Search results for: artificial recharge site
4397 Artificial intelligence and Law
Authors: Mehrnoosh Abouzari, Shahrokh Shahraei
Abstract:
With the development of artificial intelligence in the present age, intelligent machines and systems have proven their actual and potential capabilities and are mindful of increasing their presence in various fields of human life in the fields of industry, financial transactions, marketing, manufacturing, service affairs, politics, economics and various branches of the humanities .Therefore, despite the conservatism and prudence of law enforcement, the traces of artificial intelligence can be seen in various areas of law. Including judicial robotics capability estimation, intelligent judicial decision making system, intelligent defender and attorney strategy adjustment, dissemination and regulation of different and scattered laws in each case to achieve judicial coherence and reduce opinion, reduce prolonged hearing and discontent compared to the current legal system with designing rule-based systems, case-based, knowledge-based systems, etc. are efforts to apply AI in law. In this article, we will identify the ways in which AI is applied in its laws and regulations, identify the dominant concerns in this area and outline the relationship between these two areas in order to answer the question of how artificial intelligence can be used in different areas of law and what the implications of this application will be. The authors believe that the use of artificial intelligence in the three areas of legislative, judiciary and executive power can be very effective in governments' decisions and smart governance, and helping to reach smart communities across human and geographical boundaries that humanity's long-held dream of achieving is a global village free of violence and personalization and human error. Therefore, in this article, we are going to analyze the dimensions of how to use artificial intelligence in the three legislative, judicial and executive branches of government in order to realize its application.Keywords: artificial intelligence, law, intelligent system, judge
Procedia PDF Downloads 1194396 Heat and Flow Analysis of Solar Air Heaters with Artificial Roughness on the Absorber
Authors: Amel Boulemtafes-Boukadoum, Ahmed Benzaoui
Abstract:
Solar air heaters (SAH) are widely used in heating and drying applications using solar energy. Their efficiency needs to be improved to be competitive towards solar water heater. In this work, our goal is to study heat transfer enhancement in SAHs by the use of artificial roughness on the absorber. For this purpose, computational fluid dynamics (CFD) simulations were carried out to analyze the flow and heat transfer in the air duct of a solar air heater provided with transverse ribs. The air flows in forced convection and the absorber is heated with uniform flux. The effect of major parameters (Reynolds number, solar radiation, air inlet temperature, geometry of roughness) is examined and discussed. To highlight the effect of artificial roughness, we plotted the distribution of the important parameters: Nusselt number, friction factor, global thermohydraulic performance parameter etc. The results obtained are concordant to those found in the literature and shows clearly the heat transfer enhancement due to artifical roughness.Keywords: solar air heater, artificial roughness, heat transfer enhancement, CFD
Procedia PDF Downloads 5704395 Artificial Intelligence Impact on Strategic Stability
Authors: Darius Jakimavicius
Abstract:
Artificial intelligence is the subject of intense debate in the international arena, identified both as a technological breakthrough and as a component of the strategic stability effect. Both the kinetic and non-kinetic development of AI and its application in the national strategies of the great powers may trigger a change in the security situation. Artificial intelligence is generally faster, more capable and more efficient than humans, and there is a temptation to transfer decision-making and control responsibilities to artificial intelligence. Artificial intelligence, which, once activated, can select and act on targets without further intervention by a human operator, blurs the boundary between human or robot (machine) warfare, or perhaps human and robot together. Artificial intelligence acts as a force multiplier that speeds up decision-making and reaction times on the battlefield. The role of humans is increasingly moving away from direct decision-making and away from command and control processes involving the use of force. It is worth noting that the autonomy and precision of AI systems make the process of strategic stability more complex. Deterrence theory is currently in a phase of development in which deterrence is undergoing further strain and crisis due to the complexity of the evolving models enabled by artificial intelligence. Based on the concept of strategic stability and deterrence theory, it is appropriate to develop further research on the development and impact of AI in order to assess AI from both a scientific and technical perspective: to capture a new niche in the scientific literature and academic terminology, to clarify the conditions for deterrence, and to identify the potential uses, impacts and possibly quantities of AI. The research problem is the impact of artificial intelligence developed by great powers on strategic stability. This thesis seeks to assess the impact of AI on strategic stability and deterrence principles, with human exclusion from the decision-making and control loop as a key axis. The interaction between AI and human actions and interests can determine fundamental changes in great powers' defense and deterrence, and the development and application of AI-based great powers strategies can lead to a change in strategic stability.Keywords: artificial inteligence, strategic stability, deterrence theory, decision making loop
Procedia PDF Downloads 414394 Prediction of Rolling Forces and Real Exit Thickness of Strips in the Cold Rolling by Using Artificial Neural Networks
Authors: M. Heydari Vini
Abstract:
There is a complicated relation between effective input parameters of cold rolling and output rolling force and exit thickness of strips.in many mathematical models, the effect of some rolling parameters have been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips,the width of the strips,rolling speeds,mandrill tensions and the required exit thickness of strips with rolling force and the real exit thickness of the rolled strip. First of all, in this paper the effective parameters of cold rolling process modeled using an artificial neural network according to the optimum network achieved by using a written program in MATLAB,it has been shown that the prediction of rolling stand parameters with different properties and new dimensions attained from prior rolled strips by an artificial neural network is applicable.Keywords: cold rolling, artificial neural networks, rolling force, real rolled thickness of strips
Procedia PDF Downloads 5054393 The Artificial Intelligence Technologies Used in PhotoMath Application
Authors: Tala Toonsi, Marah Alagha, Lina Alnowaiser, Hala Rajab
Abstract:
This report is about the Photomath app, which is an AI application that uses image recognition technology, specifically optical character recognition (OCR) algorithms. The (OCR) algorithm translates the images into a mathematical equation, and the app automatically provides a step-by-step solution. The application supports decimals, basic arithmetic, fractions, linear equations, and multiple functions such as logarithms. Testing was conducted to examine the usage of this app, and results were collected by surveying ten participants. Later, the results were analyzed. This paper seeks to answer the question: To what level the artificial intelligence features are accurate and the speed of process in this app. It is hoped this study will inform about the efficiency of AI in Photomath to the users.Keywords: photomath, image recognition, app, OCR, artificial intelligence, mathematical equations.
Procedia PDF Downloads 1714392 Application of Artificial Neural Network in Assessing Fill Slope Stability
Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung
Abstract:
This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.Keywords: landslide, limit analysis, artificial neural network, soil properties
Procedia PDF Downloads 2074391 Review on Implementation of Artificial Intelligence and Machine Learning for Controlling Traffic and Avoiding Accidents
Authors: Neha Singh, Shristi Singh
Abstract:
Accidents involving motor vehicles are more likely to cause serious injuries and fatalities. It also has a host of other perpetual issues, such as the regular loss of life and goods in accidents. To solve these issues, appropriate measures must be implemented, such as establishing an autonomous incident detection system that makes use of machine learning and artificial intelligence. In order to reduce traffic accidents, this article examines the overview of artificial intelligence and machine learning in autonomous event detection systems. The paper explores the major issues, prospective solutions, and use of artificial intelligence and machine learning in road transportation systems for minimising traffic accidents. There is a lot of discussion on additional, fresh, and developing approaches that less frequent accidents in the transportation industry. The study structured the following subtopics specifically: traffic management using machine learning and artificial intelligence and an incident detector with these two technologies. The internet of vehicles and vehicle ad hoc networks, as well as the use of wireless communication technologies like 5G wireless networks and the use of machine learning and artificial intelligence for the planning of road transportation systems, are elaborated. In addition, safety is the primary concern of road transportation. Route optimization, cargo volume forecasting, predictive fleet maintenance, real-time vehicle tracking, and traffic management, according to the review's key conclusions, are essential for ensuring the safety of road transportation networks. In addition to highlighting research trends, unanswered problems, and key research conclusions, the study also discusses the difficulties in applying artificial intelligence to road transport systems. Planning and managing the road transportation system might use the work as a resource.Keywords: artificial intelligence, machine learning, incident detector, road transport systems, traffic management, automatic incident detection, deep learning
Procedia PDF Downloads 1134390 Enhancing Academic Writing Through Artificial Intelligence: Opportunities and Challenges
Authors: Abubakar Abdulkareem, Nasir Haruna Soba
Abstract:
Artificial intelligence (AI) is developing at a rapid pace, revolutionizing several industries, including education. This talk looks at how useful AI can be for academic writing, with an emphasis on how it can help researchers be more accurate, productive, and creative. The academic world now relies heavily on AI technologies like grammar checkers, plagiarism detectors, and content generators to help with the writing, editing, and formatting of scholarly papers. This study explores the particular uses of AI in academic writing and assesses how useful and helpful these applications may be for both students and scholars. By means of an extensive examination of extant literature and a sequence of empirical case studies, we scrutinize the merits and demerits of artificial intelligence tools utilized in academic writing. Important discoveries indicate that although AI greatly increases productivity and lowers human error, there are still issues that need to be resolved, including reliance, ethical concerns, and the potential loss of critical thinking abilities. The talk ends with suggestions for incorporating AI tools into academic settings so that they enhance rather than take the place of the intellectual rigor that characterizes scholarly work. This study adds to the continuing conversation about artificial intelligence (AI) in higher education by supporting a methodical strategy that uses technology to enhance human abilities in academic writing.Keywords: artificial intelligence, academic writing, ai tools, productivity, ethics, higher education
Procedia PDF Downloads 274389 Site Effect Observations after 2016 Amatrice Earthquake, Central Italy
Authors: Giovanni Forte, Melania De Falco, Antonio Santo
Abstract:
On 24th August 2016, central Italy was affected by a Mw 6.0 earthquake, representing the main shock of a long seismic sequence, which had a second shock Mw 6.6 on 26th October and lasts still nowadays. After the event, several field survey were carried out in the affected areas, which is made of historical masonry buildings. The post event reconnaissance missions were aimed at collecting information on the damage states of the buildings, the triggering of the landslides and the relationships with site effects. In this paper, the data collected after the event are analyzed considering the role of the geological and geomorphological setting and the ground motion scenario. The buildings displayed an uneven damage distribution, which was affected by both topographic and stratigraphic amplification. As pertains the landslides, which were the most recurrent among the ground failures, consisted mainly of rock falls and subordinately of translational slides. Finally, the collected knowledge showed a strong contribution of the local geological and geomorphological site condition on the resulting damage.Keywords: Amatrice earthquake, damage states, landslides, site effects
Procedia PDF Downloads 3234388 Seismic Microzonation of El-Fayoum New City, Egypt
Authors: Suzan Salem, Heba Moustafa, Abd El-Aziz Abd El-Aal
Abstract:
Seismic micro hazard zonation for urban areas is the first step towards a seismic risk analysis and mitigation strategy. Essential here is to obtain a proper understanding of the local subsurface conditions and to evaluate ground-shaking effects. In the present study, an attempt has been made to evaluate the seismic hazard considering local site effects by carrying out detailed geotechnical and geophysical site characterization in El-Fayoum New City. Seismic hazard analysis and microzonation of El-Fayoum New City are addressed in three parts: in the first part, estimation of seismic hazard is done using seismotectonic and geological information. The second part deals with site characterization using geotechnical and shallow geophysical techniques. In the last part, local site effects are assessed by carrying out one-dimensional (1-D) ground response analysis using the equivalent linear method by program SHAKE 2000. Finally, microzonation maps have been prepared. The detailed methodology, along with experimental details, collected data, results and maps are presented in this paper.Keywords: El-Fayoum, microzonation, seismotectonic, Egypt
Procedia PDF Downloads 3814387 Background Check System for Turkish IT Companies
Authors: Arzu Baloglu, Ugur Kaplancali
Abstract:
This paper focuses on Background Check Systems and Pre-Employment Screening. In our study, we attempted to make an online background checking site that will help employers when hiring employees. Our site has two types of users which are free and powered user. Free users are the employees and powered users are the employers which will hire employers. The database of the site will contain all the information about the employees and employers which are registered in the system so the employers can make a search based on their searching criteria to find the suitable employee for the job. The web site also has a comments and points system. The current employer can make comments to his/her employees and can also give them points. The comments will be shown on employee’s profile, so; when an employer searches for an employee he/she can check the points and comments of the employee to see whether he or she is capable of the job or not. The employers can also follow some employees if they desire. This paper has been designed and implemented with using ASP.NET, C# and JavaScript. The outputs have a user friendly interface. The interface also aimed to provide the useful information for Turkish Technology Companies.Keywords: background, checking, verification, human resources, online
Procedia PDF Downloads 1984386 The Development of the Kamakhya Temple as a Historical Landmark in the Present State of Assam, India
Authors: Priyanka Tamta, Sukanya Sharma
Abstract:
The Kamakhya Temple in Assam plays a very important role in the development of Assam as not only a historical place but also as an archaeologically important site. Temple building activity on the site began in 5th century AD when a cave temple dedicated to Lord Balabhadraswami was constructed here by King Maharajadhiraja Sri Surendra Varman. In the history of Assam, the name of this king is not found and neither the name of this form of Vishnu is known in this region. But this inscription sanctified the place as it recorded the first ever temple building activity in this region. The fifteen hundred years habitation history of the Kamakhya temple sites shows a gradual progression of the site from a religious site to an archaeological site and finally as a historical landmark. Here, in this paper, our main objective is to understand the evolution of Kamakhya temple site as a historical landscape and as an important landmark in the history of Assam. The central theme of the paper is the gradual development of the religious site to a historical landmark. From epigraphical records, it is known that the site received patronage from all ruling dynasties of Assam and its adjoining regions. Royal households of Kashmir, Nepal, Bengal, Orissa, Bihar, etc. have left their footprints on the site. According to records they donated wealth, constructed or renovated temples and participated in the overall maintenance of the deity. This made Kamakhya temple a ground of interaction of faiths, communities, and royalties of the region. Since the 5th century AD, there was a continuous struggle between different beliefs, faiths, and power on the site to become the dominant authority of the site. In the process, powerful beliefs system subsumed minor ones into a larger doctrine of beliefs. This can be seen in the case of the evolution of the Kamakhya temple site as one of the important Shakta temples in India. Today, it is cultural identity marker of the state of Assam within which it is located. Its diverse faiths and beliefs have been appropriated by powerful legends to the dominant faith of the land. The temple has evolved from a cave temple to a complex of seventeen temples. The faith has evolved from the worship of water, an element of nature to the worship of the ten different forms of the goddess with their five male consorts or Bhairavas. Today, it represents and symbolizes the relationship of power and control out of which it has emerged. During different periods of occupation certain architectural and iconographical characters developed which indicated diffusion and cultural adaptation. Using this as sources and the epigraphical records this paper will analyze the interactive and dynamic processes which operated in the building of this cultural marker, the archaeological site of Kamakhya.Keywords: cultural adaptation and diffusion, cultural and historical landscape, Kamakhya, Saktism, temple art and architecture, historiography
Procedia PDF Downloads 2514385 Discovery of New Inhibitors for Colorectal Cancer Treatment
Authors: Kai-Cheng Hsu, Tzu-Ying Sung, Jinn-Moon Yang
Abstract:
Colorectal cancer (CRC) is one of the main causes of cancer death in the world. Although several drugs have been developed to treat colorectal cancer, such as Regorafenib and 5-FU, their efficacy is often limited by the development of drug resistance. Therefore, development of new drugs with new scaffolds is necessary to treat CRC. Here, we used site-moiety maps to identify inhibitors against PIM1, LIMK1, SRC, and mTOR, which are often overexpressed in CRC. A site-moiety map represents physicochemical properties and moiety preferences of a binding site through anchors. An anchor contains three elements: (1) conserved interacting residues of a binding pocket; (2) moiety preference of the binding pocket; and (3) the type (e.g., hydrogen-bonding or van der Waals interactions) of interaction between the moieties and the binding pocket. Then, we performed a structure-based virtual screening of ~260,000 compounds and selected compound candidates with high site-moiety map scores for bioassays. Among these candidates, compound 1 and compound 2 inhibited the growth of CRC cells with IC50 values of <10 μM. The experimental result of enzyme-based assays indicated that compound 1 is a dual inhibitor against PIM1 (IC50 6 μM) and LIMK1(IC50 11 μM). Compound 2 was predicted as a SRC inhibitor and will be further validated. The compounds inhibited different protein targets compared to the current drugs. We believe that the compounds provide a starting point to design new drugs for CRC treatment.Keywords: colorectal cancer, drug discovery, site-moiety map, virtual screening, PIM1, LIMK1
Procedia PDF Downloads 2464384 Transport Related Air Pollution Modeling Using Artificial Neural Network
Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar
Abstract:
Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling
Procedia PDF Downloads 5244383 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network
Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti
Abstract:
Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.Keywords: artificial neural network, EDM, metal removal rate, modeling, surface roughness
Procedia PDF Downloads 4124382 Metabolic Pathway Analysis of Microbes using the Artificial Bee Colony Algorithm
Authors: Serena Gomez, Raeesa Tanseen, Netra Shaligram, Nithin Francis, Sandesh B. J.
Abstract:
The human gut consists of a community of microbes which has a lot of effects on human health disease. Metabolic modeling can help to predict relative populations of stable microbes and their effect on health disease. In order to study and visualize microbes in the human gut, we developed a tool that offers the following modules: Build a tool that can be used to perform Flux Balance Analysis for microbes in the human gut using the Artificial Bee Colony optimization algorithm. Run simulations for an individual microbe in different conditions, such as aerobic and anaerobic and visualize the results of these simulations.Keywords: microbes, metabolic modeling, flux balance analysis, artificial bee colony
Procedia PDF Downloads 1014381 Alexa (Machine Learning) in Artificial Intelligence
Authors: Loulwah Bokhari, Jori Nazer, Hala Sultan
Abstract:
Nowadays, artificial intelligence (AI) is used as a foundation for many activities in modern computing applications at home, in vehicles, and in businesses. Many modern machines are built to carry out a specific activity or purpose. This is where the Amazon Alexa application comes in, as it is used as a virtual assistant. The purpose of this paper is to explore the use of Amazon Alexa among people and how it has improved and made simple daily tasks easier for many people. We gave our participants several questions regarding Amazon Alexa and if they had recently used or heard of it, as well as the different tasks it provides and whether it successfully satisfied their needs. Overall, we found that participants who have recently used Alexa have found it to be helpful in their daily tasks.Keywords: artificial intelligence, Echo system, machine learning, feature for feature match
Procedia PDF Downloads 1214380 Development of GIS-Based Geotechnical Guidance Maps for Prediction of Soil Bearing Capacity
Authors: Q. Toufeeq, R. Kauser, U. R. Jamil, N. Sohaib
Abstract:
Foundation design of a structure needs soil investigation to avoid failures due to settlements. This soil investigation is expensive and time-consuming. Developments of new residential societies involve huge leveling of large sites that is accompanied by heavy land filling. Poor practices of land fill for deep depths cause differential settlements and consolidations of underneath soil that sometimes result in the collapse of structures. The extent of filling remains unknown to the individual developer unless soil investigation is carried out. Soil investigation cannot be performed on each available site due to involved costs. However, fair estimate of bearing capacity can be made if such tests are already done in the surrounding areas. The geotechnical guidance maps can provide a fair assessment of soil properties. Previously, GIS-based approaches have been used to develop maps using extrapolation and interpolations techniques for bearing capacities, underground recharge, soil classification, geological hazards, landslide hazards, socio-economic, and soil liquefaction mapping. Standard penetration test (SPT) data of surrounding sites were already available. Google Earth is used for digitization of collected data. Few points were considered for data calibration and validation. Resultant Geographic information system (GIS)-based guidance maps are helpful to anticipate the bearing capacity in the real estate industry.Keywords: bearing capacity, soil classification, geographical information system, inverse distance weighted, radial basis function
Procedia PDF Downloads 1354379 Quantitative Analysis of Nutrient Inflow from River and Groundwater to Imazu Bay in Fukuoka, Japan
Authors: Keisuke Konishi, Yoshinari Hiroshiro, Kento Terashima, Atsushi Tsutsumi
Abstract:
Imazu Bay plays an important role for endangered species such as horseshoe crabs and black-faced spoonbills that stay in the bay for spawning or the passing of winter. However, this bay is semi-enclosed with slow water exchange, which could lead to eutrophication under the condition of excess nutrient inflow to the bay. Therefore, quantification of nutrient inflow is of great importance. Generally, analysis of nutrient inflow to the bays takes into consideration nutrient inflow from only the river, but that from groundwater should not be ignored for more accurate results. The main objective of this study is to estimate the amounts of nutrient inflow from river and groundwater to Imazu Bay by analyzing water budget in Zuibaiji River Basin and loads of T-N, T-P, NO3-N and NH4-N. The water budget computation in the basin is performed using groundwater recharge model and quasi three-dimensional two-phase groundwater flow model, and the multiplication of the measured amount of nutrient inflow with the computed discharge gives the total amount of nutrient inflow to the bay. In addition, in order to evaluate nutrient inflow to the bay, the result is compared with nutrient inflow from geologically similar river basins. The result shows that the discharge is 3.50×107 m3/year from the river and 1.04×107 m3/year from groundwater. The submarine groundwater discharge accounts for approximately 23 % of the total discharge, which is large compared to the other river basins. It is also revealed that the total nutrient inflow is not particularly large. The sum of NO3-N and NH4-N loadings from groundwater is less than 10 % of that from the river because of denitrification in groundwater. The Shin Seibu Sewage Treatment Plant located below the observation points discharges treated water of 15,400 m3/day and plans to increase it. However, the loads of T-N and T-P from the treatment plant are 3.9 mg/L and 0.19 mg/L, so that it does not contribute a lot to eutrophication.Keywords: Eutrophication, groundwater recharge model, nutrient inflow, quasi three-dimensional two-phase groundwater flow model, submarine groundwater discharge
Procedia PDF Downloads 4544378 Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling
Authors: F. Allag, S. Bouharati, M. Belmahdi, R. Zegadi
Abstract:
The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soils. Several biological phenomena in hot deserts related to microbial populations and the potential use of micro-organisms for restoring hot desert environments. Dry land ecosystems have a highly heterogeneous distribution of resources, with greater nutrient concentrations and microbial densities occurring in vegetated than in bare soils. In this work, we found it useful to use techniques of artificial intelligence in their treatment especially artificial neural networks (ANN). The use of the ANN model, demonstrate his capability for addressing the complex problems of uncertainty data.Keywords: desert soil, climatic changes, bacteria, vegetation, artificial neural networks
Procedia PDF Downloads 3954377 Site Selection of CNG Station by Using FUZZY-AHP Model (Case Study: Gas Zone 4, Tehran City Iran)
Authors: Hamidrza Joodaki
Abstract:
The most complex issue in urban land use planning is site selection that needs to assess the verity of elements and factors. Multi Criteria Decision Making (MCDM) methods are the best approach to deal with complex problems. In this paper, combination of the analytical hierarchy process (AHP) model and FUZZY logic was used as MCDM methods to select the best site for gas station in the 4th gas zone of Tehran. The first and the most important step in FUZZY-AHP model is selection of criteria and sub-criteria. Population, accessibility, proximity and natural disasters were considered as the main criteria in this study. After choosing the criteria, they were weighted based on AHP by EXPERT CHOICE software, and FUZZY logic was used to enhance accuracy and to approach the reality. After these steps, criteria layers were produced and weighted based on FUZZY-AHP model in GIS. Finally, through ARC GIS software, the layers were integrated and the 4th gas zone in TEHRAN was selected as the best site to locate gas station.Keywords: multiple criteria decision making (MCDM), analytic hierarchy process (AHP), FUZZY logic, geographic information system (GIS)
Procedia PDF Downloads 3614376 Exploring Acceptance of Artificial Intelligence Software Solution Amongst Healthcare Personnel: A Case in a Private Medical Centre
Authors: Sandra So, Mohd Roslan Ismail, Safurah Jaafar
Abstract:
With the rapid proliferation of data in healthcare has provided an opportune platform creation of Artificial Intelligence (AI). AI has brought a paradigm shift for healthcare professionals, promising improvement in delivery and quality. This study aims to determine the perception of healthcare personnel on perceived ease of use, perceived usefulness, and subjective norm toward attitude for artificial intelligence acceptance. A cross-sectional single institutional study of employees’ perception of adopting AI in the hospital was conducted. The survey was conducted using a questionnaire adapted from Technology Acceptance Model and a four-point Likert scale was used. There were 96 or 75.5% of the total population responded. This study has shown the significant relationship and the importance of ease of use, perceived usefulness, and subjective norm to the acceptance of AI. In the study results, it concluded that the determining factor to the strong acceptance of AI in their practices is mostly those respondents with the most interaction with the patients and clinical management.Keywords: artificial intelligence, machine learning, perceived ease of use, perceived usefulness, subjective norm
Procedia PDF Downloads 2264375 Planning of Construction Material Flow Using Hybrid Simulation Modeling
Authors: A. M. Naraghi, V. Gonzalez, M. O'Sullivan, C. G. Walker, M. Poshdar, F. Ying, M. Abdelmegid
Abstract:
Discrete Event Simulation (DES) and Agent Based Simulation (ABS) are two simulation approaches that have been proposed to support decision-making in the construction industry. Despite the wide use of these simulation approaches in the construction field, their applications for production and material planning is still limited. This is largely due to the dynamic and complex nature of construction material supply chain systems. Moreover, managing the flow of construction material is not well integrated with site logistics in traditional construction planning methods. This paper presents a hybrid of DES and ABS to simulate on-site and off-site material supply processes. DES is applied to determine the best production scenarios with information of on-site production systems, while ABS is used to optimize the supply chain network. A case study of a construction piling project in New Zealand is presented illustrating the potential benefits of using the proposed hybrid simulation model in construction material flow planning. The hybrid model presented can be used to evaluate the impact of different decisions on construction supply chain management.Keywords: construction supply-chain management, simulation modeling, decision-support tools, hybrid simulation
Procedia PDF Downloads 2074374 Artificial Intelligence in Enterprise Information Systems: A Review
Authors: Danah S. Alabdulmohsin
Abstract:
Due to the fast growth of organizational data as well as the emergence of new technologies such as artificial intelligence (AI), organizations tend to utilize these new technologies in their enterprise information systems (EIS) either to overcome the issues they struggle with or to enhance their functions. The aim of this paper is to review the potential role of AI technologies in EIS, namely: enterprise resource planning systems (ERP), customer relation management systems (CRM), supply chain management systems (SCM), knowledge systems (KM), and human resources management systems (HRM). The paper provided the definitions of these systems as well as the definitions of AI technologies that have been used in EIS. In addition, the paper discussed the challenges that organizations might face while integrating AI with their information systems and explained why some organizations fail in achieving successful implementations of the integration.Keywords: artificial intelligence, AI, enterprise information system, EIS, integration
Procedia PDF Downloads 974373 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System
Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid
Abstract:
Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.Keywords: artificial neural network, bending angle, fuzzy logic, laser forming
Procedia PDF Downloads 5974372 A Concept to Assess the Economic Importance of the On-Site Activities of ETICS
Authors: V. Sulakatko, F. U. Vogdt, I. Lill
Abstract:
Construction technology and on-site construction activities have a direct influence on the life cycle costs of energy efficiently renovated apartment buildings. The systematic inadequacies of the External Thermal Insulation Composite System (ETICS) which occur during the construction phase increase the risk for all stakeholders, reduce mechanical durability and increase the life cycle costs of the building. The economic effect of these shortcomings can be minimised if the risk of the most significant on-site activities is recognised. The objective of the presented ETICS economic assessment concept is to evaluate the economic influence of on-site shortcomings and reveal their significance to the foreseeable future repair costs. The model assembles repair techniques, discusses their direct cost calculation methods, argues over the proper usage of net present value over the life cycle of the building, and proposes a simulation tool to evaluate the risk of on-site activities. As the technique is dependent on the selected real interest rate, a sensitivity analysis is anticipated to determine the validity of the recommendations. After the verification of the model on the sample buildings by the industry, it is expected to increase economic rationality of resource allocation and reduce high-risk systematic shortcomings during the construction process of ETICS.Keywords: activity-based cost estimating, cost estimation, ETICS, life cycle costing
Procedia PDF Downloads 2964371 Soil Mixed Constructed Permeable Reactive Barrier for Groundwater Remediation: Field Observation
Authors: Ziyda Abunada
Abstract:
In-situ remediation of contaminated land with deep mixing can deliver a multi-technique remedial strategy. A field trail includes permeable reactive barrier (PRB) took place at a severely contaminated site in Yorkshire to the north of the UK through the SMiRT (Soil Mix Remediation Technology) project in May 2011. SMiRT involved the execution of the largest research field trials in the UK to provide field validation. Innovative modified bentonite materials in combination with zeolite and organoclay were used to construct six different walls of a hexagonal PRB. Field monitoring, testing and site cores were collected from the PRB twice: once 2 months after the construction and again in March 2014 (almost 34 months later).This paper presents an overview of the results of the PRB materials’ relative performance with some initial 3-year time-related assessment. Results from the monitoring program and the site cores are presented. Some good correlations are seen together with some clear difference among the materials’ efficiency. These preliminary observations represent a potential for further investigations and highlighted the main lessons learned in a filed scale.Keywords: in-situ remediation, groundwater, permeable reactive barrier, site cores
Procedia PDF Downloads 2034370 Daily Site Risks Associated with Construction Projects and On-spot Corrective Measurements: Case Study of Revamping Projects in Kuwait Oil Company Fields Area
Authors: Yousef S. Al-Othman
Abstract:
The growth and expansion of the industrial facilities comes proportional to the market increasing demand of products and services. Furthermore, raw material producers such as oil companies usually undergo massive revamping projects to maintain a synchronized supply. These revamping projects are usually delivered through challenging construction projects held and associated with daily site risks related to the construction process. Henceforth, a case study related to these risks and corresponding on-spot corrective measurements has been made on a certain number of construction project contractors at Kuwait Oil Company (KOC) to derive the benefits and overall effectiveness of the on-spot corrective measurements during the construction phase of a project, and how would the same help in avoiding major incidents, ensuring a smooth, cost effective and on time delivery of the project. Findings of this case study shall have an added value to the overall risk management process by minimizing the daily site risks that may affect the project lead time, resulting in an undisturbed on-site construction process.Keywords: oil and gas, risk management, construction projects, project lead time
Procedia PDF Downloads 1074369 Modelling Vehicle Fuel Consumption Utilising Artificial Neural Networks
Authors: Aydin Azizi, Aburrahman Tanira
Abstract:
The main source of energy used in this modern age is fossil fuels. There is a myriad of problems that come with the use of fossil fuels, out of which the issues with the greatest impact are its scarcity and the cost it imposes on the planet. Fossil fuels are the only plausible option for many vital functions and processes; the most important of these is transportation. Thus, using this source of energy wisely and as efficiently as possible is a must. The aim of this work was to explore utilising mathematical modelling and artificial intelligence techniques to enhance fuel consumption in passenger cars by focusing on the speed at which cars are driven. An artificial neural network with an error less than 0.05 was developed to be applied practically as to predict the rate of fuel consumption in vehicles.Keywords: mathematical modeling, neural networks, fuel consumption, fossil fuel
Procedia PDF Downloads 4054368 Artificial Neural Networks Face to Sudden Load Change for Shunt Active Power Filter
Authors: Dehini Rachid, Ferdi Brahim
Abstract:
The shunt active power filter (SAPF) is not destined only to improve the power factor, but also to compensate the unwanted harmonic currents produced by nonlinear loads. This paper presents a SAPF with identification and control method based on artificial neural network (ANN). To identify harmonics, many techniques are used, among them the conventional p-q theory and the relatively recent one the artificial neural network method. It is difficult to get satisfied identification and control characteristics by using a normal (ANN) due to the nonlinearity of the system (SAPF + fast nonlinear load variations). This work is an attempt to undertake a systematic study of the problem to equip the (SAPF) with the harmonics identification and DC link voltage control method based on (ANN). The latter has been applied to the (SAPF) with fast nonlinear load variations. The results of computer simulations and experiments are given, which can confirm the feasibility of the proposed active power filter.Keywords: artificial neural networks (ANN), p-q theory, harmonics, total harmonic distortion
Procedia PDF Downloads 386