Search results for: cotton fabrics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 441

Search results for: cotton fabrics

261 Development and Characterization of Re-Entrant Auxetic Fibrous Structures for Application in Ballistic Composites

Authors: Rui Magalhães, Sohel Rana, Raul Fangueiro, Clara Gonçalves, Pedro Nunes, Gustavo Dias

Abstract:

Auxetic fibrous structures and composites with negative Poisson’s ratio (NPR) have huge potential for application in ballistic protection due to their high energy absorption and excellent impact resistance. In the present research, re-entrant lozenge auxetic fibrous structures were produced through weft knitting technology using high performance polyamide and para-aramid fibres. Fabric structural parameters (e.g. loop length) and machine parameters (e.g. take down load) were varied in order to investigate their influence on the auxetic behaviours of the produced structures. These auxetic structures were then impregnated with two types of polymeric resins (epoxy and polyester) to produce composite materials, which were subsequently characterized for the auxetic behaviour. It was observed that the knitted fabrics produced using the polyamide yarns exhibited NPR over a wide deformation range, which was strongly dependant on the loop length and take down load. The polymeric composites produced from the auxetic fabrics also showed good auxetic property, which was superior in case of the polyester matrix. The experimental results suggested that these composites made from the auxetic fibrous structures can be properly designed to find potential use in the body amours for personal protection applications.

Keywords: auxetic fabrics, high performance, composites, energy absorption, impact resistance

Procedia PDF Downloads 229
260 An Experimental Investigation of the Variation of Evaporator Efficiency According to Load Amount and Textile Type in Hybrid Heat Pump Dryers

Authors: Gokhan Sir, Muhammed Ergun, Onder Balioglu

Abstract:

Nowadays, laundry dryers containing heaters and heat pumps are used to provide fast and efficient drying. In this system, as the drying capacity changes, the sensible and latent heat transfer rate in the evaporator changes. Therefore, the drying time measured for the unit capacity increases as the drying capacity decreases. The objective of this study is to investigate the evaporator efficiency according to load amount and textile type in hybrid heat pump dryers. Air side flow rate and system temperatures (air side and refrigeration side) were monitored instantly, and the specific moisture extraction rate (SMER), evaporator efficiency, and heat transfer mechanism between the textile and hybrid heat pump system were examined. Evaporator efficiency of heat pump dryers for cotton and synthetic based textile types in load amounts of 2, 5, 8 and 10 kg were investigated experimentally. As a result, the maximum evaporator efficiency (%72) was obtained in drying cotton and synthetic based textiles with a capacity of 5 kg; the minimum evaporator efficiency (%40) was obtained in drying cotton and synthetic based textiles with a capacity of 2 kg. The experimental study also reveals that capacity-dependent flow rate changes are the major factor for evaporator efficiency.

Keywords: evaporator, heat pump, hybrid, laundry dryer, textile

Procedia PDF Downloads 112
259 Analysis of the Variation on Earth Pressure by Addition of Construction Demolition Waste (C&D Waste) In Black Cotton Soil

Authors: Nirav Jadav, M. G.Vanza

Abstract:

Black cotton soils mainly exhibit the property of swelling/shrinkage when they react to moisture variations. This property causes development of cracks in the structures resting on these soils, which poses instability to the structures. Soil stabilization is a technique to enhance the geotechnical characteristics of Black cotton soils by changing their properties. Due to rapid growth in construction industry, a lot of waste material is being generated every day, which poses the problem of its disposal. If the waste material can be utilized for soil stabilization, it will mitigate the problems of its disposal. The tests results evaluate that the strength of the Black cotton soils increased by the use of C&D waste material. This study determines various Index and engineering properties of soil and compare for different proportions of soil and C&D Waste. For finding properties of soil and C&D Waste, various test is carried out like sieve analysis, hydrometer test, specific gravity test, Atterberg’s limit test, Standard proctor test and soil Triaxial unconsolidated undrained test. It also takes into account the characteristics alteration due to addition of C&D Waste in active and passive pressure. This study presents the efficacy for use of C&D Waste as a stabilizing material to be mixed with backfill soil in retaining walls. Standard proctor test was conducted at proportions S1W0 (soil = 100%, Waste = 0%), S7W1 (soil = 87.5%, waste = 12.5%), S3W1, S5W3 and S1W1. From these, S5W3 showed optimum results, so this proportion was considered for Soil Triaxial UU-Test. Also, S1W0 was considered too. When 37.5% of soil is replaced by C&D Waste, the Optimum moisture content (OMC) decrease by 11.48%, further, increase C&D Waste in soil OMC remains constant, and maximum dry density (MDD) were observed to be increased by 9.27%, further increased C&D Waste in soil MDD reduces. Carried out strength test, which shows cohesion decreased by 162% and the internal friction angle increased by 49.4% with compare to virgin soil. The study focuses on the potential use of C&D Waste as a stabilizing material in the retaining wall backfill. The active earth pressure decreases, and the passive earth pressure increases in the S5W3 mixture compared to the S1W0 mixture at the same depth.

Keywords: black cotton soil, construction demolition waste, compaction test, strength test

Procedia PDF Downloads 55
258 Identification and Application of Biocontrol Agents against Cotton Leaf Curl Virus Disease in Gossypium hirsutum under Green House Conditions

Authors: Memoona Ramzan, Bushra Tabassum, Anwar Khan, Muhammad Tariq, Mudassar Fareed Awan, Idrees Ahmad Nasir, Zahida Qamar, Naila Shahid, Tayyab Husnain

Abstract:

Biological control is a novel approach being used in crop protection nowadays. Bacteria like Bacillus and Pseudomonas are reported for this purpose and few of their products are commercially available too. Rhizosphere and phyllosphere of healthy cotton plants were used as a source to isolate bacteria capable of exhibiting properties worthy for selection as biocontrol agent. For this purpose all isolated strains were screened for the activities like phosphate solubilization, Indole acetic acid (IAA) production and biocontrol against fungi. Two strains S1HL3 and S1HL4 showed phosphate solubilization and IAA production simultaneously while two other JS2HR4 and JS3HR2 were good inhibitors of fungal pathogens. Through biochemical and molecular characterization these bacteria were identified as P. aeruginosa, Burkholderia and Bacillus respectively. In green house trials of these isolates against Cotton leaf curl virus (CLCuV), seven treatments including individual bacterial isolate and consortia were included. Treated plants were healthy as compared to control plants in which upto 74% CLCuV symptomatic plants exist. Maximum inhibition of CLCuV was observed in T7 treated plants where viral load was only 0.4% as compared to control where viral load was upto 74%. This treatment consortium included Bacillus and Pseudomonas isolates; S1HL3, S1HL4, JS2HR4 and JS3HR2. Principal Component Biplot depicted highly significant correlation between percentage viral load and the disease incidence.

Keywords: cotton leaf curl virus, biological control, bacillus, pseudomonas

Procedia PDF Downloads 352
257 Comparative Analysis of Oil Extracts from Cotton and Watermelon Seeds

Authors: S. A. Jumare, A. O. Tijani, M. F. Siraj, B. V. Babatunde

Abstract:

This research investigated the comparative analysis of oil extracted from cotton and watermelon seeds using solvent extraction process. Normal ethyl-ether was used as solvent in the extraction process. The AOAC method of Analysis was employed in the determination of the physiochemical properties of the oil. The chemical properties of the oil determined include the saponification value, free fatty acid, iodine value, peroxide value and acid value. The physical properties of the oil determined include specific gravity, refractive index, colour, odour, taste and pH. The value obtained for cottonseed oil are saponification value (187mgKOH/g), free fatty acid (5.64mgKOH/g), iodine value (95.2g/100), peroxide value (9.33meq/kg), acid value (11.22mg/KOH/g), pH value (4.62), refractive index (1.46), and specific gravity (0.9) respectively, it has a bland odour, a reddish brown colour and a mild taste. The values obtained for watermelon seed oil are saponification value (83.3mgKOH/g), free fatty acid (6.58mg/KOH/g), iodine value (122.6g/100), peroxide value (5.3meq/kg), acid value (3.74mgKOH/g), pH value (6.3), refractive index (1.47), and specific gravity (0.9) respectively, it has a nutty flavour, a golden yellow colour and a mild taste. From the result obtained, it shows that cottonseed oil has high acid value which shows the stability of the oil and its stability to rancidity. Consequently, watermelon seed oil is order wise.

Keywords: extraction, solvent, cotton seeds, watermelon seeds

Procedia PDF Downloads 329
256 Antagonistic Effect of Indigenous Plant Extracts toward Dusky Cotton Bug, Oxycarenus laetus

Authors: Muhammad Rafiq Shahid, Ali Hassan, Umm-e- Rubab, Muhammad Nadeem

Abstract:

Insecticidal property of plant extracts was assessed toward dusky bug of cotton. Plant extracts consisted of bari pata (Ziziphus jajuba), Ak (Calotropis gigantean), Tobacco (Nicotiana tabacum), Bakine (Melia azedarach),Kanar (Nerium oleander),Kurtuma (Mitragyna speciosa) and one Control was also included with distilled water treatment. Forced feeding experiment was used to determine the antibiotic effect of bug plant extracts on dusky bug whereas Multi-choice experiment to determine the antixenosis/ repellent property of botanicals. It is evident from the results that mortality and antibiosis percentage of dusky bug due to the use of botanicals ranged from 15-95% and 20-87.3% respectively that was maximum in tobacoo extract followed by bakain and kurtama, minimum was on Ak, kanair and bakain extract. Non preference ranged from 14.28 to 85.7 where maximum non preference of dusky bug was found on bakain and kurtama followed by ak and kanair however minimum was on Bari pata extract. It was further found that local plant extract possessed insecticidal property toward dusky bug as well as also possesses repellency effect toward dusky bug, thus should be included in integrated pest management program of cotton in order to minimize the ill effects of pesticides it is compulsory to adopt eco-friendly methods of insect pest management.

Keywords: botanical extract, insecticidal and repellency activity, Gossypium hirsutum, oxycarenus laetus

Procedia PDF Downloads 443
255 Isolation, Identification and Measurement of Cottonseed Oil Gossypol in the Treatment of Drug-Resistant Cutaneous Leishmaniasis

Authors: Sara Taghdisi, Mehrosadat Mirmohammadi, Mostafa Mokhtarian, Mohammad Hossein Pazandeh

Abstract:

Leishmaniasis is one of the 10 most important diseases of the World Health Organization with health problems in more than 90 countries. Over one billion people are at risk of these diseases on almost every continent. The present human study was performed to evaluate the therapeutic effect of cotton plant on cutaneous leishmaniasis leision. firstly, the cotton seeds were cleaned and grinded to smaller particles. In the second step, the seeds were oiled by cold press method. In order to separate bioactive compound, after saponification of the oil, its gossypol was hydrolyzed and crystalized. finally, the therapeutic effect of Cottonseed Oil on cutaneous leishmaniasis was investigated. In the current project, Gossypol was extracted with a liquid-liquid extraction method in 120 minutes in the presence of Phosphoric acid from the cotton seed oil of Golestan beach varieties, then got crystallized in darkness using Acetic acid and isolated as Gossypol Acetic acid. The efficiency of the extracted crystal was obtained at 1.28±0.12. the cotton plant could be efficient in the treatment of Cutaneous leishmaniasis. This double-blind randomized controlled clinical trial was performed on 88 cases of leishmaniasis wounds. Patients were randomly divided into two groups of 44 cases. two groups received conventional treatment. In addition to the usual treatment (glucantime), the first group received cottonseed oil and the control group received placebo. The results of the present study showed that the surface of lesion before the intervention and in the first to fourth weeks after the intervention was not significantly different between the two groups (P-value> 0.05). But the surface of lesion in the Intervention group in the eighth and twelfth weeks was lower than the control group (P-value <0.05). This study showed that the improvement of leishmaniasis lesion using topical cotton plant mark in the eighth and twelfth weeks after the intervention was significantly more than the control group. Considering the most common chemical drugs for Cutaneous leishmaniasis treatment are sodium stibogluconate, and meglumine antimonate, which not only have relatively many side effects, but also some species of the Leishmania genus have become resistant to them. Therefore, a plant base bioactive compound such as cottonseed oil can be useful whit fewer side effects.

Keywords: cottonseed oil, crystallization, gossypol, leishmaniasis

Procedia PDF Downloads 25
254 Evaluation of Different Cropping Systems under Organic, Inorganic and Integrated Production Systems

Authors: Sidramappa Gaddnakeri, Lokanath Malligawad

Abstract:

Any kind of research on production technology of individual crop / commodity /breed has not brought sustainability or stability in crop production. The sustainability of the system over years depends on the maintenance of the soil health. Organic production system includes use of organic manures, biofertilizers, green manuring for nutrient supply and biopesticides for plant protection helps to sustain the productivity even under adverse climatic condition. The study was initiated to evaluate the performance of different cropping systems under organic, inorganic and integrated production systems at The Institute of Organic Farming, University of Agricultural Sciences, Dharwad (Karnataka-India) under ICAR Network Project on Organic Farming. The trial was conducted for four years (2013-14 to 2016-17) on fixed site. Five cropping systems viz., sequence cropping of cowpea – safflower, greengram– rabi sorghum, maize-bengalgram, sole cropping of pigeonpea and intercropping of groundnut + cotton were evaluated under six nutrient management practices. The nutrient management practices are NM1 (100% Organic farming (Organic manures equivalent to 100% N (Cereals/cotton) or 100% P2O5 (Legumes), NM2 (75% Organic farming (Organic manures equivalent to 75% N (Cereals/cotton) or 100% P2O5 (Legumes) + Cow urine and Vermi-wash application), NM3 (Integrated farming (50% Organic + 50% Inorganic nutrients, NM4 (Integrated farming (75% Organic + 25% Inorganic nutrients, NM5 (100% Inorganic farming (Recommended dose of inorganic fertilizers)) and NM6 (Recommended dose of inorganic fertilizers + Recommended rate of farm yard manure (FYM). Among the cropping systems evaluated for different production systems indicated that the Groundnut + Hybrid cotton (2:1) intercropping system found more remunerative as compared to Sole pigeonpea cropping system, Greengram-Sorghum sequence cropping system, Maize-Chickpea sequence cropping system and Cowpea-Safflower sequence cropping system irrespective of the production systems. Production practices involving application of recommended rates of fertilizers + recommended rates of organic manures (Farmyard manure) produced higher net monetary returns and higher B:C ratio as compared to integrated production system involving application of 50 % organics + 50 % inorganic and application of 75 % organics + 25 % inorganic and organic production system only Both the two organic production systems viz., 100 % Organic production system (Organic manures equivalent to 100 % N (Cereals/cotton) or 100 % P2O5 (Legumes) and 75 % Organic production system (Organic manures equivalent to 75 % N (Cereals) or 100 % P2O5 (Legumes) + Cow urine and Vermi-wash application) are found to be on par. Further, integrated production system involving application of organic manures and inorganic fertilizers found more beneficial over organic production systems.

Keywords: cropping systems, production systems, cowpea, safflower, greengram, pigeonpea, groundnut, cotton

Procedia PDF Downloads 167
253 Complex Shaped Prepreg Part Drapability Using Vacuum Bagging

Authors: Saran Toure

Abstract:

Complex shaped parts manufactured using out of autoclave prepreg vacuum bagging has a high quality finish. This is not only due to in the control of resin to fibre ratio in prepregs, but also to a reduction in fibre misalignment, slippage and stresses occurring within plies during compaction. In a bid to further reduce deformation modes and control failure modes, we carried experiments where, we introduced wetted fabrics within a prepreg plybook during compaction. Here are presented the results obtained from the vacuum bagging of a complex shaped part. The shape is that of a turbine fan blade with smooth curves all throughout ending with sharp edged angles. The quality of the final part made from this blade is compared to that of the same blade made from standard vacuum bagging process of prepregs, without introducing wetted fabrics.

Keywords: complex shaped part, prepregs, drapability, vacuum bagging

Procedia PDF Downloads 343
252 A Comparison Study of Fabric Objective Measurement (FOM) Using KES-FB and PhabrOmeter System on Warp Knitted Fabrics Handle: Smoothness, Stiffness and Softness

Authors: Ka-Yan Yim, Chi-Wai Kan

Abstract:

This paper conducts a comparison study using KES-FB and PhabrOmeter to measure 58 selected warp knitted fabric hand properties. Fabric samples were selected and measured by both KES-FB and PhabrOmeter. Results show differences between these two measurement methods. Smoothness and stiffness values obtained by KES-FB were found significant correlated (p value = 0.003 and 0.022) to the PhabrOmeter results while softness values between two measurement methods did not show significant correlation (p value = 0.828). Disagreements among these two measurement methods imply limitations on different mechanism principles when facing warp knitted fabrics. Subjective measurement methods and further studies are suggested in order to ascertain deeper investigation on the mechanisms of fabric hand perceptions.

Keywords: fabric hand, fabric objective measurement, KES-FB, PhabrOmeter

Procedia PDF Downloads 188
251 Development of Ornamental Seedlings and Cuttings for Hydroponics Using Different Substrates

Authors: Moustafa A. Fadel, Omar Al Shehhi, Mohsin Al Mussabi, Abdullah Al Ameri

Abstract:

Hydroponics represents an extraordinary promising technique if used efficiently in arid regions where water resources are extremely scarce where a great portion of the used water should be recycled and saved. Available research publications studying the production of seedlings for such purpose are limited. This research paper focuses on investigating the effect of using various substrate materials on the development of seedlings for ornamental plants. Bermuda grass, Petunia (Compacta Enana Rosa) and Epipremnum aureum are used widely in landscape design. Bermuda is used as a turf grass; Petunia is used as a flowering plant and Epipremnum aureum as an indoor ornamental plant in hydroponics. Three substrate materials were used to germinate and propagate the first two and the cuttings of the third one. Synthetic sponge (Polyurethane sponge), Rockwool and sterilized cotton were used as the substrate material in each case where an experimental water-circulating apparatus was designed and installed to execute the test. An experimental setup of closed hydroponic apparatus was developed to carry out the experiment equipped with water recycling circuit and an aeration mechanism pumping air in reservoir in order to increase oxygen levels in the recycled water. Water pumping was programmed in different regimes to allow better aeration for seeds and cuttings under investigation. Results showed that Bermuda grass germinated in Rockwool reached a germination rate of 70% while it did not exceed 50% when sponge and medically treated cotton were used after 15 days. On the other hand the highest germination rate of Petunia was observed when treated cotton was used where it recorded about 30% while it was 22%, and 7% after 20 days where Rockwool and sponge were utilized respectively. Cuttings propagation of Epipremnum aureum developed the highest number of shoots when treated cotton was used where it gave 10 shoots after 10 days while it gave just 7 shoots when Rockwool and sponge were used as the propagation substrate.

Keywords: hydroponics, germination, seedlings, cuttings

Procedia PDF Downloads 263
250 Seam Slippage of Light Woven Fabrics with Regards to Sewing Parameters

Authors: Mona Shawky, Khaled M. Elsheikh, Heba M. Darwish, Eman Abd El Elsamea

Abstract:

Seams are the basic component in the structure of any apparel. The seam quality of the garment is a term that indicates both the aesthetic and functional performance of the garment. Seam slippage is one of the important properties that determine garment performance. Lightweight fabrics are preferred for their aesthetic properties. Since seam slippage is one of the most occurable faults for woven garments, in this study, a design of experiment of the following sewing parameters (three levels of needle size, three levels of stitch density, three levels of the seam allowance, two levels of sewing thread count, and two fabric types) was used to obtain the effect of the interaction between different sewing parameters on-seam slippage force. Two lightweight polyester woven fabrics with different constructions were used with lock stitch 301 to perform this study. Regression equations which can predict seam slippage force in both warp and weft directions were concluded. It was found that fabric type has a significant positive effect on seam slippage force in the warp direction, while it has a significant negative effect on seam slippage force on weft direction. Also, the interaction between needle size and stitch density has a significant positive effect on seam slippage force on warp direction, while the interaction between stitch density and seam allowance has a negative effect on seam slippage force in the weft direction.

Keywords: needle size, regression equation, seam allowance, seam slippage, stitch density

Procedia PDF Downloads 140
249 Characterization of Inkjet-Printed Carbon Nanotube Electrode Patterns on Cotton Fabric

Authors: N. Najafi, Laleh Maleknia , M. E. Olya

Abstract:

An aqueous conductive ink of single-walled carbon nanotubes for inkjet printing was formulated. To prepare the homogeneous SWCNT ink in a size small enough not to block a commercial inkjet printer nozzle, we used a kinetic ball-milling process to disperse the SWCNTs in an aqueous suspension. When a patterned electrode was overlaid by repeated inkjet printings of the ink on various types of fabric, the fabric resistance decreased rapidly following a power law, reaching approximately 760 X/sq, which is the lowest value ever for a dozen printings. The Raman and Fourier transform infrared spectra revealed that the oxidation of the SWCNTs was the source of the doped impurities. This study proved also that the droplet ejection velocity can have an impact on the CNT distribution and consequently on the electrical performances of the ink.

Keywords: ink-jet printing, carbon nanotube, fabric ink, cotton fabric, raman spectroscopy, fourier transform infrared spectroscopy, dozen printings

Procedia PDF Downloads 394
248 Development of Knitted Seersucker Fabric for Improved Comfort Properties

Authors: Waqas Ashraf, Yasir Nawab, Haritham Khan, Habib Awais, Shahbaz Ahmad

Abstract:

Seersucker is a popular lightweight fabric widely used in men’s and women’s suiting, casual wear, children’s clothing, house robes, bed spreads and for spring and summer wear. The puckered effect generates air spaces between body and the fabric, keeping the wearer cool in hot conditions. The aim of this work was to develop knitted seersucker fabric on single cylinder weft knitting machine using plain jersey structure. Core spun cotton yarn and cotton spun yarn of same linear density were used. Core spun cotton yarn, contains cotton fiber in the sheath and elastase filament in the core. The both yarn were fed at regular interval to feeders on the machine. The loop length and yarn tension were kept constant at each feeder. The samples were then scoured and bleached. After wet processing, the fabric samples were washed and tumble dried. Parameters like loop length, stitch density and areal density were measured after conditioning these samples for 24 hours in Standard atmospheric condition. Produced sample has a regular puckering stripe along the width of the fabric with same height. The stitch density of both the flat and puckered area of relaxed fabric was found to be different .Air permeability and moisture management tests were performed. The results indicated that the knitted seersucker fabric has better wicking and moisture management properties as the flat area contact, whereas puckered area held away from the skin. Seersucker effect in knitted fabric was achieved by the difference of contraction of both sets of courses produced from different types of yarns. The seer sucker fabric produce by knitting technique is less expensive as compared to woven seer sucker fabric as there is no need of yarn preparation. The knitted seersucker fabric is more practicable for summer dresses, skirts, blouses, shirts, trousers and shorts.

Keywords: air permeability, knitted structure, moisture management, seersucker

Procedia PDF Downloads 297
247 Modelling the Behavior of Commercial and Test Textiles against Laundering Process by Statistical Assessment of Their Performance

Authors: M. H. Arslan, U. K. Sahin, H. Acikgoz-Tufan, I. Gocek, I. Erdem

Abstract:

Various exterior factors have perpetual effects on textile materials during wear, use and laundering in everyday life. In accordance with their frequency of use, textile materials are required to be laundered at certain intervals. The medium in which the laundering process takes place have inevitable detrimental physical and chemical effects on textile materials caused by the unique parameters of the process inherently existing. Connatural structures of various textile materials result in many different physical, chemical and mechanical characteristics. Because of their specific structures, these materials have different behaviors against several exterior factors. By modeling the behavior of commercial and test textiles as group-wise against laundering process, it is possible to disclose the relation in between these two groups of materials, which will lead to better understanding of their behaviors in terms of similarities and differences against the washing parameters of the laundering. Thus, the goal of the current research is to examine the behavior of two groups of textile materials as commercial textiles and as test textiles towards the main washing machine parameters during laundering process such as temperature, load quantity, mechanical action and level of water amount by concentrating on shrinkage, pilling, sewing defects, collar abrasion, the other defects other than sewing, whitening and overall properties of textiles. In this study, cotton fabrics were preferred as commercial textiles due to the fact that garments made of cotton are the most demanded products in the market by the textile consumers in daily life. Full factorial experimental set-up was used to design the experimental procedure. All profiles always including all of the commercial and the test textiles were laundered for 20 cycles by commercial home laundering machine to investigate the effects of the chosen parameters. For the laundering process, a modified version of ‘‘IEC 60456 Test Method’’ was utilized. The amount of detergent was altered as 0.5% gram per liter depending on varying load quantity levels. Datacolor 650®, EMPA Photographic Standards for Pilling Test and visual examination were utilized to test and characterize the textiles. Furthermore, in the current study the relation in between commercial and test textiles in terms of their performance was deeply investigated by the help of statistical analysis performed by MINITAB® package program modeling their behavior against the parameters of the laundering process. In the experimental work, the behaviors of both groups of textiles towards washing machine parameters were visually and quantitatively assessed in dry state.

Keywords: behavior against washing machine parameters, performance evaluation of textiles, statistical analysis, commercial and test textiles

Procedia PDF Downloads 330
246 A Bio-Inspired Approach to Produce Wettable Nylon Fabrics

Authors: Sujani B. Y. Abeywardena, Srimala Perera, K. M. Nalin De Silva, S. Walpalage

Abstract:

Surface modifications are vital to accomplish the moisture management property in highly demanded synthetic fabrics. Biomimetic and bio-inspired surface modifications are identified as one of the fascinating areas of research. In this study, nature’s way of cooling elephants’ body temperature using mud bathing was mimicked to create a superior wettable nylon fabric with improved comfortability. For that, bentonite nanoclay was covalently grafted on nylon fabric using silane as a coupling agent. Fourier transform infrared spectra and Scanning electron microscopy images confirmed the successful grafting of nanoclay on nylon. The superior wettability of surface modified nylon was proved by standard protocols. This fabric coating strongly withstands more than 50 cycles of laundry. It is expected that this bio-inspired wettable nylon fabric may break the barrier of using nylon in various hydrophilic textile applications.

Keywords: bentonite nanoclay, biomimetic, covalent modification, nylon fabric, surface, wettability

Procedia PDF Downloads 178
245 Novel Recombinant Betasatellite Associated with Vein Thickening Symptoms on Okra Plants in Saudi Arabia

Authors: Adel M. Zakri, Mohammed A. Al-Saleh, Judith. K. Brown, Ali M. Idris

Abstract:

Betasatellites are small circular single stranded DNA molecules found associated with begomoviruses on field symptomatic plants. Their genome size is about half that of the helper begomovirus, ranging between 1.3 and 1.4 kb. The helper begomoviruses are usually members of the family Geminiviridae. Okra leaves showing vein thickening were collected from okra plants growing in Jazan, Saudi Arabia. Total DNA was extracted from leaves and used as a template to amplify circular DNA using rolling circle amplification (RCA) technology. Products were digested with PstI to linearize the helper viral genome(s), and associated DNA satellite(s), yielding a 2.8kbp and 1.4kbp fragment, respectively. The linearized fragments were cloned into the pGEM-5Zf (+) vector and subjected to DNA sequencing. The 2.8 kb fragment was identified as Cotton leaf curl Gezira virus genome, at 2780bp, an isolate closely related to strains reported previously from Saudi Arabia. A clone obtained from the 1.4 kb fragments he 1.4kb was blasted to GeneBank database found to be a betasatellite. The genome of betasatellite was 1357-bp in size. It was found to be a recombinant containing one fragment (877-bp) that shared 91% nt identity with Cotton leaf curl Gezira betasatellite [KM279620], and a smaller fragment [133--bp) that shared 86% nt identity with Tomato leaf curl Sudan virus [JX483708]. This satellite is thus a recombinant between a malvaceous-infecting satellite and a solanaceous-infecting begomovirus.

Keywords: begomovirus, betasatellites, cotton leaf curl Gezira virus, okra plants

Procedia PDF Downloads 316
244 Analysis and Control of Camera Type Weft Straightener

Authors: Jae-Yong Lee, Gyu-Hyun Bae, Yun-Soo Chung, Dae-Sub Kim, Jae-Sung Bae

Abstract:

In general, fabric is heat-treated using a stenter machine in order to dry and fix its shape. It is important to shape before the heat treatment because it is difficult to revert back once the fabric is formed. To produce the product of right shape, camera type weft straightener has been applied recently to capture and process fabric images quickly. It is more powerful in determining the final textile quality rather than photo-sensor. Positioning in front of a stenter machine, weft straightener helps to spread fabric evenly and control the angle between warp and weft constantly as right angle by handling skew and bow rollers. To process this tricky procedure, the structural analysis should be carried out in advance, based on which, its control technology can be drawn. A structural analysis is to figure out the specific contact/slippage characteristics between fabric and roller. We already examined the applicability of camera type weft straightener to plain weave fabric and found its possibility and the specific working condition of machine and rollers. In this research, we aimed to explore another applicability of camera type weft straightener. Namely, we tried to figure out camera type weft straightener can be used for fabrics. To find out the optimum condition, we increased the number of rollers. The analysis is done by ANSYS software using Finite Element Analysis method. The control function is demonstrated by experiment. In conclusion, the structural analysis of weft straightener is done to identify a specific characteristic between roller and fabrics. The control of skew and bow roller is done to decrease the error of the angle between warp and weft. Finally, it is proved that camera type straightener can also be used for the special fabrics.

Keywords: camera type weft straightener, structure analysis, control, skew and bow roller

Procedia PDF Downloads 271
243 Visual Simulation for the Relationship of Urban Fabric

Authors: Ting-Yu Lin, Han-Liang Lin

Abstract:

This article is about the urban form of visualization by Cityengine. City is composed of different domains, and each domain has its own fabric because of arrangement. For example, a neighborhood unit contains fabrics such as schools, street networks, residential and commercial spaces. Therefore, studying urban morphology can help us understand the urban form in planning process. Streets, plots, and buildings seem as urban fabrics, and they configure urban form. Traditionally, urban morphology usually discussed single parameter, which is building type, ignoring other parameters such as streets and plots. However, urban space is three-dimensional, instead of two-dimensional. People perceive urban space by their visualization. Therefore, using visualization can fill the gap between two dimensions and three dimensions. Hence, the study of urban morphology will strengthen the understanding of whole appearance of a city. Cityengine is a software which can edit, analyze and monitor the data and visualize the result for GIS, a common tool to analyze data and display the map for urban plan and urban design. Cityengine can parameterize the data of streets, plots and building types and visualize the result in three-dimensional way. The research will reappear the real urban form by visualizing. We can know whether the urban form can be parameterized and the parameterized result can match the real urban form. Then, visualizing the result by software in three dimension to analyze the rule of urban form. There will be three stages of the research. It will start with a field survey of Tainan East District in Taiwan to conclude the relationships between urban fabrics of street networks, plots and building types. Second, to visualize the relationship, it will turn the relationship into codes which Cityengine can read. Last, Cityengine will automatically display the result by visualizing.

Keywords: Cityengine, urban fabric, urban morphology, visual simulation

Procedia PDF Downloads 269
242 Mosquito Repellent Finishing of Cotton Using Pepper Tree (Schinus molle) Seed Oil Extract

Authors: Granch Berhe Tseghai, Tekalgn Gebremedhin Belay, Abrehaley Hagos Gebremariam

Abstract:

Mosquito repellent textiles are one of the most growing ways to advance the textile field by providing the needed characteristics of protecting against mosquitoes, especially in the tropical areas. These types of textiles ensure the protection of human beings from the mosquitoes and the mosquito-borne disease includes malaria, filariasis and dengue fever. In this work Schinus Molle oil (pepper tree oil) was used for mosquito repellent finish as a preformatted thing. This study focused on the penetration of mosquito repellent finish in textile applications as well as nature based alternatives to commercial chemical mosquito repellents in the market. Suitable techniques and materials to achieve mosquito repellency are discussed and pointed out according to our project. In this study textile, sample was treated with binder and schinus oil. The different property has been studied for effective mosquito repellency.

Keywords: cotton, Schinus molle seed oil, mosquito repellent, mosquito-borne diseases

Procedia PDF Downloads 253
241 Application and Evaluation of 3D Printing Technology in Customized Fashion Industry

Authors: A. Ezza, B. M. Babar Ramzan, C. Hira

Abstract:

This study deliberates emerging design activates in 3D printing technology, the paper provides the insight into the broad opportunities in 3D printing applications in fashion world. 3D printing is becoming a reason for reduction of lead time. The process engenders the precise models and one of prototype components for design approbation; trail and testing significance through the production components to be utilized in true working environments. This emerging technology have given elevate to an emergent realm of digitally fabricated art and design. Bitonic Creations, CONTINUUM (3D printed shoes), Jiri Evenhuis, Michael Schmidt have be giving extensive amassments of haute couture dresses and accessories. Cosyflex TM, N12 undergarments are examples of an innovative process for 3D printing. Varied types of liquid polymers such as latex, silicon, polyurethane and Teflon as well as a variety of textile fibers such as cotton, viscose and polyamide enable tailor made fabrics for any need. Patterns, perforations, embossing and embellishments may be created by printing on 3D structure base plate. Computer solidifies material feedstock layer by layer with micro-millimeter detail. In lieu of producing textiles by meter, then cutting and sewing them into final product, 3D printing can become a reason to make sewing equipment obsolete. The findings positively corroborates the expected advantage of 3D printed sample that seem to facilitate the first steps for designer.

Keywords: 3D printing, customization, fashion industry, Haute couture

Procedia PDF Downloads 537
240 Cultural Semiotics of the Traditional Costume from Banat’s Plain from 1870 to 1950 from Lotman’s Perspective

Authors: Glavan Claudiu

Abstract:

My paper focuses on the cultural semiotic interpretation of the Romanian costume from Banat region, from the perspective of Lotman’s semiotic theory of culture. Using Lotman’s system we will analyse the level of language, text and semiosphere within the unity of Banat’s traditional costume. In order to establish a common language and to communicate, the forms and chromatic compositions were expressed through symbols, which carried semantic meanings with an obvious significant semantic load. The symbols, used in this region, receive a strong specific ethnical mark in its representation, in its compositional and chromatic complexity, in accordance with the values and conceptions of life for the people living here. Thus the signs become a unifying force of this ethnic community. Associated with the signs, were the fabrics used in manufacturing the costumes and the careful selections of colours. For example, softer fabrics like silk associated with red vivid colours were used for young woman sending the message they ready to be married. The unity of these elements created the important message that you were sending to your community. The unity of the symbol, fabrics and choice of colours used on the costume carried out an important message like: marital status, social position, or even the village you belonged to. Using Lotman’s perspective on cultural semiotics we will read and analyse the symbolism of the traditional Romanian art from Banat. We will discover meaning in the codified existence of ancient solar symbols, symbols regarding fertility, religious symbols and very few heraldic symbols. Visual communication makes obvious the importance of semiotic value that the traditional costume is carrying from our ancestors.

Keywords: traditional costume, semiotics, Lotman’s theory of culture, traditional culture, signs and symbols

Procedia PDF Downloads 120
239 Influence of Packing Density of Layers Placed in Specific Order in Composite Nonwoven Structure for Improved Filtration Performance

Authors: Saiyed M Ishtiaque, Priyal Dixit

Abstract:

Objectives: An approach is being suggested to design the filter media to maximize the filtration efficiency with minimum possible pressure drop of composite nonwoven by incorporating the layers of different packing densities induced by fibre of different deniers and punching parameters by using the concept of sequential punching technique in specific order in layered composite nonwoven structure. X-ray computed tomography technique is used to measure the packing density along the thickness of layered nonwoven structure composed by placing the layer of differently oriented fibres influenced by fibres of different deniers and punching parameters in various combinations to minimize the pressure drop at maximum possible filtration efficiency. Methodology Used: This work involves preparation of needle punched layered structure with batts 100g/m2 basis weight having fibre denier, punch density and needle penetration depth as variables to produce 300 g/m2 basis weight nonwoven composite. X-ray computed tomography technique is used to measure the packing density along the thickness of layered nonwoven structure composed by placing the layers of differently oriented fibres influenced by considered variables in various combinations. to minimize the pressure drop at maximum possible filtration efficiencyFor developing layered nonwoven fabrics, batts made of fibre of different deniers having 100g/m2 each basis weight were placed in various combinations. For second set of experiment, the composite nonwoven fabrics were prepared by using 3 denier circular cross section polyester fibre having 64 mm length on needle punched nonwoven machine by using the sequential punching technique to prepare the composite nonwoven fabrics. In this technique, three semi punched fabrics of 100 g/m2 each having either different punch densities or needle penetration depths were prepared for first phase of fabric preparation. These fabrics were later punched altogether to obtain the overall basis weight of 300 g/m2. The total punch density of the composite nonwoven fabric was kept at 200 punches/ cm2 with a needle penetration depth of 10 mm. The layered structures so formed were subcategorised into two groups- homogeneous layered structure in which all the three batts comprising the nonwoven fabric were made from same denier of fibre, punch density and needle penetration depth and were placed in different positions in respective fabric and heterogeneous layered structure in which batts were made from fibres of different deniers, punch densities and needle penetration depths and were placed in different positions. Contributions: The results concluded that reduction in pressure drop is not derived by the overall packing density of the layered nonwoven fabric rather sequencing of layers of specific packing density in layered structure decides the pressure drop. Accordingly, creation of inverse gradient of packing density in layered structure provided maximum filtration efficiency with least pressure drop. This study paves the way for the possibility of customising the composite nonwoven fabrics by the incorporation of differently oriented fibres in constituent layers induced by considered variablres for desired filtration properties.

Keywords: filtration efficiency, layered nonwoven structure, packing density, pressure drop

Procedia PDF Downloads 43
238 Sustainable Approach in Textile and Apparel Industry: Case Study Applied to a Medium Enterprise

Authors: Maged Kamal

Abstract:

Previous research papers have suggested that enhancing the environmental performance in textiles and apparel industry would affect positively on the overall enterprise competitiveness. However, there is a gap in the literature regarding simplifying the available theory to get it practically implemented with more confidence of the expected results, especially for small and medium enterprises. The aim of this paper is to simplify and best use of the concerned international norms to produce a systematic approach that could be used as a guideline for practical application of the main sustainable principles in medium size textile business. The increasing in efficiency which has been resulted from the implementation of the suggested approach/model originated from reduction in raw materials usage, energy, and water savings, in addition to the risk reduction for the people and the environment. The practical case study has been implemented in a textile factory producing knitted fabrics, readymade garments, dyed and printed fabrics. The results were analyzed to examine the effect of the suggested change on the enterprise profitability.

Keywords: apparel industry, environmental management, sustainability, textiles

Procedia PDF Downloads 261
237 Effect of Non-Crimp Fabric Structure on Mechanical Properties of Laminates

Authors: Hireni R. Mankodi, D. J. Chudasama

Abstract:

The textile preforms play a key role in providing the mechanical properties and gives the idea about selection parameter of preforms to improve the quality and performance of laminates. The main objectives of this work are to study the effect of non-crimp fabric preform structure in final properties of laminates. It has been observed that the multi-axial preform give better mechanical properties of laminates as compared to woven and biaxial fabrics. This study investigated the effect of different non-crimp glass preform structure on tensile strength, bending and compression properties of glass laminates. The different woven, bi-axial and multi-axial fabrics with similar GSM used to manufacture the laminates using polyester resin. The structural and mechanical properties of preform and laminates were studied using standard methods. It has been observed that the glass fabric geometry, including type of weaves, warps and filling density and number of layer plays significant role in deciding mechanical properties of laminates.

Keywords: preform, non-crimp structure, laminates, bi-axial, multiaxial

Procedia PDF Downloads 470
236 Estimation of Twist Loss in the Weft Yarn during Air-Jet Weft Insertion

Authors: Muhammad Umair, Yasir Nawab, Khubab Shaker, Muhammad Maqsood, Adeel Zulfiqar, Danish Mahmood Baitab

Abstract:

Fabric is a flexible woven material consisting of a network of natural or artificial fibers often referred to as thread or yarn. Today fabrics are produced by weaving, braiding, knitting, tufting and non-woven. Weaving is a method of fabric production in which warp and weft yarns are interlaced perpendicular to each other. There is infinite number of ways for the interlacing of warp and weft yarn. Each way produces a different fabric structure. The yarns parallel to the machine direction are called warp yarns and the yarns perpendicular to the machine direction are called weft or filling yarns. Air jet weaving is the modern method of weft insertion and considered as high speed loom. The twist loss in air jet during weft insertion affects the strength. The aim of this study was to investigate the effect of twist change in weft yarn during air-jet weft insertion. A total number of 8 samples were produced using 1/1 plain and 3/1 twill weave design with two fabric widths having same loom settings. Two different types of yarns like cotton and PC blend were used. The effect of material type, weave design and fabric width on twist change of weft yarn was measured and discussed. Twist change in the different types of weft yarn and weave design was measured and compared the twist change in the weft yarn with the yarn before weft yarn insertion and twist loss is measured. Wider fabric leads to higher twist loss in the yarn.

Keywords: air jet loom, twist per inch, twist loss, weft yarn

Procedia PDF Downloads 377
235 Antimicrobial and Aroma Finishing of Organic Cotton Knits Using Vetiver Oil Microcapsules for Health Care Textiles

Authors: K. J. Sannapapamma, H. Malligawad Lokanath, Sakeena Naikwadi

Abstract:

Eco-friendly textiles are gaining importance among the consumers and textile manufacturers in the healthcare sector due to increased environmental pollution which leads to several health and environmental hazards. Hence, the research was designed to cultivate and develop the organic cotton knit, to prepare and characterize the Vetiver oil microcapsules for textile finishing and to access the wash durability of finished knits. The cotton SAHANA variety grown under organic production systems was processed and spun into 30 single yarn dyed with four natural colorants (Arecanut slurry, Eucalyptus leaves, Pomegranate rind and Indigo) and eco dyed yarn was further used for development of single jersy knitted fabric. Vetiveria zizanioides is an aromatic grass which is being traditionally used in medicine and perfumery. Vetiver essential oil was used for preparation of microcapsules by interfacial polymerization technique subjected to Gas Chromatography Mass Spectrometry (GCMS), Fourier Transform Infrared Spectroscopy (FTIR), Thermo Gravimetric Analyzer (TGA) and Scanning Electron Microscope (SEM) for characterization of microcapsules. The knitted fabric was finished with vetiver oil microcapsules by exhaust and pad dry cure methods. The finished organic knit was assessed for laundering on antimicrobial efficiency and aroma intensity. GCMS spectral analysis showed that, diethyl phthalate (28%) was the major compound found in vetiver oil followed by isoaromadendrene epoxide (7.72%), beta-vetivenene (6.92%), solavetivone (5.58%), aromadenderene, azulene and khusimol. Bioassay explained that, the vetiver oil and diluted vetiver oil possessed greater zone of inhibition against S. aureus and E. coli than the coconut oil. FTRI spectra of vetiver oil and microcapsules possessed similar peaks viz., C-H, C=C & C꞊O stretching and additionally oil microcapsules possessed the peak of 3331.24 cm-1 at 91.14 transmittance was attributed to N-H stretches. TGA of oil microcapsules revealed that, there was a minimum weight loss (5.835%) recorded at 467.09°C compared to vetiver oil i.e., -3.026% at the temperature of 396.24°C. The shape of the microcapsules was regular and round, some were spherical in shape and few were rounded by small aggregates. Irrespective of methods of application, organic cotton knits finished with microcapsules by pad dry cure method showed maximum zone of inhibition compared to knits finished by exhaust method against S. aureus and E. coli. The antimicrobial activity of the finished samples was subjected to multiple washing which indicated that knits finished with pad dry cure method showed a zone of inhibition even after 20th wash and better aroma retention compared to knits finished with the exhaust method of application. Further, the group of respondents rated that the 5th washed samples had the greater aroma intensity in both the methods than the other samples. Thus, the vetiver microencapsulated organic cotton knits are free from hazardous chemicals and have multi-functional properties that can be suitable for medical and healthcare textiles.

Keywords: exhaust and pad dry cure finishing, interfacial polymerization, organic cotton knits, vetiver oil microcapsules

Procedia PDF Downloads 242
234 Analysis of Process for Solution of Fiber-Ends after Biopolishing on the Surface of Cotton Knit Fabric

Authors: P. Altay, G. Kartal, B. Kizilkaya, S. Kahraman, N. C. Gursoy

Abstract:

Biopolishing is applied to remove the fuzz or pills on the fiber or fabric surface which will reduce its tendency to pill or fuzz after repetitive launderings. After biopolishing process, the fuzzes ripped by cellulase enzymes cannot be thoroughly removed from fabric surface, they remain on the fabric or fiber surface; accordingly disturb the user and lead to decrease in productivity of drying process. The main objective of this study is to develop a method for removing weakened fuzz fibers and surface pills from biofinished fabric surface before drying process. Fuzzes in the lattice structure of fabric were completely removed from the internal structure of the fabric by air blowing. The presence of fuzzes leads to problems with formation of pilling and faded appearance; the removal of fuzzes from the fabric results in reduced tendency to pill formation, cleaner, smoother and softer surface, improved handling properties of fabric with maintaining original color.

Keywords: biopolishing, fuzz fiber, weakened fiber, biofinished cotton fabric

Procedia PDF Downloads 352
233 Sol-Gel Coated Fabric for Controlled Release of Mosquito Repellent

Authors: Bhaskar M. Murai, Neeraj Banchor, Ishveen Chabbra, Madhusudhan Nadgir, S. Vidhya

Abstract:

Sol-gel technology combined with electronics and biochemistry helps to overcome the problems caused by mosquitoes by developing a portable, low-cost device which enables controlled release of trapped compound inside it. It is a wet-chemical technique which is used primarily for fabrication of silicate gel which is usually allowed to dry as per requirement. The outcome is solid rock hard material which is porous and has lots of applications in different fields. Taking porosity as a key factor, allethrin a naturally occurring synthetic compound with molecular mass 302.40 was entrapped inside the sol-gel matrix as a dopant. Allethrin is commonly used as an insecticide and is a key ingredient in commercially available mosquitoes repellent in Asian and subtropical countries. It has low toxicity for humans and birds, and are used in many household insecticides such as RAID as well as mosquito coils. They are however highly toxic to fish and bees. Insects subject to its exposure become paralyzed (nervous system effect) before dying. They are also used as an ultra-low volume spray for outdoor mosquito control. Therefore, there is a need for controlled release of allethrin in the environment. For controlled release of allethrin from sol-gel matrix, its (allethrin) we utilized temperature based controlled evaporation through porous sol-gel. Different types of fabric like cotton, Terri-cotton, polyester, surgical cap, knee-cap etc are studied and the best with maximum absorption capacity is selected to hold the sol-gel matrix with maximum quantity. For sol-gel coating 2 x 2cm cloth pieces are dipped in sol-gel solution for 10 minutes and by calculating the weight difference we concluded that Terri cotton is best suitable for our project. An electronic circuit with heating plate is developed in to test the controlled release of compound. An oscillatory circuit is used to produce the required heat.

Keywords: sol-gel, allethrin, TEOS, biochemistry

Procedia PDF Downloads 346
232 Novel CFRP Adhesive Joints and Structures for Offshore Application

Authors: M. R. Abusrea, Shiyi Jiang, Dingding Chen, Kazuo Arakawa

Abstract:

Novel wind-lens turbine designs can augment power output. Vacuum-Assisted Resin Transfer Molding (VARTM) is used to form large and complex structures from a Carbon Fiber Reinforced Polymer (CFRP) composite. Typically, wind-lens turbine structures are fabricated in segments, and then bonded to form the final structure. This paper introduces five new adhesive joints, divided into two groups: One is constructed between dry carbon and CFRP fabrics, and the other is constructed with two dry carbon fibers. All joints and CFRP fabrics were made in our laboratory using VARTM manufacturing techniques. Specimens were prepared for tensile testing to measure joint performance. The results showed that the second group of joints achieved a higher tensile strength than the first group. On the other hand, the tensile fracture behavior of the two groups showed the same pattern of crack originating near the joint ends followed by crack propagation until fracture.

Keywords: adhesive joints, CFRP, VARTM, resin transfer molding

Procedia PDF Downloads 410