cement stabilization, pore pressure ratio
Procedia PDF Downloads 295311 Morphology and Electrical Conductivity of a Non-Symmetrical NiO-SDC/SDC Anode through a Microwave-Assisted Route
Authors: Mohadeseh Seyednezhad, Armin Rajabi, Andanastui Muchtar, Mahendra Rao Somalu
Abstract:
This work investigates the electrical properties of NiO-SDC/SDC anode sintered at about 1200 ○C for 1h through a relatively new approach, namely the microwave method. Nano powders Sm0.2Ce0.8O1.9 (SDC) and NiO were mixed by using a high-energy ball-mill and subsequent co-pressed at three different compaction pressures 200, 300 and 400 MPa. The novelty of this study consists in the effect of compaction pressure on the electrochemical performance of Ni-SDC/SDC anode, with no binder used between layers. The electrical behavior of the prepared anode has been studied by electrochemical impedance spectra (EIS) in controlled atmospheres, operating at high temperatures (600-800 °C).Keywords: sintering, fuel cell, electrical conductivity, nanostructures, impedance spectroscopy, ceramics
Procedia PDF Downloads 470310 Magnetic Lines of Force and Diamagnetism
Authors: Angel Pérez Sánchez
Abstract:
Magnet attraction or repulsion is not a product of a strange force from afar but comes from anchored lines of force inside the magnet as if it were reinforced concrete since you can move a small block by taking the steel rods that protrude from its interior. This approach serves as a basis for studying the behavior of diamagnetic materials. The significance of this study is to unify all diamagnetic phenomena: Movement of grapes, cooper approaching a magnet, Magnet levitation, etc., with a single explanation for all these phenomena. The method followed has consisted of observation of hundreds of diamagnetism experiments (in copper, aluminum, grapes, tomatoes, and bismuth), including the creation of own and new experiments and application of logical deduction product of these observations. Approaching a magnet to a hanging grape, Diamagnetism seems to consist not only of a slight repulsion but also of a slight attraction at a small distance. Replacing the grapes with a copper sphere, it behaves like the grape, pushing and pulling a nearby magnet. Diamagnetism could be redefined in the following way: There are materials that don't magnetize their internal structure when approaching a magnet, as ferromagnetic materials do. But they do allow magnetic lines of force to run through its interior, enhancing them without creating their own lines of force. Magnet levitates on superconducting ceramics because magnet gives lines near poles a force superior to what a superconductor can enhance these lines. Little further from the magnet, enhancing of lines by the superconductor is greater than the strength provided by the magnet due to the distance from the magnet's pole. It is this point that defines the magnet's levitation band. The anchoring effect of lines is what ultimately keeps the magnet and superconductor at a certain distance. The magnet seeks to levitate the area in which magnetic lines are stronger near de magnet's poles. Pouring ferrofluid into a magnet, lines of force are observed coming out of the poles. On other occasions, diamagnetic materials simply enhance the lines they receive without moving their position since their own weight is greater than the strength of the enhanced lines. (This is the case with grapes and copper). Magnet and diamagnetic materials look for a place where the lines of force are most enhanced, and this is at a small distance. Once the ideal distance is established, they tend to keep it by pushing or pulling on each other. At a certain distance from the magnet: the power exerted by diamagnetic materials is greater than the force of lines in the vicinity of the magnet's poles. All Diamagnetism phenomena: copper, aluminum, grapes, tomatoes, bismuth levitation, and magnet levitation on superconducting ceramics can now be explained with the support of magnetic lines of force.Keywords: diamagnetism, magnetic levitation, magnetic lines of force, enhancing magnetic lines
Procedia PDF Downloads 88309 Mechanical Properties and Characterization of Ti–6Al–4V Alloy Diffused by Molybdenum
Authors: Alaeddine Kaouka
Abstract:
The properties and characterization of Ti-6Al-4V alloys with different contents of Mo were investigated. Microstructure characterization and hardness are considered. The alloy structure was characterized by X-ray diffraction, SEM and optical microscopy. The results showed that the addition of Mo stabilized the β-phase in the treated solution condition. The Mo element added to titanium alloys changes the lattice parameters of phases. Microstructural observations indicate an obvious reduction in the prior grain size. The hardness has increased with the increase in β-phase stability, while Young’s modulus and ductility have decreased.Keywords: characterization, mechanical properties, molybdenum, titanium alloy
Procedia PDF Downloads 260308 Sonochemically Prepared Non-Noble Metal Oxide Catalysts for Methane Catalytic Combustion
Authors: Przemyslaw J. Jodlowski, Roman J. Jedrzejczyk, Damian K. Chlebda, Anna Dziedzicka, Lukasz Kuterasinski, Anna Gancarczyk, Maciej Sitarz
Abstract:
The aim of this study was to obtain highly active catalysts based on non-noble metal oxides supported on zirconia prepared via a sonochemical method. In this study, the influence of the stabilizers addition during the preparation step was checked. The final catalysts were characterized by using such characterization methods as X-ray Diffraction (XRD), nitrogen adsorption, X-ray fluorescence (XRF), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and µRaman. The proposed preparation method allowed to obtain uniformly dispersed metal-oxide nanoparticles at the support’s surface. The catalytic activity of prepared catalyst samples was measured in a methane combustion reaction. The activity of the catalysts prepared by the sonochemical method was considerably higher than their counterparts prepared by the incipient wetness method.Keywords: methane catalytic combustion, nanoparticles, non-noble metals, sonochemistry
Procedia PDF Downloads 217307 Exponential Stabilization of a Flexible Structure via a Delayed Boundary Control
Authors: N. Smaoui, B. Chentouf
Abstract:
The boundary stabilization problem of the rotating disk-beam system is a topic of interest in research studies. This system involves a flexible beam attached to the center of a disk, and the control and stabilization of this system have been extensively studied. This research focuses on the case where the center of mass is fixed in an inertial frame, and the rotation of the center is non-uniform. The system is represented by a set of nonlinear coupled partial differential equations and ordinary differential equations. The boundary stabilization problem of this system via a delayed boundary control is considered. We assume that the boundary control is either of a force type control or a moment type control and is subject to the presence of a constant time-delay. The aim of this research is threefold: First, we demonstrate that the rotating disk-beam system is well-posed in an appropriate functional space. Then, we establish the exponential stability property of the system. Finally, we provide numerical simulations that illustrate the theoretical findings. The research utilizes the semigroup theory to establish the well-posedness of the system. The resolvent method is then employed to prove the exponential stability property. Finally, the finite element method is used to demonstrate the theoretical results through numerical simulations. The research findings indicate that the rotating disk-beam system can be stabilized using a boundary control with a time delay. The proof of stability is based on the resolvent method and a variation of constants formula. The numerical simulations further illustrate the theoretical results. The findings have potential implications for the design and implementation of control strategies in similar systems. In conclusion, this research demonstrates that the rotating disk-beam system can be stabilized using a boundary control with time delay. The well-posedness and exponential stability properties are established through theoretical analysis, and these findings are further supported by numerical simulations. The research contributes to the understanding and practical application of control strategies for flexible structures, providing insights into the stability of rotating disk-beam systems.Keywords: rotating disk-beam, delayed force control, delayed moment control, torque control, exponential stability
Procedia PDF Downloads 75306 Simulation: A Tool for Stabilization of Welding Processes in Lean Production Concepts
Authors: Ola Jon Mork, Lars Andre Giske, Emil Bjørlykhaug
Abstract:
Stabilization of critical processes in order to have the right quality of the products, more efficient production and smoother flow is a key issue in lean production. This paper presents how simulation of key welding processes can stabilize complicated welding processes in small scale production, and how simulation can impact the entire production concept seen from the perspective of lean production. First, a field study was made to learn the production processes in the factory, and subsequently the field study was transformed into a value stream map to get insight into each operation, the quality issues, operation times, lead times and flow of materials. Valuable practical knowledge of how the welding operations were done by operators, appropriate tools and jigs, and type of robots that could be used, was collected. All available information was then implemented into a simulation environment for further elaboration and development. Three researchers, the management of the company and skilled operators at the work floor where working on the project over a period of eight months, and a detailed description of the process was made by the researchers. The simulation showed that simulation could solve a number of technical challenges, the robot program can be tuned in off line mode, and the design and testing of the robot cell could be made in the simulator. Further on the design of the product could be optimized for robot welding and the jigs could be designed and tested in simulation environment. This means that a key issue of lean production can be solved; the welding operation will work with almost 100% performance when it is put into real production. Stabilizing of one key process is critical to gain control of the entire value chain, then a Takt Time can be established and the focus can be directed towards the next process in the production which should be stabilized. Results show that industrial parameters like welding time, welding cost and welding quality can be defined on the simulation stage. Further on, this gives valuable information for calculation of the factories business performance, like manufacturing volume and manufacturing efficiency. Industrial impact from simulation is more efficient implementation of lean manufacturing, since the welding process can be stabilized. More research should be done to gain more knowledge about simulation as a tool for implementation of lean, especially where there complex processes.Keywords: simulation, lean, stabilization, welding process
Procedia PDF Downloads 321305 Use of Short Piles for Stabilizing the Side Slope of the Road Embankment along the Canal
Authors: Monapat Sasingha, Suttisak Soralump
Abstract:
This research presents the behavior of slope of the road along the canal stabilized by short piles. In this investigation, the centrifuge machine was used, modelling the condition of the water levels in the canal. The centrifuge tests were performed at 35 g. To observe the movement of the soil, visual analysis was performed to evaluate the failure behavior. Conclusively, the use of short piles to stabilize the canal slope proved to be an effective solution. However, the certain amount of settlement was found behind the short pile rows.Keywords: centrifuge test, slope failure, embankment, stability of slope
Procedia PDF Downloads 268304 Synthesis, Structure and Properties of NZP/NASICON Structured Materials
Authors: E. A. Asabina, V. I. Pet'kov, P. A. Mayorov, A. V. Markin, N. N. Smirnova, A. M. Kovalskii, A. A. Usenko
Abstract:
The purpose of this work was to synthesize and investigate phase formation, structure and thermophysical properties of the phosphates M0.5+xM'xZr2–x(PO4)3 (M – Cd, Sr, Pb; M' – Mg, Co, Mn). The compounds were synthesized by sol-gel method. The results showed formation of limited solid solutions of NZP/NASICON type. The crystal structures of triple phosphates of the compositions MMg0.5Zr1.5(PO4)3 were refined by the Rietveld method using XRD data. Heat capacity (8–660 K) of the phosphates Pb0.5+xMgxZr2-x(PO4)3 (x = 0, 0.5) was measured, and reversible polymorphic transitions were found at temperatures, close to the room temperature. The results of Rietveld structure refinement showed the polymorphism caused by disordering of lead cations in the cavities of NZP/NASICON structure. Thermal expansion (298−1073 K) of the phosphates MMg0.5Zr1.5(PO4)3 was studied by XRD method, and the compounds were found to belong to middle and low-expanding materials. Thermal diffusivity (298–573 K) of the ceramic samples of phosphates slightly decreased with temperature increasing. As was demonstrated, the studied phosphates are characterized by the better thermophysical characteristics than widespread fire-resistant materials, such as zirconia and etc.Keywords: NASICON, NZP, phosphate, structure, synthesis, thermophysical properties
Procedia PDF Downloads 141