Search results for: interval regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3981

Search results for: interval regression

3801 A Comparative Study on Sampling Techniques of Polynomial Regression Model Based Stochastic Free Vibration of Composite Plates

Authors: S. Dey, T. Mukhopadhyay, S. Adhikari

Abstract:

This paper presents an exhaustive comparative investigation on sampling techniques of polynomial regression model based stochastic natural frequency of composite plates. Both individual and combined variations of input parameters are considered to map the computational time and accuracy of each modelling techniques. The finite element formulation of composites is capable to deal with both correlated and uncorrelated random input variables such as fibre parameters and material properties. The results obtained by Polynomial regression (PR) using different sampling techniques are compared. Depending on the suitability of sampling techniques such as 2k Factorial designs, Central composite design, A-Optimal design, I-Optimal, D-Optimal, Taguchi’s orthogonal array design, Box-Behnken design, Latin hypercube sampling, sobol sequence are illustrated. Statistical analysis of the first three natural frequencies is presented to compare the results and its performance.

Keywords: composite plate, natural frequency, polynomial regression model, sampling technique, uncertainty quantification

Procedia PDF Downloads 513
3800 Heart Attack Prediction Using Several Machine Learning Methods

Authors: Suzan Anwar, Utkarsh Goyal

Abstract:

Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%.

Keywords: heart rate, machine learning, SVM, decision tree, logistic regression, random forest

Procedia PDF Downloads 138
3799 Efficient Model Selection in Linear and Non-Linear Quantile Regression by Cross-Validation

Authors: Yoonsuh Jung, Steven N. MacEachern

Abstract:

Check loss function is used to define quantile regression. In the prospect of cross validation, it is also employed as a validation function when underlying truth is unknown. However, our empirical study indicates that the validation with check loss often leads to choosing an over estimated fits. In this work, we suggest a modified or L2-adjusted check loss which rounds the sharp corner in the middle of check loss. It has a large effect of guarding against over fitted model in some extent. Through various simulation settings of linear and non-linear regressions, the improvement of check loss by L2 adjustment is empirically examined. This adjustment is devised to shrink to zero as sample size grows.

Keywords: cross-validation, model selection, quantile regression, tuning parameter selection

Procedia PDF Downloads 438
3798 Prognosis of Patients with COVID-19 and Hematologic Malignancies

Authors: Elizabeth Behrens, Anne Timmermann, Alexander Yerkan, Joshua Thomas, Deborah Katz, Agne Paner, Melissa Larson, Shivi Jain, Seo-Hyun Kim, Celalettin Ustun, Ankur Varma, Parameswaran Venugopal, Jamile Shammo

Abstract:

Coronavirus Disease-2019 (COVID-19) causes persistent concern for poor outcomes in vulnerable populations. Patients with hematologic malignancies (HM) have been found to have higher COVID-19 case fatality rates compared to those without malignancy. While cytopenias are common in patients with HM, especially in those undergoing chemotherapy treatment, hemoglobin (Hgb) and platelet count have not yet been studied, to our best knowledge, as potential prognostic indicators for patients with HM and COVID-19. The goal of this study is to identify factors that may increase the risk of mortality in patients with HM and COVID-19. In this single-center, retrospective, observational study, 65 patients with HM and laboratory confirmed COVID-19 were identified between March 2020 and January 2021. Information on demographics, laboratory data the day of COVID-19 diagnosis, and prognosis was extracted from the electronic medical record (EMR), chart reviewed, and analyzed using the statistical software SAS version 9.4. Chi-square testing was used for categorical variable analyses. Risk factors associated with mortality were established by logistic regression models. Non-Hodgkin lymphoma (37%), chronic lymphocytic leukemia (20%), and plasma cell dyscrasia (15%) were the most common HM. Higher Hgb level upon COVID-19 diagnosis was related to decreased mortality, odd ratio=0.704 (95% confidence interval [CI]: 0.511-0.969; P = .0263). Platelet count the day of COVID-19 diagnosis was lower in patients who ultimately died (mean 127 ± 72K/uL, n=10) compared to patients who survived (mean 197 ±92K/uL, n=55) (P=.0258). Female sex was related to decreased mortality, odd ratio=0.143 (95% confidence interval [CI]: 0.026-0.785; P = .0353). There was no mortality difference between the patients who were on treatment for HM the day of COVID-19 diagnosis compared to those who were not (P=1.000). Lower Hgb and male sex are independent risk factors associated with increased mortality of HM patients with COVID-19. Clinicians should be especially attentive to patients with HM and COVID-19 who present with cytopenias. Larger multi-center studies are urgently needed to further investigate the impact of anemia, thrombocytopenia, and demographics on outcomes of patients with hematologic malignancies diagnosed with COVID-19.

Keywords: anemia, COVID-19, hematologic malignancy, prognosis

Procedia PDF Downloads 149
3797 Evaluation of Non-Pharmacological Method-Transcervical Foley Catheter and Misoprostol to Intravaginal Misoprostol for Preinduction Cervical Ripening

Authors: Krishna Dahiya, Esha Charaya

Abstract:

Induction of labour is a common obstetrical intervention. Around 1 in every 4 patient undergo induction of labour for different indications Purpose: To study the efficacy of the combination of Foley bulb and vaginal misoprostol in comparison to vaginal misoprostol alone for cervical ripening and induction of labour. Methods: A prospective randomised study was conducted on 150 patients with term singleton pregnancy admitted for induction of labour. Seventy-five patients were induced with both Foley bulb, and vaginal misoprostol and another 75 were given vaginal misoprostol alone for induction of labour. Both groups were then compared with respect to change in Bishop score, induction to the active phase of labour interval, induction delivery interval, duration of labour, maternal complications and neonatal outcomes. Data was analysed using statistical software SPSS version 11.5. Tests with P,.05 were considered significant. Results: The two groups were comparable with respect to maternal age, parity, gestational age, indication for induction, and initial Bishop scores. Both groups had a significant change in Bishop score (2.99 ± 1.72 and 2.17 ± 1.48 respectively with statistically significant difference (p=0.001 S, 95% C.I. -0.1978 to 0.8378). Mean induction to delivery interval was significantly lower in the combination group (11.76 ± 5.89 hours) than misoprostol group (14.54 ± 7.32 hours). Difference was of 2.78 hours (p=0.018,S, 95% CI -5.1042 to -0.4558). Induction to delivery interval was significantly lower in nulliparous women of combination group (13.64 ± 5.75 hours) than misoprostol group (18.4±7.09 hours), and the difference was of 4.76 hours (p=0.002, S, 95% CI 1.0465 to 14.7335). There was no difference between the groups in the mode of delivery, infant weight, Apgar score and intrapartum complications. Conclusion: From the present study it was concluded that addition of Foley catheter to vaginal misoprostol have the synergistic effect and results in early cervical ripening and delivery. These results suggest that the combination may be used to achieve timely and safe delivery in the presence of an unfavorable cervix. A combination of the Foley bulb and vaginal misoprostol resulted in a shorter induction-to-delivery time when compared with vaginal misoprostol alone without increasing labor complications.

Keywords: Bishop score, Foley catheter, induction of labor, misoprostol

Procedia PDF Downloads 306
3796 Timetabling for Interconnected LRT Lines: A Package Solution Based on a Real-world Case

Authors: Huazhen Lin, Ruihua Xu, Zhibin Jiang

Abstract:

In this real-world case, timetabling the LRT network as a whole is rather challenging for the operator: they are supposed to create a timetable to avoid various route conflicts manually while satisfying a given interval and the number of rolling stocks, but the outcome is not satisfying. Therefore, the operator adopts a computerised timetabling tool, the Train Plan Maker (TPM), to cope with this problem. However, with various constraints in the dual-line network, it is still difficult to find an adequate pairing of turnback time, interval and rolling stocks’ number, which requires extra manual intervention. Aiming at current problems, a one-off model for timetabling is presented in this paper to simplify the procedure of timetabling. Before the timetabling procedure starts, this paper presents how the dual-line system with a ring and several branches is turned into a simpler structure. Then, a non-linear programming model is presented in two stages. In the first stage, the model sets a series of constraints aiming to calculate a proper timing for coordinating two lines by adjusting the turnback time at termini. Then, based on the result of the first stage, the model introduces a series of inequality constraints to avoid various route conflicts. With this model, an analysis is conducted to reveal the relation between the ratio of trains in different directions and the possible minimum interval, observing that the more imbalance the ratio is, the less possible to provide frequent service under such strict constraints.

Keywords: light rail transit (LRT), non-linear programming, railway timetabling, timetable coordination

Procedia PDF Downloads 88
3795 Instability Index Method and Logistic Regression to Assess Landslide Susceptibility in County Route 89, Taiwan

Authors: Y. H. Wu, Ji-Yuan Lin, Yu-Ming Liou

Abstract:

This study aims to set up the landslide susceptibility map of County Route 89 at Ren-Ai Township in Nantou County using the Instability Index Method and Logistic regression. Seven susceptibility factors including Slope Angle, Aspect, Elevation, Distance to fold, Distance to River, Distance to Road and Accumulated Rainfall were obtained by GIS based on the Typhoon Toraji landslide area identified by Industrial Technology Research Institute in 2001. To calculate the landslide percentage of each factor and acquire the weight and grade the grid by means of Instability Index Method. In this study, landslide susceptibility can be classified into four grades: high, medium high, medium low and low, in order to determine the advantages and disadvantages of the two models. The precision of this model is verified by classification error matrix and SRC curve. These results suggest that the logistic regression model is a preferred method than instability index in the assessment of landslide susceptibility. It is suitable for the landslide prediction and precaution in this area in the future.

Keywords: instability index method, logistic regression, landslide susceptibility, SRC curve

Procedia PDF Downloads 292
3794 Study on the Expression of Drought Tolerant Genes in Water-Stressed Basella Alba and Basella Rubra

Authors: T. O. Ajewole, K. S. Olorunmiaye, D. A. Animasaun, M. Okpeku

Abstract:

Drought impact on the production of food crops for the benefit of mankind cannot be overemphasized. This study shows the different kind of genes expressed at various level of drought regimes on Basella alba and rubra using a real-time PCR machine. The planting was done in the screen house while the gene expression study was carried out in the laboratory. Sandy-loamy soil was collected and four levels of drought regime was used as treatment and a control experiment was set up for the two vegetables. Drought interval of 5, 10, 15 and 20 days were used as treatments while a control experiment which was not starved of water at any point was also set up, five replicates were set up for each treatment. Stress was introduced at 12 Weeks after planting (WAP). From the result of this study, Basella alba shows the highest amplicon size of 34.6 and 52.32 for GmPCS5 and HVA1 respectively which by implication means these genes were expressed the more as the stress period interval increases.

Keywords: water stress, basella alba, basella rubra, HVA1

Procedia PDF Downloads 45
3793 Regret-Regression for Multi-Armed Bandit Problem

Authors: Deyadeen Ali Alshibani

Abstract:

In the literature, the multi-armed bandit problem as a statistical decision model of an agent trying to optimize his decisions while improving his information at the same time. There are several different algorithms models and their applications on this problem. In this paper, we evaluate the Regret-regression through comparing with Q-learning method. A simulation on determination of optimal treatment regime is presented in detail.

Keywords: optimal, bandit problem, optimization, dynamic programming

Procedia PDF Downloads 453
3792 The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models

Authors: Jihye Jeon

Abstract:

This paper analyzes the conceptual framework of three statistical methods, multiple regression, path analysis, and structural equation models. When establishing research model of the statistical modeling of complex social phenomenon, it is important to know the strengths and limitations of three statistical models. This study explored the character, strength, and limitation of each modeling and suggested some strategies for accurate explaining or predicting the causal relationships among variables. Especially, on the studying of depression or mental health, the common mistakes of research modeling were discussed.

Keywords: multiple regression, path analysis, structural equation models, statistical modeling, social and psychological phenomenon

Procedia PDF Downloads 653
3791 QSRR Analysis of 17-Picolyl and 17-Picolinylidene Androstane Derivatives Based on Partial Least Squares and Principal Component Regression

Authors: Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Lidija Jevrić, Evgenija Djurendić, Jovana Ajduković

Abstract:

There are several methods for determination of the lipophilicity of biologically active compounds, however chromatography has been shown as a very suitable method for this purpose. Chromatographic (C18-RP-HPLC) analysis of a series of 24 17-picolyl and 17-picolinylidene androstane derivatives was carried out. The obtained retention indices (logk, methanol (90%) / water (10%)) were correlated with calculated physicochemical and lipophilicity descriptors. The QSRR analysis was carried out applying principal component regression (PCR) and partial least squares regression (PLS). The PCR and PLS model were selected on the basis of the highest variance and the lowest root mean square error of cross-validation. The obtained PCR and PLS model successfully correlate the calculated molecular descriptors with logk parameter indicating the significance of the lipophilicity of compounds in chromatographic process. On the basis of the obtained results it can be concluded that the obtained logk parameters of the analyzed androstane derivatives can be considered as their chromatographic lipophilicity. These results are the part of the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina and CMST COST Action CM1105.

Keywords: androstane derivatives, chromatography, molecular structure, principal component regression, partial least squares regression

Procedia PDF Downloads 277
3790 Detecting Earnings Management via Statistical and Neural Networks Techniques

Authors: Mohammad Namazi, Mohammad Sadeghzadeh Maharluie

Abstract:

Predicting earnings management is vital for the capital market participants, financial analysts and managers. The aim of this research is attempting to respond to this query: Is there a significant difference between the regression model and neural networks’ models in predicting earnings management, and which one leads to a superior prediction of it? In approaching this question, a Linear Regression (LR) model was compared with two neural networks including Multi-Layer Perceptron (MLP), and Generalized Regression Neural Network (GRNN). The population of this study includes 94 listed companies in Tehran Stock Exchange (TSE) market from 2003 to 2011. After the results of all models were acquired, ANOVA was exerted to test the hypotheses. In general, the summary of statistical results showed that the precision of GRNN did not exhibit a significant difference in comparison with MLP. In addition, the mean square error of the MLP and GRNN showed a significant difference with the multi variable LR model. These findings support the notion of nonlinear behavior of the earnings management. Therefore, it is more appropriate for capital market participants to analyze earnings management based upon neural networks techniques, and not to adopt linear regression models.

Keywords: earnings management, generalized linear regression, neural networks multi-layer perceptron, Tehran stock exchange

Procedia PDF Downloads 421
3789 Minimizing the Impact of Covariate Detection Limit in Logistic Regression

Authors: Shahadut Hossain, Jacek Wesolowski, Zahirul Hoque

Abstract:

In many epidemiological and environmental studies covariate measurements are subject to the detection limit. In most applications, covariate measurements are usually truncated from below which is known as left-truncation. Because the measuring device, which we use to measure the covariate, fails to detect values falling below the certain threshold. In regression analyses, it causes inflated bias and inaccurate mean squared error (MSE) to the estimators. This paper suggests a response-based regression calibration method to correct the deleterious impact introduced by the covariate detection limit in the estimators of the parameters of simple logistic regression model. Compared to the maximum likelihood method, the proposed method is computationally simpler, and hence easier to implement. It is robust to the violation of distributional assumption about the covariate of interest. In producing correct inference, the performance of the proposed method compared to the other competing methods has been investigated through extensive simulations. A real-life application of the method is also shown using data from a population-based case-control study of non-Hodgkin lymphoma.

Keywords: environmental exposure, detection limit, left truncation, bias, ad-hoc substitution

Procedia PDF Downloads 236
3788 Comparative Study od Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast

Authors: Nabilah Filzah Mohd Radzuan, Andi Putra, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Precipitation forecast is important to avoid natural disaster incident which can cause losses in the involved area. This paper reviews three techniques logistic regression, decision tree, and random forest which are used in making precipitation forecast. These combination techniques through the vector auto-regression (VAR) model help in finding the advantages and strengths of each technique in the forecast process. The data-set contains variables of the rain’s domain. Adaptation of artificial intelligence techniques involved in rain domain enables the forecast process to be easier and systematic for precipitation forecast.

Keywords: logistic regression, decisions tree, random forest, VAR model

Procedia PDF Downloads 446
3787 A New Aggregation Operator for Trapezoidal Fuzzy Numbers Based On the Geometric Means of the Left and Right Line Slopes

Authors: Manju Pandey, Nilay Khare, S. C. Shrivastava

Abstract:

This paper is the final in a series, which has defined two new classes of aggregation operators for triangular and trapezoidal fuzzy numbers based on the geometrical characteristics of their fuzzy membership functions. In the present paper, a new aggregation operator for trapezoidal fuzzy numbers has been defined. The new operator is based on the geometric mean of the membership lines to the left and right of the maximum possibility interval. The operator is defined and the analytical relationships have been derived. Computation of the aggregate is demonstrated with a numerical example. Corresponding arithmetic and geometric aggregates as well as results from the recent work of the authors on TrFN aggregates have also been computed.

Keywords: LR fuzzy number, interval fuzzy number, triangular fuzzy number, trapezoidal fuzzy number, apex angle, left apex angle, right apex angle, aggregation operator, arithmetic and geometric mean

Procedia PDF Downloads 472
3786 A Study of User Awareness and Attitudes Towards Civil-ID Authentication in Oman’s Electronic Services

Authors: Raya Al Khayari, Rasha Al Jassim, Muna Al Balushi, Fatma Al Moqbali, Said El Hajjar

Abstract:

This study utilizes linear regression analysis to investigate the correlation between user account passwords and the probability of civil ID exposure, offering statistical insights into civil ID security. The study employs multiple linear regression (MLR) analysis to further investigate the elements that influence consumers’ views of civil ID security. This aims to increase awareness and improve preventive measures. The results obtained from the MLR analysis provide a thorough comprehension and can guide specific educational and awareness campaigns aimed at promoting improved security procedures. In summary, the study’s results offer significant insights for improving existing security measures and developing more efficient tactics to reduce risks related to civil ID security in Oman. By identifying key factors that impact consumers’ perceptions, organizations can tailor their strategies to address vulnerabilities effectively. Additionally, the findings can inform policymakers on potential regulatory changes to enhance civil ID security in the country.

Keywords: civil-id disclosure, awareness, linear regression, multiple regression

Procedia PDF Downloads 57
3785 A Research on Inference from Multiple Distance Variables in Hedonic Regression Focus on Three Variables

Authors: Yan Wang, Yasushi Asami, Yukio Sadahiro

Abstract:

In urban context, urban nodes such as amenity or hazard will certainly affect house price, while classic hedonic analysis will employ distance variables measured from each urban nodes. However, effects from distances to facilities on house prices generally do not represent the true price of the property. Distance variables measured on the same surface are suffering a problem called multicollinearity, which is usually presented as magnitude variance and mean value in regression, errors caused by instability. In this paper, we provided a theoretical framework to identify and gather the data with less bias, and also provided specific sampling method on locating the sample region to avoid the spatial multicollinerity problem in three distance variable’s case.

Keywords: hedonic regression, urban node, distance variables, multicollinerity, collinearity

Procedia PDF Downloads 465
3784 Policy Implications of Demographic Impacts on COVID-19, Pneumonia, and Influenza Mortality: A Multivariable Regression Approach to Death Toll Reduction

Authors: Saiakhil Chilaka

Abstract:

Understanding the demographic factors that influence mortality from respiratory diseases like COVID-19, pneumonia, and influenza is crucial for informing public health policy. This study utilizes multivariable regression models to assess the relationship between state, sex, and age group on deaths from these diseases using U.S. data from 2020 to 2023. The analysis reveals that age and sex play significant roles in mortality, while state-level variations are minimal. Although the model’s low R-squared values indicate that additional factors are at play, this paper discusses how these findings, in light of recent research, can inform future public health policy, resource allocation, and intervention strategies.

Keywords: COVID-19, multivariable regression, public policy, data science

Procedia PDF Downloads 22
3783 Urban Energy Demand Modelling: Spatial Analysis Approach

Authors: Hung-Chu Chen, Han Qi, Bauke de Vries

Abstract:

Energy consumption in the urban environment has attracted numerous researches in recent decades. However, it is comparatively rare to find literary works which investigated 3D spatial analysis of urban energy demand modelling. In order to analyze the spatial correlation between urban morphology and energy demand comprehensively, this paper investigates their relation by using the spatial regression tool. In addition, the spatial regression tool which is applied in this paper is ordinary least squares regression (OLS) and geographically weighted regression (GWR) model. Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), and building volume are explainers of urban morphology, which act as independent variables of Energy-land use (E-L) model. NDBI and NDVI are used as the index to describe five types of land use: urban area (U), open space (O), artificial green area (G), natural green area (V), and water body (W). Accordingly, annual electricity, gas demand and energy demand are dependent variables of the E-L model. Based on the analytical result of E-L model relation, it revealed that energy demand and urban morphology are closely connected and the possible causes and practical use are discussed. Besides, the spatial analysis methods of OLS and GWR are compared.

Keywords: energy demand model, geographically weighted regression, normalized difference built-up index, normalized difference vegetation index, spatial statistics

Procedia PDF Downloads 148
3782 Modeling Aeration of Sharp Crested Weirs by Using Support Vector Machines

Authors: Arun Goel

Abstract:

The present paper attempts to investigate the prediction of air entrainment rate and aeration efficiency of a free over-fall jets issuing from a triangular sharp crested weir by using regression based modelling. The empirical equations, support vector machine (polynomial and radial basis function) models and the linear regression techniques were applied on the triangular sharp crested weirs relating the air entrainment rate and the aeration efficiency to the input parameters namely drop height, discharge, and vertex angle. It was observed that there exists a good agreement between the measured values and the values obtained using empirical equations, support vector machine (Polynomial and rbf) models, and the linear regression techniques. The test results demonstrated that the SVM based (Poly & rbf) model also provided acceptable prediction of the measured values with reasonable accuracy along with empirical equations and linear regression techniques in modelling the air entrainment rate and the aeration efficiency of a free over-fall jets issuing from triangular sharp crested weir. Further sensitivity analysis has also been performed to study the impact of input parameter on the output in terms of air entrainment rate and aeration efficiency.

Keywords: air entrainment rate, dissolved oxygen, weir, SVM, regression

Procedia PDF Downloads 436
3781 Use of Regression Analysis in Determining the Length of Plastic Hinge in Reinforced Concrete Columns

Authors: Mehmet Alpaslan Köroğlu, Musa Hakan Arslan, Muslu Kazım Körez

Abstract:

Basic objective of this study is to create a regression analysis method that can estimate the length of a plastic hinge which is an important design parameter, by making use of the outcomes of (lateral load-lateral displacement hysteretic curves) the experimental studies conducted for the reinforced square concrete columns. For this aim, 170 different square reinforced concrete column tests results have been collected from the existing literature. The parameters which are thought affecting the plastic hinge length such as cross-section properties, features of material used, axial loading level, confinement of the column, longitudinal reinforcement bars in the columns etc. have been obtained from these 170 different square reinforced concrete column tests. In the study, when determining the length of plastic hinge, using the experimental test results, a regression analysis have been separately tested and compared with each other. In addition, the outcome of mentioned methods on determination of plastic hinge length of the reinforced concrete columns has been compared to other methods available in the literature.

Keywords: columns, plastic hinge length, regression analysis, reinforced concrete

Procedia PDF Downloads 479
3780 Measurement Errors and Misclassifications in Covariates in Logistic Regression: Bayesian Adjustment of Main and Interaction Effects and the Sample Size Implications

Authors: Shahadut Hossain

Abstract:

Measurement errors in continuous covariates and/or misclassifications in categorical covariates are common in epidemiological studies. Regression analysis ignoring such mismeasurements seriously biases the estimated main and interaction effects of covariates on the outcome of interest. Thus, adjustments for such mismeasurements are necessary. In this research, we propose a Bayesian parametric framework for eliminating deleterious impacts of covariate mismeasurements in logistic regression. The proposed adjustment method is unified and thus can be applied to any generalized linear and non-linear regression models. Furthermore, adjustment for covariate mismeasurements requires validation data usually in the form of either gold standard measurements or replicates of the mismeasured covariates on a subset of the study population. Initial investigation shows that adequacy of such adjustment depends on the sizes of main and validation samples, especially when prevalences of the categorical covariates are low. Thus, we investigate the impact of main and validation sample sizes on the adjusted estimates, and provide a general guideline about these sample sizes based on simulation studies.

Keywords: measurement errors, misclassification, mismeasurement, validation sample, Bayesian adjustment

Procedia PDF Downloads 408
3779 Quantitative Structure-Activity Relationship Study of Some Quinoline Derivatives as Antimalarial Agents

Authors: M. Ouassaf, S. Belaid

Abstract:

A series of quinoline derivatives with antimalarial activity were subjected to two-dimensional quantitative structure-activity relationship (2D-QSAR) studies. Three models were implemented using multiple regression linear MLR, a regression partial least squares (PLS), nonlinear regression (MNLR), to see which descriptors are closely related to the activity biologic. We relied on a principal component analysis (PCA). Based on our results, a comparison of the quality of, MLR, PLS, and MNLR models shows that the MNLR (R = 0.914 and R² = 0.835, RCV= 0.853) models have substantially better predictive capability because the MNLR approach gives better results than MLR (R = 0.835 and R² = 0,752, RCV=0.601)), PLS (R = 0.742 and R² = 0.552, RCV=0.550) The model of MNLR gave statistically significant results and showed good stability to data variation in leave-one-out cross-validation. The obtained results suggested that our proposed model MNLR may be useful to predict the biological activity of derivatives of quinoline.

Keywords: antimalarial, quinoline, QSAR, PCA, MLR , MNLR, MLR

Procedia PDF Downloads 156
3778 Investigation into Relationship between Spaced Repetitions and Problems Solving Efficiency

Authors: Sidharth Talan, Rajlakshmi G. Majumdar

Abstract:

Problem-solving skill is one the few skills which is constantly endeavored to improve upon by the professionals and academicians around the world in order to sustain themselves in the ever-growing competitive environment. The given paper focuses on evaluating a hypothesized relationship between the problems solving efficiency of an individual with spaced repetitions, conducted with a time interval of one day over a period of two weeks. The paper has utilized uni-variate regression analysis technique to assess the best fit curve that can explain the significant relationship between the given two variables. The paper has incorporated Anagrams solving as the appropriate testing process for the analysis. Since Anagrams solving involves rearranging a jumbled word to form a correct word, it projects to be an efficient process to observe the attention span, visual- motor coordination and the verbal ability of an individual. Based on the analysis for a sample population of 30, it was observed that problem-solving efficiency of an individual, measured in terms of the score in each test was found to be significantly correlated with time period measured in days.

Keywords: Anagrams, histogram plot, moving average curve, spacing effect

Procedia PDF Downloads 165
3777 Impact of Internal Control on Fraud Detection and Prevention: A Survey of Selected Organisations in Nigeria

Authors: Amos Olusola Akinola

Abstract:

The aim of this study is to evaluate the internal control system on fraud prevention in Nigerian business organizations. A survey research was undertaken in five organizations from the banking and manufacturing sectors in Nigeria using the simple random sampling technique and primary data was obtained with the aid structured questionnaire drawn on five likert’s scale. Four Hypotheses were formulated and tested using the T-test Statistics, Correlation and Regression Analysis at 95% confidence interval. It was discovered that internal control has a significant positive relationship with fraud prevention and that a weak internal control system permits fraudulent activities among staff. Based on the findings, it was recommended that organizations should continually and methodically review and evaluate the components of its internal control system whether activities are working as planned or not and that every organization should have pre-determined guidelines for conducting its operations and ensures compliance with these set guidelines while proactive steps should be taken to establish the independence of the internal audit by making the audit reportable to the governing council of an organization and not the chief executive officer.

Keywords: internal control, internal system, internal audit, fraud prevention, fraud detection

Procedia PDF Downloads 384
3776 Kýklos Dimensional Geometry: Entity Specific Core Measurement System

Authors: Steven D. P Moore

Abstract:

A novel method referred to asKýklos(Ky) dimensional geometry is proposed as an entity specific core geometric dimensional measurement system. Ky geometric measures can constructscaled multi-dimensionalmodels using regular and irregular sets in IRn. This entity specific-derived geometric measurement system shares similar fractal methods in which a ‘fractal transformation operator’ is applied to a set S to produce a union of N copies. The Kýklos’ inputs use 1D geometry as a core measure. One-dimensional inputs include the radius interval of a circle/sphere or the semiminor/semimajor axes intervals of an ellipse or spheroid. These geometric inputs have finite values that can be measured by SI distance units. The outputs for each interval are divided and subdivided 1D subcomponents with a union equal to the interval geometry/length. Setting a limit of subdivision iterations creates a finite value for each 1Dsubcomponent. The uniqueness of this method is captured by allowing the simplest 1D inputs to define entity specific subclass geometric core measurements that can also be used to derive length measures. Current methodologies for celestial based measurement of time, as defined within SI units, fits within this methodology, thus combining spatial and temporal features into geometric core measures. The novel Ky method discussed here offers geometric measures to construct scaled multi-dimensional structures, even models. Ky classes proposed for consideration include celestial even subatomic. The application of this offers incredible possibilities, for example, geometric architecture that can represent scaled celestial models that incorporates planets (spheroids) and celestial motion (elliptical orbits).

Keywords: Kyklos, geometry, measurement, celestial, dimension

Procedia PDF Downloads 166
3775 Agile Software Effort Estimation Using Regression Techniques

Authors: Mikiyas Adugna

Abstract:

Effort estimation is among the activities carried out in software development processes. An accurate model of estimation leads to project success. The method of agile effort estimation is a complex task because of the dynamic nature of software development. Researchers are still conducting studies on agile effort estimation to enhance prediction accuracy. Due to these reasons, we investigated and proposed a model on LASSO and Elastic Net regression to enhance estimation accuracy. The proposed model has major components: preprocessing, train-test split, training with default parameters, and cross-validation. During the preprocessing phase, the entire dataset is normalized. After normalization, a train-test split is performed on the dataset, setting training at 80% and testing set to 20%. We chose two different phases for training the two algorithms (Elastic Net and LASSO) regression following the train-test-split. In the first phase, the two algorithms are trained using their default parameters and evaluated on the testing data. In the second phase, the grid search technique (the grid is used to search for tuning and select optimum parameters) and 5-fold cross-validation to get the final trained model. Finally, the final trained model is evaluated using the testing set. The experimental work is applied to the agile story point dataset of 21 software projects collected from six firms. The results show that both Elastic Net and LASSO regression outperformed the compared ones. Compared to the proposed algorithms, LASSO regression achieved better predictive performance and has acquired PRED (8%) and PRED (25%) results of 100.0, MMRE of 0.0491, MMER of 0.0551, MdMRE of 0.0593, MdMER of 0.063, and MSE of 0.0007. The result implies LASSO regression algorithm trained model is the most acceptable, and higher estimation performance exists in the literature.

Keywords: agile software development, effort estimation, elastic net regression, LASSO

Procedia PDF Downloads 71
3774 Does Creatine Supplementation Improve Swimming Performance?

Authors: Catrin Morgan, Atholl Johnston

Abstract:

Creatine supplementation should theoretically increase total muscle creatine and so enhance the generation of intramuscular phosphocreatine and subsequent ATP formation. The use of creatine as a potential ergogenic aid in sport has been an area of significant scientific research for a number of years. However the effect of creatine supplementation and swimming performance is a relatively new area of research and is the subject of this review. In swimming creatine supplementation could help maintain maximal power output, aid recovery and increase lean body mass. After investigating the underlying theory and science behind creatine supplementation, a literature review was conducted to identify the best evidence looking at the effect of creatine supplementation on swimming performance. The search identified 27 potential studies, and of these 17 were selected for review. The studies were then categorised into single sprint performance, which involves swimming a short distance race, or repeated interval performance, which involves swimming a series of sprints with intervals of rest between them. None of the studies on the effect of creatine controlled for the multiple confounding factors associated with measurement of swimming performance. The sample size in the studies was limited and this reduced the reliability of the studies and introduced the possibility of bias. The studies reviewed provided insufficient evidence to determine if creatine supplementation is beneficial to swimming performance. However, what data there was supported the use of creatine supplementation in repeated interval swimming rather than in single sprint swimming. From a review of the studies, it was calculated on average, there was a 1.37% increase in swimming performance with the use of creatine for repeated intervals and a 0.86% increase in performance for single sprint. While this may seem minor, it should be remembered that swimming races are often won by much smaller margins. In the 2012 London Olympics the Men’s 100 metres freestyle race was won by a margin of only 0.01 of a second. Therefore any potential benefit could make a dramatic difference to the final outcome of the race. Overall more research is warranted before the benefits of creatine supplementation in swimming performance can be further clarified.

Keywords: creatine supplementation, repeated interval, single sprint, swimming performance

Procedia PDF Downloads 425
3773 Optimal Hedging of a Portfolio of European Options in an Extended Binomial Model under Proportional Transaction Costs

Authors: Norm Josephy, Lucy Kimball, Victoria Steblovskaya

Abstract:

Hedging of a portfolio of European options under proportional transaction costs is considered. Our discrete time financial market model extends the binomial market model with transaction costs to the case where the underlying stock price ratios are distributed over a bounded interval rather than over a two-point set. An optimal hedging strategy is chosen from a set of admissible non-self-financing hedging strategies. Our approach to optimal hedging of a portfolio of options is based on theoretical foundation that includes determination of a no-arbitrage option price interval as well as on properties of the non-self-financing strategies and their residuals. A computational algorithm for optimizing an investor relevant criterion over the set of admissible non-self-financing hedging strategies is developed. Applicability of our approach is demonstrated using both simulated data and real market data.

Keywords: extended binomial model, non-self-financing hedging, optimization, proportional transaction costs

Procedia PDF Downloads 252
3772 Robustified Asymmetric Logistic Regression Model for Global Fish Stock Assessment

Authors: Osamu Komori, Shinto Eguchi, Hiroshi Okamura, Momoko Ichinokawa

Abstract:

The long time-series data on population assessments are essential for global ecosystem assessment because the temporal change of biomass in such a database reflects the status of global ecosystem properly. However, the available assessment data usually have limited sample sizes and the ratio of populations with low abundance of biomass (collapsed) to those with high abundance (non-collapsed) is highly imbalanced. To allow for the imbalance and uncertainty involved in the ecological data, we propose a binary regression model with mixed effects for inferring ecosystem status through an asymmetric logistic model. In the estimation equation, we observe that the weights for the non-collapsed populations are relatively reduced, which in turn puts more importance on the small number of observations of collapsed populations. Moreover, we extend the asymmetric logistic regression model using propensity score to allow for the sample biases observed in the labeled and unlabeled datasets. It robustified the estimation procedure and improved the model fitting.

Keywords: double robust estimation, ecological binary data, mixed effect logistic regression model, propensity score

Procedia PDF Downloads 266