Search results for: active distribution network (ADN)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12529

Search results for: active distribution network (ADN)

12349 Distributed Generation Connection to the Network: Obtaining Stability Using Transient Behavior

Authors: A. Hadadi, M. Abdollahi, A. Dustmohammadi

Abstract:

The growing use of DGs in distribution networks provide many advantages and also cause new problems which should be anticipated and be solved with appropriate solutions. One of the problems is transient voltage drop and short circuit in the electrical network, in the presence of distributed generation - which can lead to instability. The appearance of the short circuit will cause loss of generator synchronism, even though if it would be able to recover synchronizing mode after removing faulty generator, it will be stable. In order to increase system reliability and generator lifetime, some strategies should be planned to apply even in some situations which a fault prevent generators from separation. In this paper, one fault current limiter is installed due to prevent DGs separation from the grid when fault occurs. Furthermore, an innovative objective function is applied to determine the impedance optimal amount of fault current limiter in order to improve transient stability of distributed generation. Fault current limiter can prevent generator rotor's sudden acceleration after fault occurrence and thereby improve the network transient stability by reducing the current flow in a fast and effective manner. In fact, by applying created impedance by fault current limiter when a short circuit happens on the path of current injection DG to the fault location, the critical fault clearing time improve remarkably. Therefore, protective relay has more time to clear fault and isolate the fault zone without any instability. Finally, different transient scenarios of connection plan sustainability of small scale synchronous generators to the distribution network are presented.

Keywords: critical clearing time, fault current limiter, synchronous generator, transient stability, transient states

Procedia PDF Downloads 196
12348 ANN Based Simulation of PWM Scheme for Seven Phase Voltage Source Inverter Using MATLAB/Simulink

Authors: Mohammad Arif Khan

Abstract:

This paper analyzes and presents the development of Artificial Neural Network based controller of space vector modulation (ANN-SVPWM) for a seven-phase voltage source inverter. At first, the conventional method of producing sinusoidal output voltage by utilizing six active and one zero space vectors are used to synthesize the input reference, is elaborated and then new PWM scheme called Artificial Neural Network Based PWM is presented. The ANN based controller has the advantage of the very fast implementation and analyzing the algorithms and avoids the direct computation of trigonometric and non-linear functions. The ANN controller uses the individual training strategy with the fixed weight and supervised models. A computer simulation program has been developed using Matlab/Simulink together with the neural network toolbox for training the ANN-controller. A comparison of the proposed scheme with the conventional scheme is presented based on various performance indices. Extensive Simulation results are provided to validate the findings.

Keywords: space vector PWM, total harmonic distortion, seven-phase, voltage source inverter, multi-phase, artificial neural network

Procedia PDF Downloads 451
12347 An Analysis of the Dominance of Migrants in the South African Spaza and Retail market: A Relationship-Based Network Perspective

Authors: Meron Okbandrias

Abstract:

The South African formal economy is rule-based economy, unlike most African and Asian markets. It has a highly developed financial market. In such a market, foreign migrants have dominated the small or spaza shops that service the poor. They are highly competitive and capture significant market share in South Africa. This paper analyses the factors that assisted the foreign migrants in having a competitive age. It does that by interviewing Somali, Bangladesh, and Ethiopian shop owners in Cape Town analysing the data through a narrative analysis. The paper also analyses the 2019 South African consumer report. The three migrant nationalities mentioned above dominate the spaza shop business and have significant distribution networks. The findings of the paper indicate that family, ethnic, and nationality based network, in that order of importance, form bases for a relationship-based business network that has trust as its mainstay. Therefore, this network ensures the pooling of resources and abiding by certain principles outside the South African rule-based system. The research identified practises like bulk buying within a community of traders, sharing information, buying from a within community distribution business, community based transportation system and providing seed capital for people from the community to start a business is all based on that relationship-based system. The consequences of not abiding by the rules of these networks are social and economic exclusion. In addition, these networks have their own commercial and social conflict resolution mechanisms aside from the South African justice system. Network theory and relationship based systems theory form the theoretical foundations of this paper.

Keywords: migrant, spaza shops, relationship-based system, South Africa

Procedia PDF Downloads 127
12346 Network Automation in Lab Deployment Using Ansible and Python

Authors: V. Andal Priyadharshini, Anumalasetty Yashwanth Nath

Abstract:

Network automation has evolved into a solution that ensures efficiency in all areas. The age-old technique to configure common software-defined networking protocols is inefficient as it requires a box-by-box approach that needs to be repeated often and is prone to manual errors. Network automation assists network administrators in automating and verifying the protocol configuration to ensure consistent configurations. This paper implemented network automation using Python and Ansible to configure different protocols and configurations in the container lab virtual environment. Ansible can help network administrators minimize human mistakes, reduce time consumption, and enable device visibility across the network environment.

Keywords: Python network automation, Ansible configuration, container lab deployment, software-defined networking, networking lab

Procedia PDF Downloads 164
12345 Learning Dynamic Representations of Nodes in Temporally Variant Graphs

Authors: Sandra Mitrovic, Gaurav Singh

Abstract:

In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.

Keywords: churn prediction, dynamic networks, node2vec, auto-encoders

Procedia PDF Downloads 314
12344 Water Distribution Uniformity of Solid-Set Sprinkler Irrigation under Low Operating Pressure

Authors: Manal Osman

Abstract:

Sprinkler irrigation system became more popular to reduce water consumption and increase irrigation efficiency. The water distribution uniformity plays an important role in the performance of the sprinkler irrigation system. The use of low operating pressure instead of high operating pressure can be achieved many benefits including energy and water saving. An experimental study was performed to investigate the water distribution uniformity of the solid-set sprinkler irrigation system under low operating pressure. Different low operating pressures (62, 82, 102 and 122 kPa) were selected. The range of operating pressure was lower than the recommended in the previous studies to investigate the effect of low pressure on the water distribution uniformity. Different nozzle diameters (4, 5, 6 and 7 mm) were used. The outdoor single sprinkler test was performed. The water distribution of single sprinkler, the coefficients of uniformity such as coefficient of uniformity (CU), distribution uniformity of low quarter (DUlq), distribution uniformity of low half (DUlh), coefficient of variation (CV) and the distribution characteristics like rotation speed, throw radius and overlapping distance are presented in this paper.

Keywords: low operating pressure, sprinkler irrigation system, water distribution uniformity

Procedia PDF Downloads 589
12343 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks

Authors: Sulemana Ibrahim

Abstract:

Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.

Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks

Procedia PDF Downloads 62
12342 A Case Study Approach on Co-Constructing the Idea of 'Safety' with Children

Authors: Beng Zhen Yeow

Abstract:

In most work that involves children, the voice of the children is often not heard. This is ironic since a lot of discussions might involve their welfare and safety. It might seem natural that the professionals should hear from them about what they wish for instead of deciding what is best for them. However, this, unfortunately, might be more the exception than the norm in most case and hence in many instances, children are merely 'subjects' in conversations about safety instead of active participants in the construction or creation of safety in the family. There might be many reasons why it does not happen in our work. Firstly, professionals have learnt how to 'socialise' into their professional roles and hence in the process become 'un-childlike'. Secondly, there is also a lack of professional training with regards to how to talk with children. Finally, there might be also a lack of concrete tools and techniques that are developed to facilitate the process. In this paper, the case study method is used to show how the idea of safety could be concretised and discussed with children and their family members, and hence making them active participants and co-creators of their own safety. Specific skills and techniques are highlighted through the case study. In this case, there was improvement in outcomes like no repeated offence or abuse. In addition, children were also able to advocate for their own safety after six months of intervention and how the family members were able to explicitly say what they can do to improve safety. The professionals in the safety network reported significant improvements. On top of that, the abused child who was removed due to child protection concerns, had verbalized observations of change in mother’s parenting abilities, and has requested for home leave to begin due to ownership of safety planning and having confidence to co-create safety for her siblings and herself together with the professionals in the safety network. Children becoming active participants in the co-creation of safety not only serve the purpose in allowing them to own a 'voice' but at the same time, give them greater confidence to protect themselves at home and in other contexts outside of home.

Keywords: partnering for safety, collaborative social work, family and systemic psychotherapy, child protection

Procedia PDF Downloads 120
12341 Symbolic Analysis of Input Impedance of CMOS Floating Active Inductors with Application in Fully Differential Bandpass Amplifier

Authors: Kittipong Tripetch

Abstract:

This paper proposes studies of input impedance of two types of the CMOS active inductor. It derives two input impedance formulas. The first formula is the input impedance of a grounded active inductor. The second formula is an input impedance of floating active inductor. After that, these formulas can be used to simulate magnitude and phase response of input impedance as a function of current consumption with MATLAB. Common mode rejection ratio (CMRR) of a fully differential bandpass amplifier is derived based on superposition principle. CMRR as a function of input frequency is plotted as a function of current consumption

Keywords: grounded active inductor, floating active inductor, fully differential bandpass amplifier

Procedia PDF Downloads 426
12340 Powerful Laser Diode Matrixes for Active Vision Systems

Authors: Dzmitry M. Kabanau, Vladimir V. Kabanov, Yahor V. Lebiadok, Denis V. Shabrov, Pavel V. Shpak, Gevork T. Mikaelyan, Alexandr P. Bunichev

Abstract:

This article is deal with the experimental investigations of the laser diode matrixes (LDM) based on the AlGaAs/GaAs heterostructures (lasing wavelength 790-880 nm) to find optimal LDM parameters for active vision systems. In particular, the dependence of LDM radiation pulse power on the pulse duration and LDA active layer heating as well as the LDM radiation divergence are discussed.

Keywords: active vision systems, laser diode matrixes, thermal properties, radiation divergence

Procedia PDF Downloads 610
12339 Using Mixed Methods in Studying Classroom Social Network Dynamics

Authors: Nashrawan Naser Taha, Andrew M. Cox

Abstract:

In a multi-cultural learning context, where ties are weak and dynamic, combining qualitative with quantitative research methods may be more effective. Such a combination may also allow us to answer different types of question, such as about people’s perception of the network. In this study the use of observation, interviews and photos were explored as ways of enhancing data from social network questionnaires. Integrating all of these methods was found to enhance the quality of data collected and its accuracy, also providing a richer story of the network dynamics and the factors that shaped these changes over time.

Keywords: mixed methods, social network analysis, multi-cultural learning, social network dynamics

Procedia PDF Downloads 510
12338 An Inventory Management Model to Manage the Stock Level for Irregular Demand Items

Authors: Riccardo Patriarca, Giulio Di Gravio, Francesco Costantino, Massimo Tronci

Abstract:

An accurate inventory management policy acquires a crucial role in the several high-availability sectors. In these sectors, due to the high-cost of spares and backorders, an (S-1, S) replenishment policy is necessary for high-availability items. The policy enables the shipment of a substitute efficient item anytime the inventory size decreases by one. This policy can be modelled following the Multi-Echelon Technique for Recoverable Item Control (METRIC). The METRIC is a system-based technique that allows defining the optimum stock level in a multi-echelon network, adopting measures in line with the decision-maker’s perspective. The METRIC defines an availability-cost function with inventory costs and required service levels, using as inputs data about the demand trend, the supplying and maintenance characteristics of the network and the budget/availability constraints. The traditional METRIC relies on the hypothesis that a Poisson distribution well represents the demand distribution in case of items with a low failure rate. However, in this research, we will explore the effects of using a Poisson distribution to model the demand of low failure rate items characterized by an irregular demand trend. This characteristic of a demand is not included in the traditional METRIC formulation leading to the need of revising its traditional formulation. Using the CV (Coefficient of Variation) and ADI (Average inter-Demand Interval) classification, we will define the inherent flaws of Poisson-based METRIC for irregular demand items, defining an innovative ad hoc distribution which can better fit the irregular demands. This distribution will allow defining proper stock levels to reduce stocking and backorder costs due to the high irregularities in the demand trend. A case study in the aviation domain will clarify the benefits of this innovative METRIC approach.

Keywords: METRIC, inventory management, irregular demand, spare parts

Procedia PDF Downloads 347
12337 Modified Active (MA) Algorithm to Generate Semantic Web Related Clustered Hierarchy for Keyword Search

Authors: G. Leena Giri, Archana Mathur, S. H. Manjula, K. R. Venugopal, L. M. Patnaik

Abstract:

Keyword search in XML documents is based on the notion of lowest common ancestors in the labelled trees model of XML documents and has recently gained a lot of research interest in the database community. In this paper, we propose the Modified Active (MA) algorithm which is an improvement over the active clustering algorithm by taking into consideration the entity aspect of the nodes to find the level of the node pertaining to a particular keyword input by the user. A portion of the bibliography database is used to experimentally evaluate the modified active algorithm and results show that it performs better than the active algorithm. Our modification improves the response time of the system and thereby increases the efficiency of the system.

Keywords: keyword matching patterns, MA algorithm, semantic search, knowledge management

Procedia PDF Downloads 413
12336 Exploring Twitter Data on Human Rights Activism on Olympics Stage through Social Network Analysis and Mining

Authors: Teklu Urgessa, Joong Seek Lee

Abstract:

Social media is becoming the primary choice of activists to make their voices heard. This fact is coupled by two main reasons. The first reason is the emergence web 2.0, which gave the users opportunity to become content creators than passive recipients. Secondly the control of the mainstream mass media outlets by the governments and individuals with their political and economic interests. This paper aimed at exploring twitter data of network actors talking about the marathon silver medalists on Rio2016, who showed solidarity with the Oromo protesters in Ethiopia on the marathon race finish line when he won silver. The aim is to discover important insight using social network analysis and mining. The hashtag #FeyisaLelisa was used for Twitter network search. The actors’ network was visualized and analyzed. It showed the central influencers during first 10 days in August, were international media outlets while it was changed to individual activist in September. The degree distribution of the network is scale free where the frequency of degrees decay by power low. Text mining was also used to arrive at meaningful themes from tweet corpus about the event selected for analysis. The semantic network indicated important clusters of concepts (15) that provided different insight regarding the why, who, where, how of the situation related to the event. The sentiments of the words in the tweets were also analyzed and indicated that 95% of the opinions in the tweets were either positive or neutral. Overall, the finding showed that Olympic stage protest of the marathoner brought the issue of Oromo protest to the global stage. The new research framework is proposed based for event-based social network analysis and mining based on the practical procedures followed in this research for event-based social media sense making.

Keywords: human rights, Olympics, social media, network analysis, social network ming

Procedia PDF Downloads 257
12335 Real-Time Monitoring of Drinking Water Quality Using Advanced Devices

Authors: Amani Abdallah, Isam Shahrour

Abstract:

The quality of drinking water is a major concern of public health. The control of this quality is generally performed in the laboratory, which requires a long time. This type of control is not adapted for accidental pollution from sudden events, which can have serious consequences on population health. Therefore, it is of major interest to develop real-time innovative solutions for the detection of accidental contamination in drinking water systems This paper presents researches conducted within the SunRise Demonstrator for ‘Smart and Sustainable Cities’ with a particular focus on the supervision of the water quality. This work aims at (i) implementing a smart water system in a large water network (Campus of the University Lille1) including innovative equipment for real-time detection of abnormal events, such as those related to the contamination of drinking water and (ii) develop a numerical modeling of the contamination diffusion in the water distribution system. The first step included verification of the water quality sensors and their effectiveness on a network prototype of 50m length. This part included the evaluation of the efficiency of these sensors in the detection both bacterial and chemical contamination events in drinking water distribution systems. An on-line optical sensor integral with a laboratory-scale distribution system (LDS) was shown to respond rapidly to changes in refractive index induced by injected loads of chemical (cadmium, mercury) and biological contaminations (Escherichia coli). All injected substances were detected by the sensor; the magnitude of the response depends on the type of contaminant introduced and it is proportional to the injected substance concentration.

Keywords: distribution system, drinking water, refraction index, sensor, real-time

Procedia PDF Downloads 354
12334 Fault Detection of Pipeline in Water Distribution Network System

Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee

Abstract:

Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.

Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform

Procedia PDF Downloads 512
12333 Dual-Network Memory Model for Temporal Sequences

Authors: Motonobu Hattori

Abstract:

In neural networks, when new patters are learned by a network, they radically interfere with previously stored patterns. This drawback is called catastrophic forgetting. We have already proposed a biologically inspired dual-network memory model which can much reduce this forgetting for static patterns. In this model, information is first stored in the hippocampal network, and thereafter, it is transferred to the neocortical network using pseudo patterns. Because, temporal sequence learning is more important than static pattern learning in the real world, in this study, we improve our conventional dual-network memory model so that it can deal with temporal sequences without catastrophic forgetting. The computer simulation results show the effectiveness of the proposed dual-network memory model.

Keywords: catastrophic forgetting, dual-network, temporal sequences, hippocampal

Procedia PDF Downloads 269
12332 Integrating Knowledge Distillation of Multiple Strategies

Authors: Min Jindong, Wang Mingxia

Abstract:

With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.

Keywords: object detection, knowledge distillation, convolutional network, model compression

Procedia PDF Downloads 278
12331 Optimization and Operation of Charging and Discharging Stations for Hybrid Cars and their Effects on the Electricity Distribution Network

Authors: Ali Heydarimoghim

Abstract:

In this paper, the optimal placement of charging and discharging stations is done to determine the location and capacity of the stations, reducing the cost of electric vehicle owners' losses, reducing the cost of distribution system losses, and reducing the costs associated with the stations. Also, observing the permissible limits of the bus voltage and the capacity of the stations and their distance are considered as constraints of the problem. Given the traffic situation in different areas of a city, we estimate the amount of energy required to charge and the amount of energy provided to discharge electric vehicles in each area. We then introduce the electricity distribution system of the city in question. Following are the scenarios for introducing the problem and introducing the objective and constraint functions. Finally, the simulation results for different scenarios are compared.

Keywords: charging & discharging stations, hybrid vehicles, optimization, replacement

Procedia PDF Downloads 138
12330 An intelligent Troubleshooting System and Performance Evaluator for Computer Network

Authors: Iliya Musa Adamu

Abstract:

This paper seeks to develop an expert system that would troubleshoot computer network and evaluate the network system performance so as to reduce the workload on technicians and increase the efficiency and effectiveness of solutions proffered to computer network problems. The platform of the system was developed using ASP.NET, whereas the codes are implemented in Visual Basic and integrated with SQL Server 2005. The knowledge base was represented using production rule, whereas the searching method that was used in developing the network troubleshooting expert system is the forward-chaining-rule-based-system. This software tool offers the advantage of providing an immediate solution to most computer network problems encountered by computer users.

Keywords: expert system, forward chaining rule based system, network, troubleshooting

Procedia PDF Downloads 647
12329 Particle Filter Supported with the Neural Network for Aircraft Tracking Based on Kernel and Active Contour

Authors: Mohammad Izadkhah, Mojtaba Hoseini, Alireza Khalili Tehrani

Abstract:

In this paper we presented a new method for tracking flying targets in color video sequences based on contour and kernel. The aim of this work is to overcome the problem of losing target in changing light, large displacement, changing speed, and occlusion. The proposed method is made in three steps, estimate the target location by particle filter, segmentation target region using neural network and find the exact contours by greedy snake algorithm. In the proposed method we have used both region and contour information to create target candidate model and this model is dynamically updated during tracking. To avoid the accumulation of errors when updating, target region given to a perceptron neural network to separate the target from background. Then its output used for exact calculation of size and center of the target. Also it is used as the initial contour for the greedy snake algorithm to find the exact target's edge. The proposed algorithm has been tested on a database which contains a lot of challenges such as high speed and agility of aircrafts, background clutter, occlusions, camera movement, and so on. The experimental results show that the use of neural network increases the accuracy of tracking and segmentation.

Keywords: video tracking, particle filter, greedy snake, neural network

Procedia PDF Downloads 341
12328 Key Technologies and Evolution Strategies for Computing Force Bearer Network

Authors: Zhaojunfeng

Abstract:

Driven by the national policy of "East Data and Western Calculation", the computing first network will attract a new wave of development. As the foundation of the development of the computing first network, the computing force bearer network has become the key direction of technology research and development in the industry. This article will analyze typical computing force application scenarios and bearing requirements and sort out the SLA indicators of computing force applications. On this basis, this article carries out research and discussion on the key technologies of computing force bearer network in a slice packet network, and finally, gives evolution policy for SPN computing force bearer network to support the development of SPN computing force bearer network technology and network deployment.

Keywords: component-computing force bearing, bearing requirements of computing force application, dual-SLA indicators for computing force applications, SRv6, evolution strategies

Procedia PDF Downloads 130
12327 An Improved Discrete Version of Teaching–Learning-Based ‎Optimization for Supply Chain Network Design

Authors: Ehsan Yadegari

Abstract:

While there are several metaheuristics and exact approaches to solving the Supply Chain Network Design (SCND) problem, there still remains an unfilled gap in using the Teaching-Learning-Based Optimization (TLBO) algorithm. The algorithm has demonstrated desirable results with problems with complicated combinational optimization. The present study introduces a Discrete Self-Study TLBO (DSS-TLBO) with priority-based solution representation that can solve a supply chain network configuration model to lower the total expenses of establishing facilities and the flow of materials. The network features four layers, namely suppliers, plants, distribution centers (DCs), and customer zones. It is designed to meet the customer’s demand through transporting the material between layers of network and providing facilities in the best economic Potential locations. To have a higher quality of the solution and increase the speed of TLBO, a distinct operator was introduced that ensures self-adaptation (self-study) in the algorithm based on the four types of local search. In addition, while TLBO is used in continuous solution representation and priority-based solution representation is discrete, a few modifications were added to the algorithm to remove the solutions that are infeasible. As shown by the results of experiments, the superiority of DSS-TLBO compared to pure TLBO, genetic algorithm (GA) and firefly Algorithm (FA) was established.

Keywords: supply chain network design, teaching–learning-based optimization, improved metaheuristics, discrete solution representation

Procedia PDF Downloads 52
12326 Drug Delivery to Solid Tumor: Effect of Dynamic Capillary Network Induced by Tumor

Authors: Mostafa Sefidgar, Kaamran Raahemifar, Hossein Bazmara, Madjid Soltani

Abstract:

The computational methods provide condition for investigation related to the process of drug delivery, such as convection and diffusion of drug in extracellular matrices, and drug extravasation from microvascular. The information of this process clarifies the mechanisms of drug delivery from the injection site to absorption by a solid tumor. In this study, an advanced numerical method is used to solve fluid flow and solute transport equations simultaneously to show how capillary network structure induced by tumor affects drug delivery. The effect of heterogeneous capillary network induced by tumor on interstitial fluid flow and drug delivery is investigated by this multi scale method. The sprouting angiogenesis model is used for generating capillary network induced by tumor. Fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network and fluid flow in normal and tumor tissues. The Starling’s law is used for closing this system of equations and coupling the intravascular and extravascular flows. Finally, convection-diffusion-reaction equation is used to simulate drug delivery. The dynamic approach which changes the capillary network structure based on signals sent by hemodynamic and metabolic stimuli is used in this study for more realistic assumption. The study indicates that drug delivery to solid tumors depends on the tumor induced capillary network structure. The dynamic approach generates the irregular capillary network around the tumor and predicts a higher interstitial pressure in the tumor region. This elevated interstitial pressure with irregular capillary network leads to a heterogeneous distribution of drug in the tumor region similar to in vivo observations. The investigation indicates that the drug transport properties have a significant role against the physiological barrier of drug delivery to a solid tumor.

Keywords: solid tumor, physiological barriers to drug delivery, angiogenesis, microvascular network, solute transport

Procedia PDF Downloads 312
12325 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification

Authors: Abdelhadi Lotfi, Abdelkader Benyettou

Abstract:

In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.

Keywords: classification, probabilistic neural networks, network optimization, pattern recognition

Procedia PDF Downloads 261
12324 Universality and Synchronization in Complex Quadratic Networks

Authors: Anca Radulescu, Danae Evans

Abstract:

The relationship between a network’s hardwiring and its emergent dynamics are central to neuroscience. We study the principles of this correspondence in a canonical setup (in which network nodes exhibit well-studied complex quadratic dynamics), then test their universality in biological networks. By extending methods from discrete dynamics, we study the effects of network connectivity on temporal patterns, encapsulating long-term behavior into the rich topology of network Mandelbrot sets. Then elements of fractal geometry can be used to predict and classify network behavior.

Keywords: canonical model, complex dynamics, dynamic networks, fractals, Mandelbrot set, network connectivity

Procedia PDF Downloads 308
12323 On the Development of a Homogenized Earthquake Catalogue for Northern Algeria

Authors: I. Grigoratos, R. Monteiro

Abstract:

Regions with a significant percentage of non-seismically designed buildings and reduced urban planning are particularly vulnerable to natural hazards. In this context, the project ‘Improved Tools for Disaster Risk Mitigation in Algeria’ (ITERATE) aims at seismic risk mitigation in Algeria. Past earthquakes in North Algeria caused extensive damages, e.g. the El Asnam 1980 moment magnitude (Mw) 7.1 and Boumerdes 2003 Mw 6.8 earthquakes. This paper will address a number of proposed developments and considerations made towards a further improvement of the component of seismic hazard. In specific, an updated earthquake catalog (until year 2018) is compiled, and new conversion equations to moment magnitude are introduced. Furthermore, a network-based method for the estimation of the spatial and temporal distribution of the minimum magnitude of completeness is applied. We found relatively large values for Mc, due to the sparse network, and a nonlinear trend between Mw and body wave (mb) or local magnitude (ML), which are the most common scales reported in the region. Lastly, the resulting b-value of the Gutenberg-Richter distribution is sensitive to the declustering method.

Keywords: conversion equation, magnitude of completeness, seismic events, seismic hazard

Procedia PDF Downloads 165
12322 An Adjusted Network Information Criterion for Model Selection in Statistical Neural Network Models

Authors: Christopher Godwin Udomboso, Angela Unna Chukwu, Isaac Kwame Dontwi

Abstract:

In selecting a Statistical Neural Network model, the Network Information Criterion (NIC) has been observed to be sample biased, because it does not account for sample sizes. The selection of a model from a set of fitted candidate models requires objective data-driven criteria. In this paper, we derived and investigated the Adjusted Network Information Criterion (ANIC), based on Kullback’s symmetric divergence, which has been designed to be an asymptotically unbiased estimator of the expected Kullback-Leibler information of a fitted model. The analyses show that on a general note, the ANIC improves model selection in more sample sizes than does the NIC.

Keywords: statistical neural network, network information criterion, adjusted network, information criterion, transfer function

Procedia PDF Downloads 566
12321 Active Features Determination: A Unified Framework

Authors: Meenal Badki

Abstract:

We address the issue of active feature determination, where the objective is to determine the set of examples on which additional data (such as lab tests) needs to be gathered, given a large number of examples with some features (such as demographics) and some examples with all the features (such as the complete Electronic Health Record). We note that certain features may be more costly, unique, or laborious to gather. Our proposal is a general active learning approach that is independent of classifiers and similarity metrics. It allows us to identify examples that differ from the full data set and obtain all the features for the examples that match. Our comprehensive evaluation shows the efficacy of this approach, which is driven by four authentic clinical tasks.

Keywords: feature determination, classification, active learning, sample-efficiency

Procedia PDF Downloads 75
12320 Order Optimization of a Telecommunication Distribution Center through Service Lead Time

Authors: Tamás Hartványi, Ferenc Tóth

Abstract:

European telecommunication distribution center performance is measured by service lead time and quality. Operation model is CTO (customized to order) namely, a high mix customization of telecommunication network equipment and parts. CTO operation contains material receiving, warehousing, network and server assembly to order and configure based on customer specifications. Variety of the product and orders does not support mass production structure. One of the success factors to satisfy customer is to have a proper aggregated planning method for the operation in order to have optimized human resources and highly efficient asset utilization. Research will investigate several methods and find proper way to have an order book simulation where practical optimization problem may contain thousands of variables and the simulation running times of developed algorithms were taken into account with high importance. There are two operation research models that were developed, customer demand is given in orders, no change over time, customer demands are given for product types, and changeover time is constant.

Keywords: CTO, aggregated planning, demand simulation, changeover time

Procedia PDF Downloads 267