Search results for: instability waves
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1243

Search results for: instability waves

1063 Multi-Criteria Selection and Improvement of Effective Design for Generating Power from Sea Waves

Authors: Khaled M. Khader, Mamdouh I. Elimy, Omayma A. Nada

Abstract:

Sustainable development is the nominal goal of most countries at present. In general, fossil fuels are the development mainstay of most world countries. Regrettably, the fossil fuel consumption rate is very high, and the world is facing the problem of conventional fuels depletion soon. In addition, there are many problems of environmental pollution resulting from the emission of harmful gases and vapors during fuel burning. Thus, clean, renewable energy became the main concern of most countries for filling the gap between available energy resources and their growing needs. There are many renewable energy sources such as wind, solar and wave energy. Energy can be obtained from the motion of sea waves almost all the time. However, power generation from solar or wind energy is highly restricted to sunny periods or the availability of suitable wind speeds. Moreover, energy produced from sea wave motion is one of the cheapest types of clean energy. In addition, renewable energy usage of sea waves guarantees safe environmental conditions. Cheap electricity can be generated from wave energy using different systems such as oscillating bodies' system, pendulum gate system, ocean wave dragon system and oscillating water column device. In this paper, a multi-criteria model has been developed using Analytic Hierarchy Process (AHP) to support the decision of selecting the most effective system for generating power from sea waves. This paper provides a widespread overview of the different design alternatives for sea wave energy converter systems. The considered design alternatives have been evaluated using the developed AHP model. The multi-criteria assessment reveals that the off-shore Oscillating Water Column (OWC) system is the most appropriate system for generating power from sea waves. The OWC system consists of a suitable hollow chamber at the shore which is completely closed except at its base which has an open area for gathering moving sea waves. Sea wave's motion pushes the air up and down passing through a suitable well turbine for generating power. Improving the power generation capability of the OWC system is one of the main objectives of this research. After investigating the effect of some design modifications, it has been concluded that selecting the appropriate settings of some effective design parameters such as the number of layers of Wells turbine fans and the intermediate distance between the fans can result in significant improvements. Moreover, simple dynamic analysis of the Wells turbine is introduced. Furthermore, this paper strives for comparing the theoretical and experimental results of the built experimental prototype.

Keywords: renewable energy, oscillating water column, multi-criteria selection, Wells turbine

Procedia PDF Downloads 138
1062 Vibration Imaging Method for Vibrating Objects with Translation

Authors: Kohei Shimasaki, Tomoaki Okamura, Idaku Ishii

Abstract:

We propose a vibration imaging method for high frame rate (HFR)-video-based localization of vibrating objects with large translations. When the ratio of the translation speed of a target to its vibration frequency is large, obtaining its frequency response in image intensities becomes difficult because one or no waves are observable at the same pixel. Our method can precisely localize moving objects with vibration by virtually translating multiple image sequences for pixel-level short-time Fourier transform to observe multiple waves at the same pixel. The effectiveness of the proposed method is demonstrated by analyzing several HFR videos of flying insects in real scenarios.

Keywords: HFR video analysis, pixel-level vibration source localization, short-time Fourier transform, virtual translation

Procedia PDF Downloads 87
1061 IT Systems of the US Federal Courts, Justice, and Governance

Authors: Joseph Zernik

Abstract:

The mechanics of rip currents are complex, involving interactions between waves, currents, water levels and the bathymetry, that present particular challenges for numerical models. Here, the effects of a grid-spacing dependent horizontal mixing on the wave-current interactions are studied. Near the shore, wave rays diverge from channels towards bar crests because of refraction by topography and currents, in a way that depends on the rip current intensity which is itself modulated by the horizontal mixing. At low resolution with the grid-spacing dependent horizontal mixing, the wave motion is the same for both coupling modes because the wave deviation by the currents is weak. In high-resolution case, however, classical results are found with the stabilizing effect of the flow by feedback of waves on currents. Lastly, wave-current interactions and the horizontal mixing strongly affect the intensity of the three-dimensional rip velocity.

Keywords: e-justice, federal courts, human rights, banking regulation, United States

Procedia PDF Downloads 356
1060 Turbulence Modeling and Wave-Current Interactions

Authors: A. C. Bennis, F. Dumas, F. Ardhuin, B. Blanke

Abstract:

The mechanics of rip currents are complex, involving interactions between waves, currents, water levels and the bathymetry, that present particular challenges for numerical models. Here, the effects of a grid-spacing dependent horizontal mixing on the wave-current interactions are studied. Near the shore, wave rays diverge from channels towards bar crests because of refraction by topography and currents, in a way that depends on the rip current intensity which is itself modulated by the horizontal mixing. At low resolution with the grid-spacing dependent horizontal mixing, the wave motion is the same for both coupling modes because the wave deviation by the currents is weak. In high-resolution case, however, classical results are found with the stabilizing effect of the flow by feedback of waves on currents. Lastly, wave-current interactions and the horizontal mixing strongly affect the intensity of the three-dimensional rip velocity.

Keywords: numerical modeling, wave-current interactions, turbulence modeling, rip currents

Procedia PDF Downloads 444
1059 Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model

Authors: Yu-Ching Yang, Haw-Long Lee, Win-Jin Chang

Abstract:

The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium.

Keywords: absorber plates, dual-phase-lag, non-Fourier, solar collector

Procedia PDF Downloads 368
1058 Evaluation of Duncan-Chang Deformation Parameters of Granular Fill Materials Using Non-Invasive Seismic Wave Methods

Authors: Ehsan Pegah, Huabei Liu

Abstract:

Characterizing the deformation properties of fill materials in a wide stress range always has been an important issue in geotechnical engineering. The hyperbolic Duncan-Chang model is a very popular model of stress-strain relationship that captures the nonlinear deformation of granular geomaterials in a very tractable manner. It consists of a particular set of the model parameters, which are generally measured from an extensive series of laboratory triaxial tests. This practice is both time-consuming and costly, especially in large projects. In addition, undesired effects caused by soil disturbance during the sampling procedure also may yield a large degree of uncertainty in the results. Accordingly, non-invasive geophysical seismic approaches may be utilized as the appropriate alternative surveys for measuring the model parameters based on the seismic wave velocities. To this end, the conventional seismic refraction profiles were carried out in the test sites with the granular fill materials to collect the seismic waves information. The acquired shot gathers are processed, from which the P- and S-wave velocities can be derived. The P-wave velocities are extracted from the Seismic Refraction Tomography (SRT) technique while S-wave velocities are obtained by the Multichannel Analysis of Surface Waves (MASW) method. The velocity values were then utilized with the equations resulting from the rigorous theories of elasticity and soil mechanics to evaluate the Duncan-Chang model parameters. The derived parameters were finally compared with those from laboratory tests to validate the reliability of the results. The findings of this study may confidently serve as the useful references for determination of nonlinear deformation parameters of granular fill geomaterials. Those are environmentally friendly and quite economic, which can yield accurate results under the actual in-situ conditions using the surface seismic methods.

Keywords: Duncan-Chang deformation parameters, granular fill materials, seismic waves velocity, multichannel analysis of surface waves, seismic refraction tomography

Procedia PDF Downloads 166
1057 The Effect of Surface Wave on the Performance Characteristic of a Wave-Tidal Integral Turbine Hybrid Generation System

Authors: Norshazmira Mat Azmi, Sayidal El Fatimah Masnan, Shatirah Akib

Abstract:

More than 70% of the Earth is covered by oceans, which are considered to possess boundless renewable energy, such as tidal energy, tidal current energy, wave energy, thermal energy, and chemical energy. The hybrid system help in improving the economic and environmental sustainability of renewable energy systems to fulfill the energy demand. The concept of hybridizing renewable energy is to meet the desired system requirements, with the lowest value of the energy cost. This paper propose a hybrid power generation system suitable for remote area application and highlight the impact of surface waves on turbine design and performance, and the importance of understanding the site-specific wave conditions.

Keywords: marine current energy, tidal turbines, wave turbine, renewable energy, surface waves, hydraulic flume experiments, instantaneous wave phase

Procedia PDF Downloads 387
1056 Study of Anti-Symmetric Flexural Mode Propagation along Wedge Tip with a Crack

Authors: Manikanta Prasad Banda, Che Hua Yang

Abstract:

Anti-symmetric wave propagation along the particle motion of the wedge waves is known as anti-symmetric flexural (ASF) modes which travel along the wedge tips of the mid-plane apex with a small truncation. This paper investigates the characteristics of the ASF modes propagation with the wedge tip crack. The simulation and experimental results obtained by a three-dimensional (3-D) finite element model explained the contact acoustic non-linear (CAN) behavior in explicit dynamics in ABAQUS and the ultrasonic non-destructive testing (NDT) method is used for defect detection. The effect of various parameters on its high and low-level conversion modes are known for complex reflections and transmissions involved with direct reflections and transmissions. The results are used to predict the location of crack through complex transmission and reflection coefficients.

Keywords: ASF mode, crack detection, finite elements method, laser ultrasound technique, wedge waves

Procedia PDF Downloads 114
1055 Graphic Procession Unit-Based Parallel Processing for Inverse Computation of Full-Field Material Properties Based on Quantitative Laser Ultrasound Visualization

Authors: Sheng-Po Tseng, Che-Hua Yang

Abstract:

Motivation and Objective: Ultrasonic guided waves become an important tool for nondestructive evaluation of structures and components. Guided waves are used for the purpose of identifying defects or evaluating material properties in a nondestructive way. While guided waves are applied for evaluating material properties, instead of knowing the properties directly, preliminary signals such as time domain signals or frequency domain spectra are first revealed. With the measured ultrasound data, inversion calculation can be further employed to obtain the desired mechanical properties. Methods: This research is development of high speed inversion calculation technique for obtaining full-field mechanical properties from the quantitative laser ultrasound visualization system (QLUVS). The quantitative laser ultrasound visualization system (QLUVS) employs a mirror-controlled scanning pulsed laser to generate guided acoustic waves traveling in a two-dimensional target. Guided waves are detected with a piezoelectric transducer located at a fixed location. With a gyro-scanning of the generation source, the QLUVS has the advantage of fast, full-field, and quantitative inspection. Results and Discussions: This research introduces two important tools to improve the computation efficiency. Firstly, graphic procession unit (GPU) with large amount of cores are introduced. Furthermore, combining the CPU and GPU cores, parallel procession scheme is developed for the inversion of full-field mechanical properties based on the QLUVS data. The newly developed inversion scheme is applied to investigate the computation efficiency for single-layered and double-layered plate-like samples. The computation efficiency is shown to be 80 times faster than unparalleled computation scheme. Conclusions: This research demonstrates a high-speed inversion technique for the characterization of full-field material properties based on quantitative laser ultrasound visualization system. Significant computation efficiency is shown, however not reaching the limit yet. Further improvement can be reached by improving the parallel computation. Utilizing the development of the full-field mechanical property inspection technology, full-field mechanical property measured by non-destructive, high-speed and high-precision measurements can be obtained in qualitative and quantitative results. The developed high speed computation scheme is ready for applications where full-field mechanical properties are needed in a nondestructive and nearly real-time way.

Keywords: guided waves, material characterization, nondestructive evaluation, parallel processing

Procedia PDF Downloads 180
1054 Winkler Springs for Embedded Beams Subjected to S-Waves

Authors: Franco Primo Soffietti, Diego Fernando Turello, Federico Pinto

Abstract:

Shear waves that propagate through the ground impose deformations that must be taken into account in the design and assessment of buried longitudinal structures such as tunnels, pipelines, and piles. Conventional engineering approaches for seismic evaluation often rely on a Euler-Bernoulli beam models supported by a Winkler foundation. This approach, however, falls short in capturing the distortions induced when the structure is subjected to shear waves. To overcome these limitations, in the present work an analytical solution is proposed considering a Timoshenko beam and including transverse and rotational springs. The present research proposes ground springs derived as closed-form analytical solutions of the equations of elasticity including the seismic wavelength. These proposed springs extend the applicability of previous plane-strain models. By considering variations in displacements along the longitudinal direction, the presented approach ensures the springs do not approach zero at low frequencies. This characteristic makes them suitable for assessing pseudo-static cases, which typically govern structural forces in kinematic interaction analyses. The results obtained, validated against existing literature and a 3D Finite Element model, reveal several key insights: i) the cutoff frequency significantly influences transverse and rotational springs; ii) neglecting displacement variations along the structure axis (i.e., assuming plane-strain deformation) results in unrealistically low transverse springs, particularly for wavelengths shorter than the structure length; iii) disregarding lateral displacement components in rotational springs and neglecting variations along the structure axis leads to inaccurately low spring values, misrepresenting interaction phenomena; iv) transverse springs exhibit a notable drop in resonance frequency, followed by increasing damping as frequency rises; v) rotational springs show minor frequency-dependent variations, with radiation damping occurring beyond resonance frequencies, starting from negative values. This comprehensive analysis sheds light on the complex behavior of embedded longitudinal structures when subjected to shear waves and provides valuable insights for the seismic assessment.

Keywords: shear waves, Timoshenko beams, Winkler springs, sol-structure interaction

Procedia PDF Downloads 46
1053 Moho Undulations beneath South of Egypt, Using the Seismic Waves Generated by Tele Earthquakes

Authors: Ahmed Hosny, Haroon Elshaikh, Gaber Hassib, Yassin Ali

Abstract:

The Moho discontinuity undulations beneath the southern part of Egypt have been defined using the seismic waves generated by tele earthquakes. These earthquakes have been recorded by the Aswan seismic network, which consists of 10 seismic stations established around the lake of Nasser. An additional seismic station was located towards the east of the Lake of Nasser by about ~ 150 km. Receiver functions and H-k stacking methods were used for obtaining the depths of Moho discontinuity and the Vp/Vs ratios beneath each seismic station. Our results revealed that, the depths of Moho discontinuity beneath the stations located around the Lake of Nasser range from 36 to 39 km, with an average value of 37.5 km. These results are consistent with the previous works done on the same area. The obtained Vp/Vs ratios for the crust of this area were ranged from 1.73 to 1.86, with an average value of 1.79. While beneath the station located towards the east, the Moho discontinuity was detected at a shallowest depth of 27 km and the Vp/Vs ratio was 1.82. The difference in the Moho depths beneath the stations located around the Lake of Nasser and the station located to the east revealed the boundary position between the Saharan Metacraton to the west and the Nubian-Arabian Shield to the east. This structural boundary delineates the position of the old collision of the Oceanic crust of the Nubian-Arabian Shield to the east with the Continental crust of the Saharan Metacraton to the west.

Keywords: Moho undulations, south of Egypt, seismic waves, earthquakes

Procedia PDF Downloads 492
1052 Investigating the Effects of Two Functional and Extra-Functional Stretching Methods of the Leg Muscles on a Selection of Kinematical and Kinetic Indicators in Women with Ankle Instability

Authors: Parvin Malhami

Abstract:

The purpose of the present study was to investigate the effects of two functional and functional stretching methods of the leg muscles on a selection of kinematical and kinetic indicators among women with ankle instability. Twenty-four persons were targeted and randomly divided into the functional exercise (8 persons), extra-functional exercise (8 persons) and control (8 persons) groups on the basis of inclusion and exclusion criteria. The experimental groups received stretching for eight weeks, 3 sessions each week, and the control group merely performed its daily activities. Then, in order to measure the pre -test and post -test variables, the dorsi flexion, Plantar flexion and ground reaction force were investigated and measured. Data were analyzed using paired T-test and independent T-tests at a significant level of 0.05. All statistical analyses were conducted using SPSS 25 software. The results of the T-test showed the significant effect of eight weeks of functional and Extra functional exercises on dorsi Flexion, Plantar Flexion and ground reaction force. (P≤ 0/001). The results of this study showed that the implementation of the functional and Extra-functional exercise protocol had an impact on the amount of Ankle dorsi Flexion and the Plantar felxion of women with an ankle instability. It was also found that muscle flexibility following the stretch ability of the gastrocnemius muscles facilitates the walking of the wrist installation by affecting the amount of wrist flexion, so these people are recommended to use the functional and extra-functional exercise protocol.

Keywords: functional stretching, extra functional stretching, dorsi flexion, plantar flexion

Procedia PDF Downloads 53
1051 Shear Elastic Waves in Disordered Anisotropic Multi-Layered Periodic Structure

Authors: K. B. Ghazaryan, R. A. Ghazaryan

Abstract:

Based on the constitutive model and anti-plane equations of anisotropic elastic body of monoclinic symmetry we consider the problem of shear wave propagation in multi-layered disordered composite structure with point defect. Using transfer matrix method the analytic expression is obtained providing solutions of shear Floquet wave propagation in periodic disordered anisotropic structure. The usefulness of the obtained analytical expression was discussed also in reflection and refraction problems from multi-layered reflector as well as in vibration problem of multi-layered waveguides. Numerical results are presented highlighting the effects arising in disordered periodic structure due to defects of multi-layered structure.

Keywords: shear elastic waves, monoclinic anisotropic media, periodic structure, disordered multilayer laminae, multi-layered waveguide

Procedia PDF Downloads 388
1050 Experimental Investigation of Boundary Layer Instability and Transition on a Rotating Parabola in Axial Flow

Authors: Ali Kargar, Kamyar Mansour

Abstract:

In this paper the boundary layer instability and transition on a rotating parabola which is sheathed shape on a rotating 30 degrees total apex angle cone have been study by smoke visualization. The rotating cone especially 30 degrees total apex angle is a well-established subject in some previous novel works and also in our previous works. But in this paper a stabilizing effect is detected by the bluntness of nose and also surface curvature. A parabola model which is satisfying those conditions (sheathed parabola of the 30 degrees cone) has been built and studied in the wind tunnel. The results are shown that the boundary layer transition occurs at higher rotational Reynolds number in comparison by the cone. The results are shown in the visualization pictures and also are compared graphically.

Keywords: transitional Reynolds number, wind tunnel, smoke visualization, rotating parabola

Procedia PDF Downloads 399
1049 Methods for Material and Process Monitoring by Characterization of (Second and Third Order) Elastic Properties with Lamb Waves

Authors: R. Meier, M. Pander

Abstract:

In accordance with the industry 4.0 concept, manufacturing process steps as well as the materials themselves are going to be more and more digitalized within the next years. The “digital twin” representing the simulated and measured dataset of the (semi-finished) product can be used to control and optimize the individual processing steps and help to reduce costs and expenditure of time in product development, manufacturing, and recycling. In the present work, two material characterization methods based on Lamb waves were evaluated and compared. For demonstration purpose, both methods were shown at a standard industrial product - copper ribbons, often used in photovoltaic modules as well as in high-current microelectronic devices. By numerical approximation of the Rayleigh-Lamb dispersion model on measured phase velocities second order elastic constants (Young’s modulus, Poisson’s ratio) were determined. Furthermore, the effective third order elastic constants were evaluated by applying elastic, “non-destructive”, mechanical stress on the samples. In this way, small microstructural variations due to mechanical preconditioning could be detected for the first time. Both methods were compared with respect to precision and inline application capabilities. Microstructure of the samples was systematically varied by mechanical loading and annealing. Changes in the elastic ultrasound transport properties were correlated with results from microstructural analysis and mechanical testing. In summary, monitoring the elastic material properties of plate-like structures using Lamb waves is valuable for inline and non-destructive material characterization and manufacturing process control. Second order elastic constants analysis is robust over wide environmental and sample conditions, whereas the effective third order elastic constants highly increase the sensitivity with respect to small microstructural changes. Both Lamb wave based characterization methods are fitting perfectly into the industry 4.0 concept.

Keywords: lamb waves, industry 4.0, process control, elasticity, acoustoelasticity, microstructure

Procedia PDF Downloads 208
1048 Acoustic Radiation from an Infinite Cylindrical Shell with Periodic Lengthwise Ribs

Authors: Yunzhe Tong, Jun Fan, Bin Wang

Abstract:

The vibroacoustic behavior of an immersed infinite cylindrical shell with periodic lengthwise ribs has been studied in this paper. The motions of the shell are described by the Donnell equations. Each lengthwise rib is modeled as an elastic beam. The motions of the bulkheads are decomposed into the longitudinal motions and flexural motions. The analytical expressions of the shell motions can be obtained through circumferential mode expansion, Fourier Transform and periodic boundary condition in the circumferential direction. Furthermore, the far-field radiated pressure has been obtained using the stationary phase. The analysis of wavenumber domain shows that periodic lengthwise stiffeners in the circumferential direction can produce flexural Bloch waves. The dominant feature in far-field pressure amplitude is the resonance of the supersonic components of the flexural Bloch waves in the circumferential direction.

Keywords: flexural Bloch wave, stiffened shell, vibroacoustics, wavenumber analysis

Procedia PDF Downloads 188
1047 Effect of Runup over a Vertical Pile Supported Caisson Breakwater and Quarter Circle Pile Supported Caisson Breakwater

Authors: T. J. Jemi Jeya, V. Sriram

Abstract:

Pile Supported Caisson breakwater is an ecofriendly breakwater very useful in coastal zone protection. The model is developed by considering the advantages of both caisson breakwater and pile supported breakwater, where the top portion is a vertical or quarter circle caisson and the bottom portion consists of a pile supported breakwater defined as Vertical Pile Supported Breakwater (VPSCB) and Quarter-circle Pile Supported Breakwater (QPSCB). The study mainly focuses on comparison of run up over VPSCB and QPSCB under oblique waves. The experiments are carried out in a shallow wave basin under different water depths (d = 0.5 m & 0.55 m) and under different oblique regular waves (00, 150, 300). The run up over the surface is measured by placing two run up probes over the surface at 0.3 m on both sides from the centre of the model. The results show that the non-dimensional shoreward run up shows slight decrease with respect to increase in angle of wave attack.

Keywords: Caisson breakwater, pile supported breakwater, quarter circle breakwater, vertical breakwater

Procedia PDF Downloads 128
1046 Numerical Simulation of Free Surface Water Wave for the Flow Around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method

Authors: Omar Imine, Mohammed Aounallah, Mustapha Belkadi

Abstract:

Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation, a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of the fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRICscheme for VOF discretization. The results obtained compare well with the experimental data.

Keywords: free surface flows, breaking waves, boundary layer, Wigley hull, volume of fluid

Procedia PDF Downloads 352
1045 Slope Instability Study Using Kinematic Analysis and Lineament Density Mapping along a Part of National Highway 58, Uttarakhand, India

Authors: Kush Kumar, Varun Joshi

Abstract:

Slope instability is a major problem of the mountainous region, especially in parts of the Indian Himalayan Region (IHR). The on-going tectonic, rugged topography, steep slope, heavy precipitation, toe erosion, structural discontinuities, and deformation are the main triggering factors of landslides in this region. Besides the loss of life, property, and infrastructure caused by a landslide, it also results in various environmental problems, i.e., degradation of slopes, land use, river quality by increased sediments, and loss of well-established vegetation. The Indian state of Uttarakhand, being a part of the active Himalayas, also faces numerous cases of slope instability. Therefore, the vulnerable landslide zones need to be delineated to safeguard various losses. The study area is focused in Garhwal and Tehri -Garhwal district of Uttarakhand state along National Highway 58, which is a strategic road and also connects the four important sacred pilgrims (Char Dham) of India. The lithology of these areas mainly comprises of sandstone, quartzite of Chakrata formation, and phyllites of Chandpur formation. The greywacke and sandstone rock of Saknidhar formation dips northerly and is overlain by phyllite of Chandpur formation. The present research incorporates the lineament density mapping using remote sensing satellite data supplemented by a detailed field study via kinematic analysis. The DEM data of ALOS PALSAR (12.5 m resolution) is resampled to 10 m resolution and used for preparing various thematic maps such as slope, aspect, drainage, hill shade, lineament, and lineament density using ARCGIS 10.6 software. Furthermore, detailed field mapping, including structural mapping, geomorphological mapping, is integrated for kinematic analysis of the slope using Dips 6.0 software of Rockscience. The kinematic analysis of 40 locations was carried out, among which 15 show the planar type of failure, five-show wedge failure, and rest, 20 show no failures. The lineament density map is overlapped with the location of the unstable slope inferred from kinematic analysis to infer the association of the field information and remote sensing derived information, and significant compatibility was observed. With the help of the present study, location-specific mitigation measures could be suggested. The mitigation measures would be helping in minimizing the probability of slope instability, especially during the rainy season, and reducing the hampering of road traffic.

Keywords: Indian Himalayan Region, kinematic analysis, lineament density mapping, slope instability

Procedia PDF Downloads 110
1044 Economic Recession and its Psychological Effects on Educated Youth: A Case Study of Pakistan

Authors: Aroona Hashmi

Abstract:

An economic recession can lead people to feel more insecure about their financial situation. The series of events leading into a recession can be especially distressing for Educated Youth. One of the most salient factors linking economic recession to psychological distress is unemployment. It is proved that a large number of educated young people are facing higher unemployment rate in Pakistan. Young people are likely to get frustrated at the lack of opportunities made available to them. If the young population increases more rapidly than job opportunities, then number of unemployment is likely to increase. The aim of present study was to investigate the relationship between economic instability, growing rate of aggression and frustration among educated youth. The study aimed to find out the impact of increased economic instability on the learning abilities of the students. Data was gathered from six university students of Punjab, Pakistan. The sample of the study consisted of three hundred male and female university students. The data was analyzed by applying Chi -square test. The results of the research indicate that there is a significant relationship between low household income and growing rate of aggression among educated youth. The increasing trend of economic instability significantly influences the learning abilities of the students. The study concludes that feeling of deprivation produce frustration and could be expressed through aggression. Therefore, if factors that are responsible for youth unemployment in Pakistan are addressed, psychological effects will be reduced. The right way of tackling the youth bulge is to turn the youth into a productive workforce. There is a dire need to transform the education system to societal needs. At the same time creating demand for the young workforce is achieved through dynamic changes in the economic structure.

Keywords: psychological effects, economic recession, educated youth, environmental factors

Procedia PDF Downloads 364
1043 An Improved Amplified Sway Method for Semi-Rigidly Jointed Sway Frames

Authors: Abdul Hakim Chikho

Abstract:

A simple method of calculating satisfactory of the effect of instability on the distribution of in-plane bending moments in unbraced semi-rigidly multistory steel framed structures is presented in this paper. This method, which is a modified form of the current amplified sway method of BS5950: part1:2000, uses an approximate load factor at elastic instability in each storey of a frame which in turn dependent up on the axial loads acting in the columns. The calculated factors are then used to represent the geometrical deformations due to the presence of axial loads, acting in that storey. Only a first order elastic analysis is required to accomplish the calculation. Comparison of the prediction of the proposed method and the current BS5950 amplified sway method with an accurate second order elastic computation shows that the proposed method leads to predictions which are markedly more accurate than the current approach of BS5950.

Keywords: improved amplified sway method, steel frames, semi-rigid connections, secondary effects

Procedia PDF Downloads 66
1042 Dispersion Effects in Waves Reflected by Lossy Conductors: The Optics vs. Electromagnetics Approach

Authors: Oibar Martinez, Clara Oliver, Jose Miguel Miranda

Abstract:

The study of dispersion phenomena in electromagnetic waves reflected by conductors at infrared and lower frequencies is a topic which finds a number of applications. We aim to explain in this work what are the most relevant ones and how this phenomenon is modeled from both optics and electromagnetics points of view. We also explain here how the amplitude of an electromagnetic wave reflected by a lossy conductor could depend on both the frequency of the incident wave, as well as on the electrical properties of the conductor, and we illustrate this phenomenon with a practical example. The mathematical analysis made by a specialist in electromagnetics or a microwave engineer is apparently very different from the one made by a specialist in optics. We show here how both approaches lead to the same physical result and what are the key concepts which enable one to understand that despite the differences in the equations the solution to the problem happens to be the same. Our study starts with an analysis made by using the complex refractive index and the reflectance parameter. We show how this reflectance has a dependence with the square root of the frequency when the reflecting material is a good conductor, and the frequency of the wave is low enough. Then we analyze the same problem with a less known approach, which is based on the reflection coefficient of the electric field, a parameter that is most commonly used in electromagnetics and microwave engineering. In summary, this paper presents a mathematical study illustrated with a worked example which unifies the modeling of dispersion effects made by specialists in optics and the one made by specialists in electromagnetics. The main finding of this work is that it is possible to reproduce the dependence of the Fresnel reflectance with frequency from the intrinsic impedance of the reflecting media.

Keywords: dispersion, electromagnetic waves, microwaves, optics

Procedia PDF Downloads 108
1041 Stability of the Wellhead in the Seabed in One of the Marine Reservoirs of Iran

Authors: Mahdi Aghaei, Saeid Jamshidi, Mastaneh Hajipour

Abstract:

Effective factors on the mechanical wellbore stability are divided in to two categories: 1) Controllable factors, 2) Uncontrollable factors. The purpose of geo-mechanical modeling of wells is to determine the limit of controlled parameters change based on the stress regime at each point and by solving the governing equations the pore-elastic environment around the well. In this research, the mechanical analysis of wellbore stability was carried out for Soroush oilfield. For this purpose, the geo-mechanical model of the field is made using available data. This model provides the necessary parameters for obtaining the distribution of stress around the wellbore. Initially, a basic model was designed to perform various analysis, based on obtained data, using Abaqus software. All of the subsequent sensitivity analysis such as sensitivity analysis on porosity, permeability, etc. was done on the same basic model. The results obtained from these analysis gives various result such as: with the constant geomechanical parameters, and sensitivity analysis on porosity permeability is ineffective. After the most important parameters affecting the wellbore stability and instability are geo-mechanical parameters.

Keywords: wellbore stability, movement, stress, instability

Procedia PDF Downloads 186
1040 Effects of Hierarchy on Poisson’s Ratio and Phononic Bandgaps of Two-Dimensional Honeycomb Structures

Authors: Davood Mousanezhad, Ashkan Vaziri

Abstract:

As a traditional cellular structure, hexagonal honeycombs are known for their high strength-to-weight ratio. Here, we introduce a class of fractal-appearing hierarchical metamaterials by replacing the vertices of the original non-hierarchical hexagonal grid with smaller hexagons and iterating this process to achieve higher levels of hierarchy. It has been recently shown that the isotropic in-plane Young's modulus of this hierarchical structure at small deformations becomes 25 times greater than its regular counterpart with the same mass. At large deformations, we find that hierarchy-dependent elastic buckling introduced at relatively early stages of deformation decreases the value of Poisson's ratio as the structure is compressed uniaxially leading to auxeticity (i.e., negative Poisson's ratio) in subsequent stages of deformation. We also show that the topological hierarchical architecture and instability-induced pattern transformations of the structure under compression can be effectively used to tune the propagation of elastic waves within the structure. We find that the hierarchy tends to shift the existing phononic bandgaps (defined as frequency ranges of strong wave attenuation) to lower frequencies while opening up new bandgaps. Deformation is also demonstrated as another mechanism for opening more bandgaps in hierarchical structures. The results provide new insights into the role of structural organization and hierarchy in regulating mechanical properties of materials at both the static and dynamic regimes.

Keywords: cellular structures, honeycombs, hierarchical structures, metamaterials, multifunctional structures, phononic crystals, auxetic structures

Procedia PDF Downloads 328
1039 Rayleigh Wave Propagation in an Orthotropic Medium under the Influence of Exponentially Varying Inhomogeneities

Authors: Sumit Kumar Vishwakarma

Abstract:

The aim of the paper is to investigate the influence of inhomogeneity associated with the elastic constants and density of the orthotropic medium. The inhomogeneity is considered as exponential function of depth. The impact of gravity had been discussed. Using the concept of separation of variables, the system of a partial differential equation (equation of motion) has been converted into ordinary differential equation, which is coupled in nature. It further reduces to a biquadratic equation whose roots were found by using MATLAB. A suitable boundary condition is employed to derive the dispersion equation in a closed-form. Numerical simulations had been performed to show the influence of the inhomogeneity parameter. It was observed that as the numerical values of increases, the phase velocity of Rayleigh waves decreases at a particular wavenumber. Graphical illustrations were drawn to visualize the effect of the increasing and decreasing values of the inhomogeneity parameter. It can be concluded that it has a remarkable bearing on the phase velocity as well as damping velocity.

Keywords: Rayleigh waves, orthotropic medium, gravity field, inhomogeneity

Procedia PDF Downloads 107
1038 Numerical Simulation of Waves Interaction with a Free Floating Body by MPS Method

Authors: Guoyu Wang, Meilian Zhang, Chunhui LI, Bing Ren

Abstract:

In recent decades, a variety of floating structures have played a crucial role in ocean and marine engineering, such as ships, offshore platforms, floating breakwaters, fish farms, floating airports, etc. It is common for floating structures to suffer from loadings under waves, and the responses of the structures mounted in marine environments have a significant relation to the wave impacts. The interaction between surface waves and floating structures is one of the important issues in ship or marine structure design to increase performance and efficiency. With the progress of computational fluid dynamics, a number of numerical models based on the NS equations in the time domain have been developed to explore the above problem, such as the finite difference method or the finite volume method. Those traditional numerical simulation techniques for moving bodies are grid-based, which may encounter some difficulties when treating a large free surface deformation and a moving boundary. In these models, the moving structures in a Lagrangian formulation need to be appropriately described in grids, and the special treatment of the moving boundary is inevitable. Nevertheless, in the mesh-based models, the movement of the grid near the structure or the communication between the moving Lagrangian structure and Eulerian meshes will increase the algorithm complexity. Fortunately, these challenges can be avoided by the meshless particle methods. In the present study, a moving particle semi-implicit model is explored for the numerical simulation of fluid–structure interaction with surface flows, especially for coupling of fluid and moving rigid body. The equivalent momentum transfer method is proposed and derived for the coupling of fluid and rigid moving body. The structure is discretized into a group of solid particles, which are assumed as fluid particles involved in solving the NS equation altogether with the surrounding fluid particles. The momentum conservation is ensured by the transfer from those fluid particles to the corresponding solid particles. Then, the position of the solid particles is updated to keep the initial shape of the structure. Using the proposed method, the motions of a free-floating body in regular waves are numerically studied. The wave surface evaluation and the dynamic response of the floating body are presented. There is good agreement when the numerical results, such as the sway, heave, and roll of the floating body, are compared with the experimental and other numerical data. It is demonstrated that the presented MPS model is effective for the numerical simulation of fluid-structure interaction.

Keywords: floating body, fluid structure interaction, MPS, particle method, waves

Procedia PDF Downloads 51
1037 An Industrial Steady State Sequence Disorder Model for Flow Controlled Multi-Input Single-Output Queues in Manufacturing Systems

Authors: Anthony John Walker, Glen Bright

Abstract:

The challenge faced by manufactures, when producing custom products, is that each product needs exact components. This can cause work-in-process instability due to component matching constraints imposed on assembly cells. Clearing type flow control policies have been used extensively in mediating server access between multiple arrival processes. Although the stability and performance of clearing policies has been well formulated and studied in the literature, the growth in arrival to departure sequence disorder for each arriving job, across a serving resource, is still an area for further analysis. In this paper, a closed form industrial model has been formulated that characterizes arrival-to-departure sequence disorder through stable manufacturing systems under clearing type flow control policy. Specifically addressed are the effects of sequence disorder imposed on a downstream assembly cell in terms of work-in-process instability induced through component matching constraints. Results from a simulated manufacturing system show that steady state average sequence disorder in parallel upstream processing cells can be balanced in order to decrease downstream assembly system instability. Simulation results also show that the closed form model accurately describes the growth and limiting behavior of average sequence disorder between parts arriving and departing from a manufacturing system flow controlled via clearing policy.

Keywords: assembly system constraint, custom products, discrete sequence disorder, flow control

Procedia PDF Downloads 157
1036 Evaluation of the Analytic for Hemodynamic Instability as a Prediction Tool for Early Identification of Patient Deterioration

Authors: Bryce Benson, Sooin Lee, Ashwin Belle

Abstract:

Unrecognized or delayed identification of patient deterioration is a key cause of in-hospitals adverse events. Clinicians rely on vital signs monitoring to recognize patient deterioration. However, due to ever increasing nursing workloads and the manual effort required, vital signs tend to be measured and recorded intermittently, and inconsistently causing large gaps during patient monitoring. Additionally, during deterioration, the body’s autonomic nervous system activates compensatory mechanisms causing the vital signs to be lagging indicators of underlying hemodynamic decline. This study analyzes the predictive efficacy of the Analytic for Hemodynamic Instability (AHI) system, an automated tool that was designed to help clinicians in early identification of deteriorating patients. The lead time analysis in this retrospective observational study assesses how far in advance AHI predicted deterioration prior to the start of an episode of hemodynamic instability (HI) becoming evident through vital signs? Results indicate that of the 362 episodes of HI in this study, 308 episodes (85%) were correctly predicted by the AHI system with a median lead time of 57 minutes and an average of 4 hours (240.5 minutes). Of the 54 episodes not predicted, AHI detected 45 of them while the episode of HI was ongoing. Of the 9 undetected, 5 were not detected by AHI due to either missing or noisy input ECG data during the episode of HI. In total, AHI was able to either predict or detect 98.9% of all episodes of HI in this study. These results suggest that AHI could provide an additional ‘pair of eyes’ on patients, continuously filling the monitoring gaps and consequently giving the patient care team the ability to be far more proactive in patient monitoring and adverse event management.

Keywords: clinical deterioration prediction, decision support system, early warning system, hemodynamic status, physiologic monitoring

Procedia PDF Downloads 167
1035 Coherent Ku-Band Radar for Monitoring Ocean Waves

Authors: Richard Mitchell, Robert Mitchell, Thai Duong, Kyungbin Bae, Daegon Kim, Youngsub Lee, Inho Kim, Inho Park, Hyungseok Lee

Abstract:

Although X-band radar is commonly used to measure the properties of ocean waves, the use of a higher frequency has several advantages, such as increased backscatter coefficient, better Doppler sensitivity, lower power, and a smaller package. A low-power Ku-band radar system was developed to demonstrate these advantages. It is fully coherent, and it interleaves short and long pulses to achieve a transmit duty ratio of 25%, which makes the best use of solid-state amplifiers. The range scales are 2 km, 4 km, and 8 km. The minimum range is 100 m, 200 m, and 400 m for the three range scales, and the range resolution is 4 m, 8 m, and 16 m for the three range scales. Measurements of the significant wave height, wavelength, wave period, and wave direction have been made using traditional 3D-FFT methods. Radar and ultrasonic sensor results collected over an extended period of time at a coastal site in South Korea are presented.

Keywords: measurement of ocean wave parameters, Ku-band radar, coherent radar, compact radar

Procedia PDF Downloads 146
1034 Inversion of the Spectral Analysis of Surface Waves Dispersion Curves through the Particle Swarm Optimization Algorithm

Authors: A. Cerrato Casado, C. Guigou, P. Jean

Abstract:

In this investigation, the particle swarm optimization (PSO) algorithm is used to perform the inversion of the dispersion curves in the spectral analysis of surface waves (SASW) method. This inverse problem usually presents complicated solution spaces with many local minima that make difficult the convergence to the correct solution. PSO is a metaheuristic method that was originally designed to simulate social behavior but has demonstrated powerful capabilities to solve inverse problems with complex space solution and a high number of variables. The dispersion curve of the synthetic soils is constructed by the vertical flexibility coefficient method, which is especially convenient for soils where the stiffness does not increase gradually with depth. The reason is that these types of soil profiles are not normally dispersive since the dominant mode of Rayleigh waves is usually not coincident with the fundamental mode. Multiple synthetic soil profiles have been tested to show the characteristics of the convergence process and assess the accuracy of the final soil profile. In addition, the inversion procedure is applied to multiple real soils and the final profile compared with the available information. The combination of the vertical flexibility coefficient method to obtain the dispersion curve and the PSO algorithm to carry out the inversion process proves to be a robust procedure that is able to provide good solutions for complex soil profiles even with scarce prior information.

Keywords: dispersion, inverse problem, particle swarm optimization, SASW, soil profile

Procedia PDF Downloads 159