Search results for: computational vision
2901 Experimental and Computational Investigation of Flow Field and Thermal Behavior of a Mechanical Seal
Authors: Hossein Shokouhmand, Masoomeh Shadab, Rohallah Torabi
Abstract:
Turbulent flow inside the seal chamber of a pump operating at nearly high Reynolds number is investigated. A comparison of a 3-D computational model for flow and thermal analysis of a mechanical seal with experimental thermal results is presented. The computational model adequately predicts the flow field in the seal chamber and thermal characteristics with the rotating and stationary rings and the twister flow around the seal parts by solving N-S and energy equations in ANSYS-CFX software. The Reynolds stress model (RSM) is applied as a turbulence model for this purpose. Experimental work is discussed which quantifies the temperature of five different points of the working fluid in chamber, mass flow at inlet and the fluid pressure at inlet and outlet. Experimental measurements are combined with computational modeling to obtain local and average heat transfer characteristics. Numerical results of three cases including different flush rates are reported.Keywords: mechanical seal, CFD_CFX, reynolds stress model, flow field, heat transfer analysis, stream line, heat transfer coefficient, heat flux, nusselt
Procedia PDF Downloads 4402900 Variation of Refractive Errors among Right and Left Eyes in Jos, Plateau State, Nigeria
Authors: F. B. Masok, S. S Songdeg, R. R. Dawam
Abstract:
Vision is an important process for learning and communication as man depends greatly on vision to sense his environment. Prevalence and variation of refractive errors conducted between December 2010 and May 2011 in Jos, revealed that 735 (77.50%) out 950 subjects examined for refractive error had various refractive errors. Myopia was observed in 373 (49.79%) of the subjects, the error in the right eyes was 263 (55.60%) while the error in the left was 210(44.39%). The mean myopic error was found to be -1.54± 3.32. Hyperopia was observed in 385 (40.53%) of the sampled population comprising 203(52.73%) of the right eyes and 182(47.27%). The mean hyperopic error was found to be +1.74± 3.13. Astigmatism accounted for 359 (38.84%) of the subjects, out of which 193(53.76%) were in the right eyes while 168(46.79%) were in the left eyes. Presbyopia was found in 404(42.53%) of the subjects, of this figure, 164(40.59%) were in the right eyes while 240(59.41%) were in left eyes. The number of right eyes and left eyes with refractive errors was observed in some age groups to increase with age and later had its peak within 60 – 69 age groups. This pattern of refractive errors could be attributed to exposure to various forms of light particularly the ultraviolet rays (e.g rays from television and computer screen). There was no remarkable differences between the mean Myopic error and mean Hyperopic error in the right eyes and in the left eyes which suggest the right eye and the left eye are similar.Keywords: left eye, refractive errors, right eye, variation
Procedia PDF Downloads 4332899 Livestock Activity Monitoring Using Movement Rate Based on Subtract Image
Authors: Keunho Park, Sunghwan Jeong
Abstract:
The 4th Industrial Revolution, the next-generation industrial revolution, which is made up of convergence of information and communication technology (ICT), is no exception to the livestock industry, and various studies are being conducted to apply the livestock smart farm. In order to monitor livestock using sensors, it is necessary to drill holes in the organs such as the nose, ears, and even the stomach of the livestock to wear or insert the sensor into the livestock. This increases the stress of livestock, which in turn lowers the quality of livestock products or raises the issue of animal ethics, which has become a major issue in recent years. In this paper, we conducted a study to monitor livestock activity based on vision technology, effectively monitoring livestock activity without increasing animal stress and violating animal ethics. The movement rate was calculated based on the difference images between the frames, and the livestock activity was evaluated. As a result, the average F1-score was 96.67.Keywords: barn monitoring, livestock, machine vision, smart farm
Procedia PDF Downloads 1232898 Computational Fluid Dynamics Simulations of Thermal and Flow Fields inside a Desktop Personal Computer Cabin
Authors: Mohammad Salehi, Mohammad Erfan Doraki
Abstract:
In this paper, airflow analysis inside a desktop computer case is performed by simulating computational fluid dynamics. The purpose is to investigate the cooling process of the central processing unit (CPU) with thermal capacities of 80 and 130 watts. The airflow inside the computer enclosure, selected from the microATX model, consists of the main components of heat production such as CPU, hard disk drive, CD drive, floppy drive, memory card and power supply unit; According to the amount of thermal power produced by the CPU with 80 and 130 watts of power, two different geometries have been used for a direct and radial heat sink. First, the independence of the computational mesh and the validation of the solution were performed, and after ensuring the correctness of the numerical solution, the results of the solution were analyzed. The simulation results showed that changes in CPU temperature and other components linearly increased with increasing CPU heat output. Also, the ambient air temperature has a significant effect on the maximum processor temperature.Keywords: computational fluid dynamics, CPU cooling, computer case simulation, heat sink
Procedia PDF Downloads 1222897 A U-Net Based Architecture for Fast and Accurate Diagram Extraction
Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal
Abstract:
In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO
Procedia PDF Downloads 1372896 A New Computational Package for Using in CFD and Other Problems (Third Edition)
Authors: Mohammad Reza Akhavan Khaleghi
Abstract:
This paper shows changes done to the Reduced Finite Element Method (RFEM) that its result will be the most powerful numerical method that has been proposed so far (some forms of this method are so powerful that they can approximate the most complex equations simply Laplace equation!). Finite Element Method (FEM) is a powerful numerical method that has been used successfully for the solution of the existing problems in various scientific and engineering fields such as its application in CFD. Many algorithms have been expressed based on FEM, but none have been used in popular CFD software. In this section, full monopoly is according to Finite Volume Method (FVM) due to better efficiency and adaptability with the physics of problems in comparison with FEM. It doesn't seem that FEM could compete with FVM unless it was fundamentally changed. This paper shows those changes and its result will be a powerful method that has much better performance in all subjects in comparison with FVM and another computational method. This method is not to compete with the finite volume method but to replace it.Keywords: reduced finite element method, new computational package, new finite element formulation, new higher-order form, new isogeometric analysis
Procedia PDF Downloads 1182895 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques
Authors: Chinlun Lai, Lunjyh Jiang
Abstract:
Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.Keywords: baby care system, Internet of Things, deep learning, machine vision
Procedia PDF Downloads 2242894 The Impact of Shared Culture, Trust and Information Exchange on Satisfaction and Financial Performance: Moderating Effects of Supply Chain Dependence
Authors: Hung Nguyen, Norma Harrison
Abstract:
This paper examines the role supply chain dependence as contingency factors which affect the effectiveness of different critical factors (in terms trust, information exchange and shared culture) in delivering supply chain satisfaction and financial performance. Using the data of 468 manufacturing firms in the Global Manufacturing Research Group, this study shows that supply chain dependence strengthens the positive relationship between shared culture & vision and supply chain satisfaction while dampens the relationship between trust and satisfaction. The study also demonstrates the direct positive effect of satisfaction on financial performance. Supply chain managers were advised to emphasize on the alignments of common understanding, codes, languages, common shared vision and similar cultures.Keywords: information exchange, shared culture, satisfaction, supply chain dependence
Procedia PDF Downloads 3842893 Challenging Perceptions of Disability: Exploring the Link between Ableism, Social Stigma, Vision Impairment, and Autism Spectrum Disorder
Authors: Aikaterini Tavoulari
Abstract:
This research aims to address the types of repetitive behaviours (RBs) observed by adults in children with vision impairment (VI) or autism spectrum disorder (ASD), the explanations the adults employ to interpret these behaviours, and the impact RBs have on the child, the caregiver, the professional and society. The underlying reason for this is an attempt to discover any potential differences between two different disabilities in a comparative fashion. The study is based on the interpretivism paradigm and follows a qualitative approach. A comparative case study design based on the ecological systems theory (EST) is adopted. Thirty-five caregivers and accredited professionals were recruited (17 for the VI group, out of whom 8 were caregivers and 9 were professionals, and 18 for the ASD group, out of whom 9 were caregivers and 9 were professionals). Following the completion of a pilot study, all participants were interviewed regarding one specific child – their own child/student – via semi-structured interviews. During the interviews, the researcher used a research diary as a methodological tool and video elicitation as a facilitation tool. A cross-case analysis was conducted, and data were analysed according to the method of thematic analysis. A link has been indicated between VI and ASD, which concerns perceptions about the socially constructed manner in which an RB is perceived. ASD is perceived by the participants as a disability with challenging characteristics, such as an RB. The ASD group perceived RB as linked to ableism, social stigmatisation, and taboo, in contrast to VI, where the existence of RB seems to be a consequence of sensory loss. Bi-directionality of EST seems to have been lost completely, and the macrosystem seems to drive the interactions between the ecological systems.Keywords: ableism, social stigma, disability, repetitive behaviour, vision impairment, autism spectrum disorder, perceptions
Procedia PDF Downloads 902892 Detection of Pharmaceutical Personal Protective Equipment in Video Stream
Authors: Michael Leontiev, Danil Zhilikov, Dmitry Lobanov, Lenar Klimov, Vyacheslav Chertan, Daniel Bobrov, Vladislav Maslov, Vasilii Vologdin, Ksenia Balabaeva
Abstract:
Pharmaceutical manufacturing is a complex process, where each stage requires a high level of safety and sterility. Personal Protective Equipment (PPE) is used for this purpose. Despite all the measures of control, the human factor (improper PPE wearing) causes numerous losses to human health and material property. This research proposes a solid computer vision system for ensuring safety in pharmaceutical laboratories. For this, we have tested a wide range of state-of-the-art object detection methods. Composing previously obtained results in this sphere with our own approach to this problem, we have reached a high accuracy ([email protected]) ranging from 0.77 up to 0.98 in detecting all the elements of a common set of PPE used in pharmaceutical laboratories. Our system is a step towards safe medicine production.Keywords: sterility and safety in pharmaceutical development, personal protective equipment, computer vision, object detection, monitoring in pharmaceutical development, PPE
Procedia PDF Downloads 872891 Multiscale Computational Approach to Enhance the Understanding, Design and Development of CO₂ Catalytic Conversion Technologies
Authors: Agnieszka S. Dzielendziak, Lindsay-Marie Armstrong, Matthew E. Potter, Robert Raja, Pier J. A. Sazio
Abstract:
Reducing carbon dioxide, CO₂, is one of the greatest global challenges. Conversion of CO₂ for utilisation across synthetic fuel, pharmaceutical, and agrochemical industries offers a promising option, yet requires significant research to understanding the complex multiscale processes involved. To experimentally understand and optimize such processes at that catalytic sites and exploring the impact of the process at reactor scale, is too expensive. Computational methods offer significant insight and flexibility but require a more detailed multi-scale approach which is a significant challenge in itself. This work introduces a computational approach which incorporates detailed catalytic models, taken from experimental investigations, into a larger-scale computational flow dynamics framework. The reactor-scale species transport approach is modified near the catalytic walls to determine the influence of catalytic clustering regions. This coupling approach enables more accurate modelling of velocity, pressures, temperatures, species concentrations and near-wall surface characteristics which will ultimately enable the impact of overall reactor design on chemical conversion performance.Keywords: catalysis, CCU, CO₂, multi-scale model
Procedia PDF Downloads 2532890 Dynamic Soil Structure Interaction in Buildings
Authors: Shreya Thusoo, Karan Modi, Ankit Kumar Jha, Rajesh Kumar
Abstract:
Since the evolution of computational tools and simulation software, there has been considerable increase in research on Soil Structure Interaction (SSI) to decrease the computational time and increase accuracy in the results. To aid the designer with a proper understanding of the response of structure in different soil types, the presented paper compares the deformation, shear stress, acceleration and other parameters of multi-storey building for a specific input ground motion using Response-spectrum Analysis (RSA) method. The response of all the models of different heights have been compared in different soil types. Finite Element Simulation software, ANSYS, has been used for all the computational purposes. Overall, higher response is observed with SSI, while it increases with decreasing stiffness of soil.Keywords: soil-structure interaction, response spectrum, analysis, finite element method, multi-storey buildings
Procedia PDF Downloads 4802889 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-Time Stochastic Systems
Authors: Tomoaki Hashimoto
Abstract:
Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the validity of the obtained stability condition.Keywords: computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems
Procedia PDF Downloads 4322888 Open-Source YOLO CV For Detection of Dust on Solar PV Surface
Authors: Jeewan Rai, Kinzang, Yeshi Jigme Choden
Abstract:
Accumulation of dust on solar panels impacts the overall efficiency and the amount of energy they produce. While various techniques exist for detecting dust to schedule cleaning, many of these methods use MATLAB image processing tools and other licensed software, which can be financially burdensome. This study will investigate the efficiency of a free open-source computer vision library using the YOLO algorithm. The proposed approach has been tested on images of solar panels with varying dust levels through an experiment setup. The experimental findings illustrated the effectiveness of using the YOLO-based image classification method and the overall dust detection approach with an accuracy of 90% in distinguishing between clean and dusty panels. This open-source solution provides a cost effective and accessible alternative to commercial image processing tools, offering solutions for optimizing solar panel maintenance and enhancing energy production.Keywords: YOLO, openCV, dust detection, solar panels, computer vision, image processing
Procedia PDF Downloads 322887 Enhancing the Bionic Eye: A Real-time Image Optimization Framework to Encode Color and Spatial Information Into Retinal Prostheses
Authors: William Huang
Abstract:
Retinal prostheses are currently limited to low resolution grayscale images that lack color and spatial information. This study develops a novel real-time image optimization framework and tools to encode maximum information to the prostheses which are constrained by the number of electrodes. One key idea is to localize main objects in images while reducing unnecessary background noise through region-contrast saliency maps. A novel color depth mapping technique was developed through MiniBatchKmeans clustering and color space selection. The resulting image was downsampled using bicubic interpolation to reduce image size while preserving color quality. In comparison to current schemes, the proposed framework demonstrated better visual quality in tested images. The use of the region-contrast saliency map showed improvements in efficacy up to 30%. Finally, the computational speed of this algorithm is less than 380 ms on tested cases, making real-time retinal prostheses feasible.Keywords: retinal implants, virtual processing unit, computer vision, saliency maps, color quantization
Procedia PDF Downloads 1532886 Development of a Social Assistive Robot for Elderly Care
Authors: Edwin Foo, Woei Wen, Lui, Meijun Zhao, Shigeru Kuchii, Chin Sai Wong, Chung Sern Goh, Yi Hao He
Abstract:
This presentation presents an elderly care and assistive social robot development work. We named this robot JOS and he is restricted to table top operation. JOS is designed to have a maximum volume of 3600 cm3 with its base restricted to 250 mm and his mission is to provide companion, assist and help the elderly. In order for JOS to accomplish his mission, he will be equipped with perception, reaction and cognition capability. His appearance will be not human like but more towards cute and approachable type. JOS will also be designed to be neutral gender. However, the robot will still have eyes, eyelid and a mouth. For his eyes and eyelids, they will be built entirely with Robotis Dynamixel AX18 motor. To realize this complex task, JOS will be also be equipped with micro-phone array, vision camera and Intel i5 NUC computer and a powered by a 12 V lithium battery that will be self-charging. His face is constructed using 1 motor each for the eyelid, 2 motors for the eyeballs, 3 motors for the neck mechanism and 1 motor for the lips movement. The vision senor will be house on JOS forehead and the microphone array will be somewhere below the mouth. For the vision system, Omron latest OKAO vision sensor is used. It is a compact and versatile sensor that is only 60mm by 40mm in size and operates with only 5V supply. In addition, OKAO vision sensor is capable of identifying the user and recognizing the expression of the user. With these functions, JOS is able to track and identify the user. If he cannot recognize the user, JOS will ask the user if he would want him to remember the user. If yes, JOS will store the user information together with the capture face image into a database. This will allow JOS to recognize the user the next time the user is with JOS. In addition, JOS is also able to interpret the mood of the user through the facial expression of the user. This will allow the robot to understand the user mood and behavior and react according. Machine learning will be later incorporated to learn the behavior of the user so as to understand the mood of the user and requirement better. For the speech system, Microsoft speech and grammar engine is used for the speech recognition. In order to use the speech engine, we need to build up a speech grammar database that captures the commonly used words by the elderly. This database is built from research journals and literature on elderly speech and also interviewing elderly what do they want to robot to assist them with. Using the result from the interview and research from journal, we are able to derive a set of common words the elderly frequently used to request for the help. It is from this set that we build up our grammar database. In situation where there is more than one person near JOS, he is able to identify the person who is talking to him through an in-house developed microphone array structure. In order to make the robot more interacting, we have also included the capability for the robot to express his emotion to the user through the facial expressions by changing the position and movement of the eyelids and mouth. All robot emotions will be in response to the user mood and request. Lastly, we are expecting to complete this phase of project and test it with elderly and also delirium patient by Feb 2015.Keywords: social robot, vision, elderly care, machine learning
Procedia PDF Downloads 4412885 A Fully-Automated Disturbance Analysis Vision for the Smart Grid Based on Smart Switch Data
Authors: Bernardo Cedano, Ahmed H. Eltom, Bob Hay, Jim Glass, Raga Ahmed
Abstract:
The deployment of smart grid devices such as smart meters and smart switches (SS) supported by a reliable and fast communications system makes automated distribution possible, and thus, provides great benefits to electric power consumers and providers alike. However, more research is needed before the full utility of smart switch data is realized. This paper presents new automated switching techniques using SS within the electric power grid. A concise background of the SS is provided, and operational examples are shown. Organization and presentation of data obtained from SS are shown in the context of the future goal of total automation of the distribution network. The description of application techniques, the examples of success with SS, and the vision outlined in this paper serve to motivate future research pertinent to disturbance analysis automation.Keywords: disturbance automation, electric power grid, smart grid, smart switches
Procedia PDF Downloads 3092884 Eliminating Injury in the Work Place and Realizing Vision Zero Using Accident Investigation and Analysis as Method: A Case Study
Authors: Ramesh Kumar Behera, Md. Izhar Hassan
Abstract:
Accident investigation and analysis are useful to identify deficiencies in plant, process, and management practices and formulate preventive strategies for injury elimination. In India and other parts of the world, industrial accidents are investigated to know the causes and also to fulfill legal compliances. However, findings of investigation are seldom used appropriately to strengthen Occupational Safety and Health (OSH) in expected lines. The mineral rich state of Odisha in eastern coast of India; known as a hub for Iron and Steel industries, witnessed frequent accidents during 2005-2009. This article based on study of 982 fatal ‘factory-accidents’ occurred in Odisha during the period 2001-2016, discusses the ‘turnaround-story’ resulting in reduction of fatal accident from 122 in 2009 to 45 in 2016. This paper examines various factors causing incidents; accident pattern in steel and chemical sector; role of climate and harsh weather conditions on accident causation. Software such as R, SQL, MS-Excel and Tableau were used for analysis of data. It is found that maximum fatality is caused due to ‘fall from height’ (24%); steel industries are relatively more accident prone; harsh weather conditions of summer increase chances of accident by 20%. Further, the study suggests that enforcement of partial work-restriction around lunch time during peak summer, screening and training of employees reduce accidents due to fall from height. The study indicates that learning from accident investigation and analysis can be used as a method to reduce work related accidents in the journey towards ‘Vision Zero’.Keywords: accident investigation and analysis, fatal accidents in India, fall from height, vision zero
Procedia PDF Downloads 1552883 Aromatic Medicinal Plant Classification Using Deep Learning
Authors: Tsega Asresa Mengistu, Getahun Tigistu
Abstract:
Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group.Keywords: aromatic and medicinal plants, computer vision, deep convolutional neural network
Procedia PDF Downloads 4382882 Hand Symbol Recognition Using Canny Edge Algorithm and Convolutional Neural Network
Authors: Harshit Mittal, Neeraj Garg
Abstract:
Hand symbol recognition is a pivotal component in the domain of computer vision, with far-reaching applications spanning sign language interpretation, human-computer interaction, and accessibility. This research paper discusses the approach with the integration of the Canny Edge algorithm and convolutional neural network. The significance of this study lies in its potential to enhance communication and accessibility for individuals with hearing impairments or those engaged in gesture-based interactions with technology. In the experiment mentioned, the data is manually collected by the authors from the webcam using Python codes, to increase the dataset augmentation, is applied to original images, which makes the model more compatible and advanced. Further, the dataset of about 6000 coloured images distributed equally in 5 classes (i.e., 1, 2, 3, 4, 5) are pre-processed first to gray images and then by the Canny Edge algorithm with threshold 1 and 2 as 150 each. After successful data building, this data is trained on the Convolutional Neural Network model, giving accuracy: 0.97834, precision: 0.97841, recall: 0.9783, and F1 score: 0.97832. For user purposes, a block of codes is built in Python to enable a window for hand symbol recognition. This research, at its core, seeks to advance the field of computer vision by providing an advanced perspective on hand sign recognition. By leveraging the capabilities of the Canny Edge algorithm and convolutional neural network, this study contributes to the ongoing efforts to create more accurate, efficient, and accessible solutions for individuals with diverse communication needs.Keywords: hand symbol recognition, computer vision, Canny edge algorithm, convolutional neural network
Procedia PDF Downloads 642881 Rheological and Computational Analysis of Crude Oil Transportation
Authors: Praveen Kumar, Satish Kumar, Jashanpreet Singh
Abstract:
Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 °C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future.Keywords: surfactant, natural, crude oil, rheology, CFD, viscosity
Procedia PDF Downloads 4542880 Identifying Promoters and Their Types Based on a Two-Layer Approach
Authors: Bin Liu
Abstract:
Prokaryotic promoter, consisted of two short DNA sequences located at in -35 and -10 positions, is responsible for controlling the initiation and expression of gene expression. Different types of promoters have different functions, and their consensus sequences are similar. In addition, their consensus sequences may be different for the same type of promoter, which poses difficulties for promoter identification. Unfortunately, all existing computational methods treat promoter identification as a binary classification task and can only identify whether a query sequence belongs to a specific promoter type. It is desired to develop computational methods for effectively identifying promoters and their types. Here, a two-layer predictor is proposed to try to deal with the problem. The first layer is designed to predict whether a given sequence is a promoter and the second layer predicts the type of promoter that is judged as a promoter. Meanwhile, we also analyze the importance of feature and sequence conversation in two aspects: promoter identification and promoter type identification. To the best knowledge of ours, it is the first computational predictor to detect promoters and their types.Keywords: promoter, promoter type, random forest, sequence information
Procedia PDF Downloads 1842879 Pre-Analysis of Printed Circuit Boards Based on Multispectral Imaging for Vision Based Recognition of Electronics Waste
Authors: Florian Kleber, Martin Kampel
Abstract:
The increasing demand of gallium, indium and rare-earth elements for the production of electronics, e.g. solid state-lighting, photovoltaics, integrated circuits, and liquid crystal displays, will exceed the world-wide supply according to current forecasts. Recycling systems to reclaim these materials are not yet in place, which challenges the sustainability of these technologies. This paper proposes a multispectral imaging system as a basis for a vision based recognition system for valuable components of electronics waste. Multispectral images intend to enhance the contrast of images of printed circuit boards (single components, as well as labels) for further analysis, such as optical character recognition and entire printed circuit board recognition. The results show that a higher contrast is achieved in the near infrared compared to ultraviolet and visible light.Keywords: electronics waste, multispectral imaging, printed circuit boards, rare-earth elements
Procedia PDF Downloads 4152878 Computational Experiment on Evolution of E-Business Service Ecosystem
Authors: Xue Xiao, Sun Hao, Liu Donghua
Abstract:
E-commerce is experiencing rapid development and evolution, but traditional research methods are difficult to fully demonstrate the relationship between micro factors and macro evolution in the development process of e-commerce, which cannot provide accurate assessment for the existing strategies and predict the future evolution trends. To solve these problems, this paper presents the concept of e-commerce service ecosystem based on the characteristics of e-commerce and business ecosystem theory, describes e-commerce environment as a complex adaptive system from the perspective of ecology, constructs a e-commerce service ecosystem model by using Agent-based modeling method and Java language in RePast simulation platform and conduct experiment through the way of computational experiment, attempt to provide a suitable and effective researching method for the research on e-commerce evolution. By two experiments, it can be found that system model built in this paper is able to show the evolution process of e-commerce service ecosystem and the relationship between micro factors and macro emergence. Therefore, the system model constructed by Agent-based method and computational experiment provides proper means to study the evolution of e-commerce ecosystem.Keywords: e-commerce service ecosystem, complex system, agent-based modeling, computational experiment
Procedia PDF Downloads 3592877 An Accurate Computation of 2D Zernike Moments via Fast Fourier Transform
Authors: Mohammed S. Al-Rawi, J. Bastos, J. Rodriguez
Abstract:
Object detection and object recognition are essential components of every computer vision system. Despite the high computational complexity and other problems related to numerical stability and accuracy, Zernike moments of 2D images (ZMs) have shown resilience when used in object recognition and have been used in various image analysis applications. In this work, we propose a novel method for computing ZMs via Fast Fourier Transform (FFT). Notably, this is the first algorithm that can generate ZMs up to extremely high orders accurately, e.g., it can be used to generate ZMs for orders up to 1000 or even higher. Furthermore, the proposed method is also simpler and faster than the other methods due to the availability of FFT software and/or hardware. The accuracies and numerical stability of ZMs computed via FFT have been confirmed using the orthogonality property. We also introduce normalizing ZMs with Neumann factor when the image is embedded in a larger grid, and color image reconstruction based on RGB normalization of the reconstructed images. Astonishingly, higher-order image reconstruction experiments show that the proposed methods are superior, both quantitatively and subjectively, compared to the q-recursive method.Keywords: Chebyshev polynomial, fourier transform, fast algorithms, image recognition, pseudo Zernike moments, Zernike moments
Procedia PDF Downloads 2652876 Optimizing the Morphology and Flow Patterns of Scaffold Perfusion Systems for Effective Cell Deposition Using Computational Fluid Dynamics
Authors: Vineeth Siripuram, Abhineet Nigam
Abstract:
A bioreactor is an engineered system that supports a biologically active environment. Along the years, the advancements in bioreactors have been widely accepted all over the world for varied applications ranging from sewage treatment to tissue cloning. Driven by tissue and organ shortage, tissue engineering has emerged as an alternative to transplantation for the reconstruction of lost or damaged organs. In this study, Computational fluid dynamics (CFD) has been used to model porous medium flow in scaffolds (taken from the literature) with different flow patterns. A detailed analysis of different scaffold geometries and their influence on cell deposition in the perfusion system is been carried out using Computational fluid dynamics (CFD). Considering the fact that, the scaffold should mimic the organs or tissues structures in a three-dimensional manner, certain assumptions were made accordingly. The research on scaffolds has been extensively carried out in different bioreactors. However, there has been less focus on the morphology of the scaffolds and the flow patterns in which the perfusion system is laid upon. The objective of this paper is to employ a computational approach using CFD simulation to determine the optimal morphology and the anisotropic measurements of the various samples of scaffolds. Using predictive computational modelling approach, variables which exert dominant effects on the cell deposition within the scaffold were prioritised and corresponding changes in morphology of scaffold and flow patterns in the perfusion systems are made. A Eulerian approach was carried on in multiple CFD simulations, and it is observed that the morphological and topological changes in the scaffold perfusion system are of great importance in the commercial applications of scaffolds.Keywords: cell seeding, CFD, flow patterns, modelling, perfusion systems, scaffold
Procedia PDF Downloads 1612875 A General Framework to Successfully Operate the Digital Transformation Process in the Post-COVID Era
Authors: Driss Kettani
Abstract:
In this paper, we shed light on “Digital Divide 2.0,” which we see as COVID-19’s Version of the Digital Divide! We believe that “Fighting” against Digital Divide 2.0 necessitates for a Country to be seriously advanced in the Global Digital Transformation that is, naturally, a complex, delicate, costly and long-term Process. We build an argument supporting our assumption and, from there, we present the foundations of a computational framework to guide and streamline Digital Transformation at all levels.Keywords: digital divide 2.0, digital transformation, ICTs for development, computational outcomes assessment
Procedia PDF Downloads 1772874 MAGNI Dynamics: A Vision-Based Kinematic and Dynamic Upper-Limb Model for Intelligent Robotic Rehabilitation
Authors: Alexandros Lioulemes, Michail Theofanidis, Varun Kanal, Konstantinos Tsiakas, Maher Abujelala, Chris Collander, William B. Townsend, Angie Boisselle, Fillia Makedon
Abstract:
This paper presents a home-based robot-rehabilitation instrument, called ”MAGNI Dynamics”, that utilized a vision-based kinematic/dynamic module and an adaptive haptic feedback controller. The system is expected to provide personalized rehabilitation by adjusting its resistive and supportive behavior according to a fuzzy intelligence controller that acts as an inference system, which correlates the user’s performance to different stiffness factors. The vision module uses the Kinect’s skeletal tracking to monitor the user’s effort in an unobtrusive and safe way, by estimating the torque that affects the user’s arm. The system’s torque estimations are justified by capturing electromyographic data from primitive hand motions (Shoulder Abduction and Shoulder Forward Flexion). Moreover, we present and analyze how the Barrett WAM generates a force-field with a haptic controller to support or challenge the users. Experiments show that by shifting the proportional value, that corresponds to different stiffness factors of the haptic path, can potentially help the user to improve his/her motor skills. Finally, potential areas for future research are discussed, that address how a rehabilitation robotic framework may include multisensing data, to improve the user’s recovery process.Keywords: human-robot interaction, kinect, kinematics, dynamics, haptic control, rehabilitation robotics, artificial intelligence
Procedia PDF Downloads 3292873 Computational Chemical-Composition of Carbohydrates in the Context of Healthcare Informatics
Authors: S. Chandrasekaran, S. Nandita, M. Shivathmika, Srikrishnan Shivakumar
Abstract:
The objective of the research work is to analyze the computational chemical-composition of carbohydrates in the context of healthcare informatics. The computation involves the representation of complex chemical molecular structure of carbohydrate using graph theory and in a deployable Chemical Markup Language (CML). The parallel molecular structure of the chemical molecules with or without other adulterants for the sake of business profit can be analyzed in terms of robustness and derivatization measures. The rural healthcare program should create awareness in malnutrition to reduce ill-effect of decomposition and help the consumers to know the level of such energy storage mixtures in a quantitative way. The earlier works were based on the empirical and wet data which can vary from time to time but cannot be made to reuse the results of mining. The work is carried out on the quantitative computational chemistry on carbohydrates to provide a safe and secure right to food act and its regulations.Keywords: carbohydrates, chemical-composition, chemical markup, robustness, food safety
Procedia PDF Downloads 3742872 The Effects of a Thin Liquid Layer on the Hydrodynamic Machine Rotor
Authors: Jaroslav Krutil, František Pochylý, Simona Fialová, Vladimír Habán
Abstract:
A mathematical model of the additional effects of the liquid in the hydrodynamic gap is presented in the paper. An in-compressible viscous fluid is considered. Based on computational modeling are determined the matrices of mass, stiffness and damping. The mathematical model is experimentally verified.Keywords: computational modeling, mathematical model, hydrodynamic gap, matrices of mass, stiffness and damping
Procedia PDF Downloads 557