Search results for: least square support vector machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11513

Search results for: least square support vector machine

9473 The Relationship between Human Pose and Intention to Fire a Handgun

Authors: Joshua van Staden, Dane Brown, Karen Bradshaw

Abstract:

Gun violence is a significant problem in modern-day society. Early detection of carried handguns through closed-circuit television (CCTV) can aid in preventing potential gun violence. However, CCTV operators have a limited attention span. Machine learning approaches to automating the detection of dangerous gun carriers provide a way to aid CCTV operators in identifying these individuals. This study provides insight into the relationship between human key points extracted using human pose estimation (HPE) and their intention to fire a weapon. We examine the feature importance of each keypoint and their correlations. We use principal component analysis (PCA) to reduce the feature space and optimize detection. Finally, we run a set of classifiers to determine what form of classifier performs well on this data. We find that hips, shoulders, and knees tend to be crucial aspects of the human pose when making these predictions. Furthermore, the horizontal position plays a larger role than the vertical position. Of the 66 key points, nine principal components could be used to make nonlinear classifications with 86% accuracy. Furthermore, linear classifications could be done with 85% accuracy, showing that there is a degree of linearity in the data.

Keywords: feature engineering, human pose, machine learning, security

Procedia PDF Downloads 93
9472 A Framework of Dynamic Rule Selection Method for Dynamic Flexible Job Shop Problem by Reinforcement Learning Method

Authors: Rui Wu

Abstract:

In the volatile modern manufacturing environment, new orders randomly occur at any time, while the pre-emptive methods are infeasible. This leads to a real-time scheduling method that can produce a reasonably good schedule quickly. The dynamic Flexible Job Shop problem is an NP-hard scheduling problem that hybrid the dynamic Job Shop problem with the Parallel Machine problem. A Flexible Job Shop contains different work centres. Each work centre contains parallel machines that can process certain operations. Many algorithms, such as genetic algorithms or simulated annealing, have been proposed to solve the static Flexible Job Shop problems. However, the time efficiency of these methods is low, and these methods are not feasible in a dynamic scheduling problem. Therefore, a dynamic rule selection scheduling system based on the reinforcement learning method is proposed in this research, in which the dynamic Flexible Job Shop problem is divided into several parallel machine problems to decrease the complexity of the dynamic Flexible Job Shop problem. Firstly, the features of jobs, machines, work centres, and flexible job shops are selected to describe the status of the dynamic Flexible Job Shop problem at each decision point in each work centre. Secondly, a framework of reinforcement learning algorithm using a double-layer deep Q-learning network is applied to select proper composite dispatching rules based on the status of each work centre. Then, based on the selected composite dispatching rule, an available operation is selected from the waiting buffer and assigned to an available machine in each work centre. Finally, the proposed algorithm will be compared with well-known dispatching rules on objectives of mean tardiness, mean flow time, mean waiting time, or mean percentage of waiting time in the real-time Flexible Job Shop problem. The result of the simulations proved that the proposed framework has reasonable performance and time efficiency.

Keywords: dynamic scheduling problem, flexible job shop, dispatching rules, deep reinforcement learning

Procedia PDF Downloads 108
9471 The Relationships between Energy Consumption, Carbon Dioxide (CO2) Emissions, and GDP for Egypt: Time Series Analysis, 1980-2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), CO2 emissions and gross domestic product (GDP) for Egypt using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen maximum likelihood method for co-integration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests some negative impacts of the CO2 emissions and the coal and natural gas use on the GDP. Conversely, a positive long-run causality from the electricity consumption to the GDP is found to be significant in Egypt during the period. In the short-run, some positive unidirectional causalities exist, running from the coal consumption to the GDP, and the CO2 emissions and the natural gas use. Further, the GDP and the electricity use are positively influenced by the consumption of petroleum products and the direct combustion of crude oil. Overall, the results support arguments that there are relationships among environmental quality, energy use, and economic output in both the short term and long term; however, the effects may differ due to the sources of energy, such as in the case of Egypt for the period of 1980-2010.

Keywords: CO2 emissions, Egypt, energy consumption, GDP, time series analysis

Procedia PDF Downloads 615
9470 Enhanced Extra Trees Classifier for Epileptic Seizure Prediction

Authors: Maurice Ntahobari, Levin Kuhlmann, Mario Boley, Zhinoos Razavi Hesabi

Abstract:

For machine learning based epileptic seizure prediction, it is important for the model to be implemented in small implantable or wearable devices that can be used to monitor epilepsy patients; however, current state-of-the-art methods are complex and computationally intensive. We use Shapley Additive Explanation (SHAP) to find relevant intracranial electroencephalogram (iEEG) features and improve the computational efficiency of a state-of-the-art seizure prediction method based on the extra trees classifier while maintaining prediction performance. Results for a small contest dataset and a much larger dataset with continuous recordings of up to 3 years per patient from 15 patients yield better than chance prediction performance (p < 0.004). Moreover, while the performance of the SHAP-based model is comparable to that of the benchmark, the overall training and prediction time of the model has been reduced by a factor of 1.83. It can also be noted that the feature called zero crossing value is the best EEG feature for seizure prediction. These results suggest state-of-the-art seizure prediction performance can be achieved using efficient methods based on optimal feature selection.

Keywords: machine learning, seizure prediction, extra tree classifier, SHAP, epilepsy

Procedia PDF Downloads 113
9469 Sustainable Development of Adsorption Solar Cooling Machine

Authors: N. Allouache, W. Elgahri, A. Gahfif, M. Belmedani

Abstract:

Solar radiation is by far the largest and the most world’s abundant, clean and permanent energy source. The amount of solar radiation intercepted by the Earth is much higher than annual global energy use. The energy available from the sun is greater than about 5200 times the global world’s need in 2006. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world in the 21st century. One of these important technologies is the solar cooling systems that make use of either absorption or adsorption technologies. The solar adsorption cooling systems are a good alternative since they operate with environmentally benign refrigerants that are natural, free from CFCs, and therefore they have a zero ozone depleting potential (ODP). A numerical analysis of thermal and solar performances of an adsorption solar refrigerating system using different adsorbent/adsorbate pairs, such as activated carbon AC35 and activated carbon BPL/Ammoniac; is undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber, that is the most important component of the machine. The Wilson and Dubinin- Astakhov models of the solid-adsorbat equilibrium are used to calculate the adsorbed quantity. The porous medium is contained in the annular space, and the adsorber is heated by solar energy. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions: the condenser temperature and the evaporator temperature. The AC35/methanol pair is the best pair comparing to the BPL/Ammoniac in terms of system performances.

Keywords: activated carbon-methanol pair, activated carbon-ammoniac pair, adsorption, performance coefficients, numerical analysis, solar cooling system

Procedia PDF Downloads 78
9468 A Fuzzy Hybrıd Decısıon Support System for Naval Base Place Selectıon in a Foreıgn Country

Authors: Latif Yanar, Muharrem Kaçan

Abstract:

In this study, an Analytic Hierarchy Process and Analytic Network Process Decision Support System (DSS) model for determination of a navy base place in another country is proposed together with a decision support software (DESTEC 1.0) developed using C Sharp programming language. The proposed software also has the ability of performing the fuzzy models (Fuzzy AHP and Fuzzy ANP) of the proposed DSS to cope with the ambiguous and linguistic nature of the model. The AHP and ANP model, for a decision support for selecting the best place among the alternatives, including the criteria and alternatives, is developed and solved by the experts from Turkish Navy and Turkish academicians related to international relations branches of the universities in Turkey. Also, the questionnaires used for weighting of the criteria and the alternatives are filled by these experts.Some of our alternatives are: economic and political stability of the third country, the effect of another super power in that country, historical relations, security in that country, social facilities in the city in which the base will be built, the transportation security and difficulty from a main city that have an airport to the city will have the base etc. Over 20 criteria like these are determined which are categorized in social, political, economic and military aspects. As a result all the criteria and three alternatives are evaluated by different people who have background and experience to weight the criteria and alternatives as it must be in AHP and ANP evaluation system. The alternatives got their degrees all between 0 – 1 and the total is 1. At the end the DSS advices one of the alternatives as the best one to the decision maker according to the developed model and the evaluations of the experts.

Keywords: analytic hierarchical process, analytic network process, fuzzy logic, naval base place selection, multiple criteria decision making

Procedia PDF Downloads 391
9467 Hydrogen Production from Auto-Thermal Reforming of Ethanol Catalyzed by Tri-Metallic Catalyst

Authors: Patrizia Frontera, Anastasia Macario, Sebastiano Candamano, Fortunato Crea, Pierluigi Antonucci

Abstract:

The increasing of the world energy demand makes today biomass an attractive energy source, based on the minimizing of CO2 emission and on the global warming reduction purposes. Recently, COP-21, the international meeting on global climate change, defined the roadmap for sustainable worldwide development, based on low-carbon containing fuel. Hydrogen is an energy vector able to substitute the conventional fuels from petroleum. Ethanol for hydrogen production represents a valid alternative to the fossil sources due to its low toxicity, low production costs, high biodegradability, high H2 content and renewability. Ethanol conversion to generate hydrogen by a combination of partial oxidation and steam reforming reactions is generally called auto-thermal reforming (ATR). The ATR process is advantageous due to the low energy requirements and to the reduced carbonaceous deposits formation. Catalyst plays a pivotal role in the ATR process, especially towards the process selectivity and the carbonaceous deposits formation. Bimetallic or trimetallic catalysts, as well as catalysts with doped-promoters supports, may exhibit high activity, selectivity and deactivation resistance with respect to the corresponding monometallic ones. In this work, NiMoCo/GDC, NiMoCu/GDC and NiMoRe/GDC (where GDC is Gadolinia Doped Ceria support and the metal composition is 60:30:10 for all catalyst) have been prepared by impregnation method. The support, Gadolinia 0.2 Doped Ceria 0.8, was impregnated by metal precursors solubilized in aqueous ethanol solution (50%) at room temperature for 6 hours. After this, the catalysts were dried at 100°C for 8 hours and, subsequently, calcined at 600°C in order to have the metal oxides. Finally, active catalysts were obtained by reduction procedure (H2 atmosphere at 500°C for 6 hours). All sample were characterized by different analytical techniques (XRD, SEM-EDX, XPS, CHNS, H2-TPR and Raman Spectorscopy). Catalytic experiments (auto-thermal reforming of ethanol) were carried out in the temperature range 500-800°C under atmospheric pressure, using a continuous fixed-bed microreactor. Effluent gases from the reactor were analyzed by two Varian CP4900 chromarographs with a TCD detector. The analytical investigation focused on the preventing of the coke deposition, the metals sintering effect and the sulfur poisoning. Hydrogen productivity, ethanol conversion and products distribution were measured and analyzed. At 600°C, all tri-metallic catalysts show the best performance: H2 + CO reaching almost the 77 vol.% in the final gases. While NiMoCo/GDC catalyst shows the best selectivity to hydrogen whit respect to the other tri-metallic catalysts (41 vol.% at 600°C). On the other hand, NiMoCu/GDC and NiMoRe/GDC demonstrated high sulfur poisoning resistance (up to 200 cc/min) with respect to the NiMoCo/GDC catalyst. The correlation among catalytic results and surface properties of the catalysts will be discussed.

Keywords: catalysts, ceria, ethanol, gadolinia, hydrogen, Nickel

Procedia PDF Downloads 155
9466 Integrating Machine Learning and Rule-Based Decision Models for Enhanced B2B Sales Forecasting and Customer Prioritization

Authors: Wenqi Liu, Reginald Bailey

Abstract:

This study proposes a comprehensive and effective approach to business-to-business (B2B) sales forecasting by integrating advanced machine learning models with a rule-based decision-making framework. The methodology addresses the critical challenge of optimizing sales pipeline performance and improving conversion rates through predictive analytics and actionable insights. The first component involves developing a classification model to predict the likelihood of conversion, aiming to outperform traditional methods such as logistic regression in terms of accuracy, precision, recall, and F1 score. Feature importance analysis highlights key predictive factors, such as client revenue size and sales velocity, providing valuable insights into conversion dynamics. The second component focuses on forecasting sales value using a regression model, designed to achieve superior performance compared to linear regression by minimizing mean absolute error (MAE), mean squared error (MSE), and maximizing R-squared metrics. The regression analysis identifies primary drivers of sales value, further informing data-driven strategies. To bridge the gap between predictive modeling and actionable outcomes, a rule-based decision framework is introduced. This model categorizes leads into high, medium, and low priorities based on thresholds for conversion probability and predicted sales value. By combining classification and regression outputs, this framework enables sales teams to allocate resources effectively, focus on high-value opportunities, and streamline lead management processes. The integrated approach significantly enhances lead prioritization, increases conversion rates, and drives revenue generation, offering a robust solution to the declining pipeline conversion rates faced by many B2B organizations. Our findings demonstrate the practical benefits of blending machine learning with decision-making frameworks, providing a scalable, data-driven solution for strategic sales optimization. This study underscores the potential of predictive analytics to transform B2B sales operations, enabling more informed decision-making and improved organizational outcomes in competitive markets.

Keywords: machine learning, XGBoost, regression, decision making framework, system engineering

Procedia PDF Downloads 17
9465 Comparative Analysis of Change in Vegetation in Four Districts of Punjab through Satellite Imagery, Land Use Statistics and Machine Learning

Authors: Mirza Waseem Abbas, Syed Danish Raza

Abstract:

For many countries agriculture is still the major force driving the economy and a critically important socioeconomic sector, despite exceptional industrial development across the globe. In countries like Pakistan, this sector is considered the backbone of the economy, and most of the economic decision making revolves around agricultural outputs and data. Timely and accurate facts and figures about this vital sector hold immense significance and have serious implications for the long-term development of the economy. Therefore, any significant improvements in the statistics and other forms of data regarding agriculture sector are considered important by all policymakers. This is especially true for decision making for the betterment of crops and the agriculture sector in general. Provincial and federal agricultural departments collect data for all cash and non-cash crops and the sector, in general, every year. Traditional data collection for such a large sector i.e. agriculture, being time-consuming, prone to human error and labor-intensive, is slowly but gradually being replaced by remote sensing techniques. For this study, remotely sensed data were used for change detection (machine learning, supervised & unsupervised classification) to assess the increase or decrease in area under agriculture over the last fifteen years due to urbanization. Detailed Landsat Images for the selected agricultural districts were acquired for the year 2000 and compared to images of the same area acquired for the year 2016. Observed differences validated through detailed analysis of the areas show that there was a considerable decrease in vegetation during the last fifteen years in four major agricultural districts of the Punjab province due to urbanization (housing societies).

Keywords: change detection, area estimation, machine learning, urbanization, remote sensing

Procedia PDF Downloads 249
9464 Establishing a Model of the Environmental Behavior of College Students: The Example of Global Climate Change

Authors: Tai-Yi Yu, Tai-Kue Yu

Abstract:

Using global climate change as its main theme, this study establishes a model for understanding the environmental behavior of college students. It examines their beliefs about the environment, sustainability, and social impact. Theories about values, beliefs, norms, and planned behaviors helped establish the path relations among various latent variables, which include the students’ values regarding sustainability, environmental concern, social impact, perceived risk, environmental attitude, and behavioral intention. Personality traits were used as moderator variables in order to analyze their role in influencing environmental behaviors. The components-based partial least square (PLS) method was adopted, and the measurements and structural models were analyzed using the SmartPLS software. The proposed model complies with various test standards, including individual item reliability, composite reliability, average variance extracted, goodness-of-fit, and cross-validated redundancy. When college students are taught the concept of environmental sustainability, sustainability becomes an environmental attitude for them, and they are more likely to uphold an ethic of sustainability. The more an individual perceives the risks of global climate change, the stronger her emotional connection to the issue becomes. This positively affects the environmental attitude of college student, pushes them to participate more proactively in improvement activities, and encourages them to display their behavioral intention to improve global climate change. When considering the interaction effect among four latent variables (values regarding sustainability, social impact, environmental concern, and perceived risk), this study found that personality traits have a moderate effect on environmental attitude.

Keywords: partial least square, personality traits, social impact, environmental concern, perceived risk

Procedia PDF Downloads 428
9463 Entrepreneurial Orientation and Innovation Outcomes in Ghanaian Social Enterprises: Interaction Effect of Organizational Unlearning

Authors: Stephen Oduro

Abstract:

With a quantitative research design, this study seeks to analyze how, an intangible resource, Organisational Unlearning shapes the relationship between Entrepreneurial Orientation (EO) and Innovation Outcomes among social entrepreneurship organizations in Ghana. The Resource-Based View (RBV) of the firm and EO-Performance Contingency framework was adopted as the underpinning theories of the study. Entrepreneurial Orientation dimensions, namely Innovativeness, Autonomy, Risk-Taking, Proactiveness, and Competitive aggressiveness were examined to determine its significant, direct influence on the Innovation Outcomes of the social enterprises in Ghana. Organizational Unlearning dimensions, specifically examination of lens fitting, the consolidation of emergent understandings, and framework for changing individual habits were explored to determine whether they strengthen or weaken the direct nexus between Entrepreneurial Orientation dimensions and Innovation Outcomes. A self-administered questionnaire was administered to 556 targeted social enterprises across Africa through online questionnaire platform and the data generated and proposed hypotheses were analyzed and tested using Structural Equation Model-Partial Least Square (SEM-PLS 3) statistical tool. The findings revealed that EO dimensions, specifically proactiveness, autonomy, innovativeness, and risk-taking are positively related to IO, but we found no significant support for competitive aggressiveness. The findings, moreover, divulged that the positive, direct relationship between EO and IO is highly strengthened by OU. It is concluded that OU fully moderates the direct link between EO and IO. The present study contributes to the our understanding of the interrelationship among Entrepreneurial Orientation, Organizational Unlearning, and Innovation Outcomes in the social entrepreneurship context.

Keywords: entrepreneurial orientation, innovation outcomes, organizational unlearning, RBV, SEM-PLS, social enterprise, Africa

Procedia PDF Downloads 140
9462 An International Analysis of Career Development and Management Programs for High-Performance Athletes: A Perspective of Organizational Support

Authors: H. J. Hong

Abstract:

Sporting organizations are arguably responsible for encouraging high-performance athletes to balance their life and identity during their sporting career; sporting organizations can establish the motivational climate for high-performance athletes using athlete career development and management programs. The purpose of this article to provide an overview of career development and management programs in 20 countries and to examine the following seven features of the programs: (1) Which government-funded sporting organizations provide career development and management programs? (2) Which athletes are eligible to access the programs? (3) What are the aims and objectives of the programs? (4) What are the activities and content of the programs? (5) Who is responsible for the delivery of the programs within organizations (e.g., advisors, coordinators, service providers, counsellors, etc.)? (6) Do the sporting organizations have training and development programs for support services providers? and (7) Do the sporting organizations assess the programs in terms of the programs’ impact on high-performance athletes’ career development and management skills? Web-based data collection was conducted first. The author contacted the sporting organizations to clarify information as required by requesting further information via emails, international calls, video calls on Skype, and by visiting the sporting organizations and meeting with the practitioners (Fiji, Ireland, Korea, Scotland, Singapore, and Spain). By selecting comparable career development and management programs, the present study reviews programs across the world, identifying similarities, differences, and difficulties, so that sporting organizations and practitioners may enhance the quality of their programs. Since international comparisons of career development and management programs remain scarce, the findings deepen the knowledge of high-performance athletes’ career development, management, and transitions in the areas of organizational support programs.

Keywords: athletes' career development and management, athletes' psychological preparation, organizational support, sport career transition

Procedia PDF Downloads 125
9461 Critique of the City-Machine: Dismantling the Scientific Socialist Utopia of Soviet Territorialization

Authors: Rachel P. Vasconcellos

Abstract:

The Russian constructivism is usually enshrined in history as another ''modernist ism'', that is, as an artistic phenomenon related to the early twentieth century‘s zeitgeist. What we aim in this essay is to analyze the constructivist movement not over the Art History field neither through the aesthetic debate, but through a geographical critical theory, taking the main idea of construction in the concrete sense of production of space. Seen from the perspective of the critique of space, the constructivist production is presented as a plan of totality, designed as socialist society‘s spatiality, contemplating and articulating all its scalar levels: the objects of everyday life, the building, the city and the territory. The constructivist avant-garde manifests a geographical ideology, launching the foundation‘s basis of modern planning ideology. Taken in its political sense, the artistic avant-garde of the Russian Revolution intended to anticipate the forms of a social future already put in progress: their plastic research pointed to new formal expressions to revolutionary contents. With the foundation of new institutions under a new State, it was given to the specialized labor of artists, architects, and planners the task of designing the socialist society, based on the thesis of scientific socialism. Their projects were developed under the politico-economics imperatives to the Soviet modernization – that is: the structural needs of industrialization and inclusion of all people in the productive work universe. This context shapes the creative atmosphere of the constructivist avant-garde, which uses the methods of engineering to the transform everyday life. Architecture, urban planning, and state planning integrated must then operate as spatial arrangement morphologically able to produce socialist life. But due to the intrinsic contradictions of the process, the rational and geometric aesthetic of the City-Machine appears, finally, as an image of a scientific socialist utopia.

Keywords: city-machine, critique of space, production of space, soviet territorialization

Procedia PDF Downloads 277
9460 Analysis of the Current and Ideal Situation of Iran’s Football Talent Management Process from the Perspective of the Elites

Authors: Mehran Nasiri, Ardeshir Poornemat

Abstract:

The aim of this study was to investigate the current and ideal situations of the process of talent identification in Iranian football from the point of view of Iranian instructors of the Asian Football Confederation (AFC). This research was a descriptive-analytical study; in data collection phase a questionnaire was used, whose face validity was confirmed by experts of Physical Education and Sports Science. The reliability of questionnaire was estimated through the use of Cronbach's alpha method (0.91). This study involved 122 participants of Iranian instructors of the AFC who were selected based on stratified random sampling method. Descriptive statistics were used to describe the variables and inferential statistics (Chi-square) were used to test the hypotheses of the study at significant level (p ≤ 0.05). The results of Chi-square test related to the point of view of Iranian instructors of the AFC showed that the grass-roots scientific method was the best way to identify football players (0.001), less than 10 years old were the best ages for talent identification (0.001), the Football Federation was revealed to be the most important organization in talent identification (0.002), clubs were shown to be the most important institution in developing talents (0.001), trained scouts of Football Federation were demonstrated to be the best and most appropriate group for talent identification (0.001), and being referred by the football academy coaches was shown to be the best way to attract talented football players in Iran (0.001). It was also found that there was a huge difference between the current and ideal situation of the process of talent identification in Iranian football from the point of view of Iranian instructors of the AFC. Hence, it is recommended that the policy makers of talent identification for Iranian football provide a comprehensive, clear and systematic model of talent identification and development processes for the clubs and football teams, so that the talent identification process helps to nurture football talents more efficiently.

Keywords: current situation, talent finding, ideal situation, instructors (AFC)

Procedia PDF Downloads 213
9459 Narrating Atatürk Cultural Center as a Place of Memory and a Space of Politics

Authors: Birge Yildirim Okta

Abstract:

This paper aims to narrate the story of Atatürk Cultural Center in Taksim Square, which was demolished in 2018 and discuss its architectonic as a social place of memory and its existence and demolishment as the space of politics. The paper uses narrative discourse analysis to research Atatürk Cultural Center (AKM) as a place of memory and space of politics from the establishment of the Turkish Republic (1923) until today. After the establishment of the Turkish Republic, one of the most important implementations in Taksim Square, reflecting the internationalist style, was the construction of the Opera Building in Prost Plan. The first design of the opera building belonged to Aguste Perret, which could not be implemented due to economic hardship during World War II. Later the project was designed by architects Feridun Kip and Rüknettin Güney in 1946 but could not be completed due to the 1960 military coup. Later the project was shifted to another architect Hayati Tabanlıoglu, with a change in its function as a cultural center. Eventually, the construction of the building was completed in 1969 in a completely different design. AKM became a symbol of republican modernism not only with its modern architectural style but also with it is function as the first opera building of the Republic, reflecting the western, modern cultural heritage by professional groups, artists, and the intelligentsia. In 2005, Istanbul’s council for the protection of cultural heritage decided to list AKM as a grade 1 cultural heritage, ending a period of controversy which saw calls for the demolition of the center as it was claimed, it ended its useful lifespan. In 2008 the building was announced to be closed for repairs and restoration. Over the following years, the building was demolished piece by piece silently while the Taksim mosque has been built just in front of Atatürk Cultural Center. Belonging to the early republican period AKM was a representation of the cultural production of modern society for the emergence and westward looking, secular public space in Turkey. Its erasure from the Taksim scene under the rule of the conservative government, Justice, and Development Party, and the construction of the Taksim mosque in front of AKM’s parcel is also representational. The question of governing the city through space has always been an important aspect for governments, those holding political power since cities are the chaotic environments that are seen as a threat for the governments, carrying the tensions of the proletariat or the contradictory groups. The story of AKM as a dispositive or a regulatory apparatus demonstrates how space itself is becoming a political medium, to transform the socio-political condition. The paper narrates the existence and demolishment of the Atatürk Cultural Center by discussing the constructed and demolished building as a place of memory and space of politics.

Keywords: space of politics, place of memory, Atatürk Cultural Center, Taksim square, collective memory

Procedia PDF Downloads 140
9458 Performants: A Digital Event Manager-Organizer

Authors: Ioannis Andrianakis, Manolis Falelakis, Maria Pavlidou, Konstantinos Papakonstantinou, Ermioni Avramidou, Dimitrios Kalogiannis, Nikolaos Milios, Katerina Bountakidou, Kiriakos Chatzidimitriou, Panagiotis Panagiotopoulos

Abstract:

Artistic events, such as concerts and performances, are challenging to organize because they involve many people with different skill sets. Small and medium venues often struggle to afford the costs and overheads of booking and hosting remote artists, especially if they lack sponsors or subsidies. This limits the opportunities for both venues and artists, especially those outside of big cities. However, more and more research shows that audiences prefer smaller-scale events and concerts, which benefit local economies and communities. To address this challenge, our project “PerformAnts: Digital Event Manager-Organizer” aims to develop a smart digital tool that automates and optimizes the processes and costs of live shows and tours. By using machine learning, applying best practices and training users through workshops, our platform offers a comprehensive solution for a growing market, enhances the mobility of artists and the accessibility of venues and allows professionals to focus on the creative aspects of concert production.

Keywords: event organization, creative industries, event promotion, machine learning

Procedia PDF Downloads 87
9457 Construction of Genetic Recombinant Yeasts with High Environmental Tolerance by Accumulation of Trehalose and Detoxication of Aldehyde

Authors: Yun-Chin Chung, Nileema Divate, Gen-Hung Chen, Pei-Ru Huang, Rupesh Divate

Abstract:

Many environmental factors, such as glucose concentration, ethanol, temperature, osmotic pressure and pH, decrease the production rate of ethanol using yeast as a starter. Fermentation starters with high tolerance to various stresses are always demanded for brewing industry. Trehalose, a storage carbohydrate in cell wall of yeast, plays an important role in tolerance of environmental stress by preserving integrity of plasma membrane and stabilizing proteins. Furan aldehydes are toxic to yeast and the growth rate of yeast is significantly reduced if furan aldehydes were present in the fermentation medium. In yeast, aldehyde reductase is involved in the detoxification of reactive aldehydes and consequently the growth of yeast is improved. The aims of this study were to construct a genetic recombinant Saccharomyces cerevisiae or Pichia pastoris with furfural and HMF degrading and high ethanol tolerance capacities. Yeast strains were engineered by genetic recombination for overexpression of trehalose-6-phosphate synthase gene (tps1) and aldehyde reductase gene (ari1). TPS1 gene was cloned from S. cerevisiae by reverse transcription-polymerase chain reaction (RT-PCR) and then ligated with pGAPZαC vector. The constructed vector, pGAPZC-tps1, was transformed to recombinant yeasts strain with overexpression of ari1. The transformants with pGAPZC-tps1-ari1 were generated called STA (S. cerevisiae) and PTA (P. pastoris) with overexpression of tps1, ari1. PCR with tps1-specific primers and western blot with his-tag confirmed the gene insertion and protein expression of tps1 in the transformants, respectively. The neutral trehalase gene (nth1) of STA was successfully deleted and the novel strain STAΔN will be used for further study, including the measurement of trehalose concentration and ethanol, furfural tolerance assay.

Keywords: genetic recombinant, yeast, ethanol tolerance, trehalase, aldehyde reductase

Procedia PDF Downloads 422
9456 Application of Regularized Spatio-Temporal Models to the Analysis of Remote Sensing Data

Authors: Salihah Alghamdi, Surajit Ray

Abstract:

Space-time data can be observed over irregularly shaped manifolds, which might have complex boundaries or interior gaps. Most of the existing methods do not consider the shape of the data, and as a result, it is difficult to model irregularly shaped data accommodating the complex domain. We used a method that can deal with space-time data that are distributed over non-planner shaped regions. The method is based on partial differential equations and finite element analysis. The model can be estimated using a penalized least squares approach with a regularization term that controls the over-fitting. The model is regularized using two roughness penalties, which consider the spatial and temporal regularities separately. The integrated square of the second derivative of the basis function is used as temporal penalty. While the spatial penalty consists of the integrated square of Laplace operator, which is integrated exclusively over the domain of interest that is determined using finite element technique. In this paper, we applied a spatio-temporal regression model with partial differential equations regularization (ST-PDE) approach to analyze a remote sensing data measuring the greenness of vegetation, measure by an index called enhanced vegetation index (EVI). The EVI data consist of measurements that take values between -1 and 1 reflecting the level of greenness of some region over a period of time. We applied (ST-PDE) approach to irregular shaped region of the EVI data. The approach efficiently accommodates the irregular shaped regions taking into account the complex boundaries rather than smoothing across the boundaries. Furthermore, the approach succeeds in capturing the temporal variation in the data.

Keywords: irregularly shaped domain, partial differential equations, finite element analysis, complex boundray

Procedia PDF Downloads 141
9455 Wheat Production and Market in Afghanistan

Authors: Fayiz Saifurahman, Noori Fida Mohammad

Abstract:

Afghanistan produces the highest rate of wheat, it is the first source of food, and food security in Afghanistan is dependent on the availability of wheat. Although Afghanistan is the main producer of wheat, on the other hand, Afghanistan is the largest importers of flour. The objective of this study is to assess the structure and dynamics of the wheat market in Afghanistan, can compute with foreign markets, and increase the level of production. To complete this, a broad series of secondary data was complied with, group discussions and interviews with farmers, agricultural and market experts. The research findings propose that; the government should adopt different policies to support the local market. The government should distribute the seed, support financially and technically to increase wheat production.

Keywords: Afghanistan, wheat, production , import

Procedia PDF Downloads 168
9454 SVM-RBN Model with Attentive Feature Culling Method for Early Detection of Fruit Plant Diseases

Authors: Piyush Sharma, Devi Prasad Sharma, Sulabh Bansal

Abstract:

Diseases are fairly common in fruits and vegetables because of the changing climatic and environmental circumstances. Crop diseases, which are frequently difficult to control, interfere with the growth and output of the crops. Accurate disease detection and timely disease control measures are required to guarantee high production standards and good quality. In India, apples are a common crop that may be afflicted by a variety of diseases on the fruit, stem, and leaves. It is fungi, bacteria, and viruses that trigger the early symptoms of leaf diseases. In order to assist farmers and take the appropriate action, it is important to develop an automated system that can be used to detect the type of illnesses. Machine learning-based image processing can be used to: this research suggested a system that can automatically identify diseases in apple fruit and apple plants. Hence, this research utilizes the hybrid SVM-RBN model. As a consequence, the model may produce results that are more effective in terms of accuracy, precision, recall, and F1 Score, with respective values of 96%, 99%, 94%, and 93%.

Keywords: fruit plant disease, crop disease, machine learning, image processing, SVM-RBN

Procedia PDF Downloads 64
9453 Assessing the Recycling Potential of Cupriavidus Necator for Space Travel: Production of Single Cell Proteins and Polyhydroxyalkanoates From Organic Waste

Authors: P. Joris, E. Lombard, X. Cameleyre, G. Navarro, A. Paillet, N. Gorret, S. E. Guillouet

Abstract:

Today, on the international space station, multiple supplies are needed per year to supply food and spare parts and to take out waste. But as it is planned to go longer and further into space these supplies will no longer be possible. The astronaut life support system must be able of continuously transform waste into valuable compounds. Two types of production were identified as critical and could be be supplemented by microorganisms. On the one hand, since microgravity causes rapid muscle loss, single cell proteins (SCPs) could be used as protein rich feed or food. On the other hand, having enough building materials to build an advanced habitat will not be possible only by transporting space goods from earth to mars for example. The bacterium Cupriavidus. necator is well known for its ability to produce a large amount of proteins or of polyhydroxyalkanoate biopolymers (PHAs) depending on its implementation. By coupling the life support system to a 3D-printer, astronauts could be supplied with an unlimited amount of building materials. Additionally, based on the design of the life support system, waste streams have been identified: urea from the crew urine and volatile fatty acids (VFAs) from a first stage of organic waste (excrement and food waste) treatment through anaerobic digestion. Thus, the objective of this, within the Spaceship.Fr project, was to demonstrate the feasibility of producing SCPs and PHAs from VFAs and urea in bioreactor. Because life support systems operate continuously as loops, continuous culture experiments were chosen and the effect of the bioreactor dilution rate on biomass composition was investigated. Total transformation of the carbon source into biomass with high SCP or PHA content was achieved in all cases. We will present the transformation performances of VFAs and urea by the bacteria in bioreactor in terms of titers, yields and productivities but also in terms of the quality of SCP and PHA produced, nucleic acid content. We will further discuss the envisioned integration of our process within life support systems.

Keywords: life support system, space travel, waste treatment, single cell proteins, polyhydroxyalkanoates, bioreactor

Procedia PDF Downloads 121
9452 Investigating the Morphological Patterns of Lip Prints and Their Effectiveness in Individualization and Gender Determination in Pakistani Population

Authors: Makhdoom Saad Wasim Ghouri, Muneeba Butt, Mohammad Ashraf Tahir, Rashid Bhatti, Akbar Ali, Abdul Rehman, Abdul Basit, Muzzamel Rehman, Shahbaz Aslam, Farakh Mansoor, Ahmad Fayyaz, Hadia Siddiqui

Abstract:

Lip print analysis (Cheiloscopy) is the new emerging technique that might be the guardian angel in establishing the personal identity. Cheiloscopy is basically the study of elevations and depressions present on the external surface of the lips. In our study, 600 lip prints samples were taken (300 males and 300 females). Lip prints of each individual were divided into four quadrants and the upper middle portion. For general classification, middle part of the lower lip almost 10 mm wide would be taken into consideration. After analysis of lip-prints, our results show that lip prints are the unique and permanent character of every individual. No two lip print was matched with each other even of the identical twins. Our study reveals that there is equal distribution of lip print patterns among all the four quadrants of lips and the upper middle portion; these distributions were statistically analyzed by applying chi-square test which shows the significant results. In general classification, 5 lip print types/patterns were studied, Type 1 (Vertical lines), Type 2 (Branched pattern), Type 3 (Intersected pattern), Type 4 (Reticular pattern) and Type 5 (Undetermined). Type 1 and Type 2 were found to be the most frequent patterns in female population, while Type 3 and Type 4 most commonly found in male population. These results were also analyzed by applying Chi-square test, and the results show significance statistically. Thus, establishing sex determination on the basis of lip print types among the gender. Type 5 was the least common pattern among genders.

Keywords: cheiloscopy, distribution, quadrants, sex determination

Procedia PDF Downloads 299
9451 Effect of Anion and Amino Functional Group on Resin for Lipase Immobilization with Adsorption-Cross Linking Method

Authors: Heri Hermansyah, Annisa Kurnia, A. Vania Anisya, Adi Surjosatyo, Yopi Sunarya, Rita Arbianti, Tania Surya Utami

Abstract:

Lipase is one of biocatalyst which is applied commercially for the process in industries, such as bioenergy, food, and pharmaceutical industry. Nowadays, biocatalysts are preferred in industries because they work in mild condition, high specificity, and reduce energy consumption (high pressure and temperature). But, the usage of lipase for industry scale is limited by economic reason due to the high price of lipase and difficulty of the separation system. Immobilization of lipase is one of the solutions to maintain the activity of lipase and reduce separation system in the process. Therefore, we conduct a study about lipase immobilization with the adsorption-cross linking method using glutaraldehyde because this method produces high enzyme loading and stability. Lipase is immobilized on different kind of resin with the various functional group. Highest enzyme loading (76.69%) was achieved by lipase immobilized on anion macroporous which have anion functional group (OH). However, highest activity (24,69 U/g support) through olive oil emulsion method was achieved by lipase immobilized on anion macroporous-chitosan which have amino (NH2) and anion (OH-) functional group. In addition, it also success to produce biodiesel until reach yield 50,6% through interesterification reaction and after 4 cycles stable 63.9% relative with initial yield. While for Aspergillus, niger lipase immobilized on anion macroporous-kitosan have unit activity 22,84 U/g resin and yield biodiesel higher than commercial lipase (69,1%) and after 4 cycles stable reach 70.6% relative from initial yield. This shows that optimum functional group on support for immobilization with adsorption-cross linking is the support that contains amino (NH2) and anion (OH-) functional group because they can react with glutaraldehyde and binding with enzyme prevent desorption of lipase from support through binding lipase with a functional group on support.

Keywords: adsorption-cross linking, immobilization, lipase, resin

Procedia PDF Downloads 369
9450 Psychological Capital and Intention for Self-Employment among Students in HEIs: A Multi-group Analysis Approach

Authors: Ugur Choban, Aruzhan Zhaksylyk, Assylbek Nurgabdeshov

Abstract:

In recent years, there has been an increasing understanding of the value of encouraging entrepreneurial attitudes in university students. This is motivated by the belief that stimulating entrepreneurship not only promotes economic growth but also fosters innovation. This study looks at the complex link and addresses critical gaps between psychological capital and entrepreneurial intention among university students, with a specific emphasis on how contextual factors like academic support and past business experience impact this dynamic. Using a quantitative research method, data were gathered from a broad sample of 300 university students drawn from several faculties. The study used a questionnaire that included the Psychological Capital Questionnaire (PCQ) to assess psychological capital and a validated scale for entrepreneurial intention, as well as binary measures of academic support and prior entrepreneurial experience. Statistical investigations, including multigroup analyses performed with SmartPLS software, provided interesting insights into the effect of contextual factors on the relationship between psychological capital and entrepreneurial intention. The findings highlight that psychological capital had a strong favorable influence on university students' entrepreneurial inclinations. Furthermore, the study found that academic support enhances the influence of psychological capital on entrepreneurial intentions, emphasizing the significance of institutional backing in fostering entrepreneurial mindsets. Furthermore, students with prior entrepreneurial experience had a stronger propensity for entrepreneurship, showing a synergistic link between psychological capital and entrepreneurial background. These findings have both theoretical and practical implications. By explaining the mechanisms by which psychological capital promotes entrepreneurial intentions, the study contributes to the establishment of focused entrepreneurship education programs and support activities that are suited to student requirements. Policymakers may use these findings to create policies that encourage student entrepreneurship, ultimately encouraging economic development and innovation.

Keywords: academic support, entrepreneurial intentions, higher education institutions, psychological capital, prior entrepreneurial experience

Procedia PDF Downloads 56
9449 Hate Speech Detection Using Machine Learning: A Survey

Authors: Edemealem Desalegn Kingawa, Kafte Tasew Timkete, Mekashaw Girmaw Abebe, Terefe Feyisa, Abiyot Bitew Mihretie, Senait Teklemarkos Haile

Abstract:

Currently, hate speech is a growing challenge for society, individuals, policymakers, and researchers, as social media platforms make it easy to anonymously create and grow online friends and followers and provide an online forum for debate about specific issues of community life, culture, politics, and others. Despite this, research on identifying and detecting hate speech is not satisfactory performance, and this is why future research on this issue is constantly called for. This paper provides a systematic review of the literature in this field, with a focus on approaches like word embedding techniques, machine learning, deep learning technologies, hate speech terminology, and other state-of-the-art technologies with challenges. In this paper, we have made a systematic review of the last six years of literature from Research Gate and Google Scholar. Furthermore, limitations, along with algorithm selection and use challenges, data collection, and cleaning challenges, and future research directions, are discussed in detail.

Keywords: Amharic hate speech, deep learning approach, hate speech detection review, Afaan Oromo hate speech detection

Procedia PDF Downloads 178
9448 Thick Data Analytics for Learning Cataract Severity: A Triplet Loss Siamese Neural Network Model

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Diagnosing cataract severity is an important factor in deciding to undertake surgery. It is usually conducted by an ophthalmologist or through taking a variety of fundus photography that needs to be examined by the ophthalmologist. This paper carries out an investigation using a Siamese neural net that can be trained with small anchor samples to score cataract severity. The model used in this paper is based on a triplet loss function that takes the ophthalmologist best experience in rating positive and negative anchors to a specific cataract scaling system. This approach that takes the heuristics of the ophthalmologist is generally called the thick data approach, which is a kind of machine learning approach that learn from a few shots. Clinical Relevance: The lens of the eye is mostly made up of water and proteins. A cataract occurs when these proteins at the eye lens start to clump together and block lights causing impair vision. This research aims at employing thick data machine learning techniques to rate the severity of the cataract using Siamese neural network.

Keywords: thick data analytics, siamese neural network, triplet-loss model, few shot learning

Procedia PDF Downloads 111
9447 The Effects of Anapana Meditation Training Program Monitored by Skin Conductance and Temperature (SC/ST) Biofeedback on Stress in Bachelor’s Degree Students

Authors: Ormanee Patarathipakorn

Abstract:

Background: Stress was the major psychological problem that affecting to physical and mental health among undergraduate students. Aim of study was to determine the effective of meditation training program (MTP) for stress reduction measured by biofeedback (BB) machine. Material and Methods: This was quasi-experimental study conducted in Faculty of Dentistry, Thammasat University, Thailand. Study period was between August and December 2023. Participants were the first-year Dentistry students. MTP was concentration meditation (Anapana meditation). Stress measurement was evaluated by using Thai version perceived stress scale (T-PSS-10) was performed at one week before study, 14 and 18 weeks. Stress evaluation by biofeedback machine (skin conductance: SC and skin temperature: ST) were performed at one week before study, 4, 8, 14 and 18 weeks. Data from T-PSS-10 and SC/ST biofeedback were collected and analyzed. Results: A total of 28 subjects were recruited. The mean age of participant was 18.4 years old. Two-thirds (19/28) was female. Stress reduction from MTP was detected since 4 and 8 weeks by STBB and SCBB, respectively. T-PSS 10 scores before MTP, 14 and 18 weeks were 17.7± 5.4, 9.8 ± 3.1 and 8.4 ± 3.1 with statistical significance. Conclusion: Meditation training program could reduce stress and measured by skin conductance and temperature biofeedback.

Keywords: stress, meditation, biofeedback, student

Procedia PDF Downloads 37
9446 CO₂ Absorption Studies Using Amine Solvents with Fourier Transform Infrared Analysis

Authors: Avoseh Funmilola, Osman Khalid, Wayne Nelson, Paramespri Naidoo, Deresh Ramjugernath

Abstract:

The increasing global atmospheric temperature is of great concern and this has led to the development of technologies to reduce the emission of greenhouse gases into the atmosphere. Flue gas emissions from fossil fuel combustion are major sources of greenhouse gases. One of the ways to reduce the emission of CO₂ from flue gases is by post combustion capture process and this can be done by absorbing the gas into suitable chemical solvents before emitting the gas into the atmosphere. Alkanolamines are promising solvents for this capture process. Vapour liquid equilibrium of CO₂-alkanolamine systems is often represented by CO₂ loading and partial pressure of CO₂ without considering the liquid phase. The liquid phase of this system is a complex one comprising of 9 species. Online analysis of the process is important to monitor the concentrations of the liquid phase reacting and product species. Liquid phase analysis of CO₂-diethanolamine (DEA) solution was performed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. A robust Calibration was performed for the CO₂-aqueous DEA system prior to an online monitoring experiment. The partial least square regression method was used for the analysis of the calibration spectra obtained. The models obtained were used for prediction of DEA and CO₂ concentrations in the online monitoring experiment. The experiment was performed with a newly built recirculating experimental set up in the laboratory. The set up consist of a 750 ml equilibrium cell and ATR-FTIR liquid flow cell. Measurements were performed at 400°C. The results obtained indicated that the FTIR spectroscopy combined with Partial least square method is an effective tool for online monitoring of speciation.

Keywords: ATR-FTIR, CO₂ capture, online analysis, PLS regression

Procedia PDF Downloads 198
9445 T-S Fuzzy Modeling Based on Power Coefficient Limit Nonlinearity Applied to an Isolated Single Machine Load Frequency Deviation Control

Authors: R. S. Sheu, H. Usman, M. S. Lawal

Abstract:

Takagi-Sugeno (T-S) fuzzy model based control of a load frequency deviation in a single machine with limit nonlinearity on power coefficient is presented in the paper. Two T-S fuzzy rules with only rotor angle variable as input in the premise part, and linear state space models in the consequent part involving characteristic matrices determined from limits set on the power coefficient constant are formulated, state feedback control gains for closed loop control was determined from the formulated Linear Matrix Inequality (LMI) with eigenvalue optimization scheme for asymptotic and exponential stability (speed of esponse). Numerical evaluation of the closed loop object was carried out in Matlab. Simulation results generated of both the open and closed loop system showed the effectiveness of the control scheme in maintaining load frequency stability.

Keywords: T-S fuzzy model, state feedback control, linear matrix inequality (LMI), frequency deviation control

Procedia PDF Downloads 397
9444 Lattice Dynamics of (ND4Br)x(KBr)1-x Mixed Crystals

Authors: Alpana Tiwari, N. K. Gaur

Abstract:

We have incorporated the translational rotational (TR) coupling effects in the framework of three body force shell model (TSM) to develop an extended TSM (ETSM). The dynamical matrix of ETSM has been applied to compute the phonon frequencies of orientationally disordered mixed crystal (ND4Br)x(KBr)1-x in (q00), (qq0) and (qqq) symmetry directions for compositions 0.10≤x≤0.50 at T=300K.These frequencies are plotted as a function of wave vector k. An unusual acoustic mode softening is found along symmetry directions (q00) and (qq0) as a result of translation-rotation coupling.

Keywords: orientational glass, phonons, TR-coupling, lattice dynamics

Procedia PDF Downloads 305