Search results for: heat capacity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6940

Search results for: heat capacity

4900 Eco-Design of Multifunctional System Based on a Shape Memory Polymer and ZnO Nanoparticles for Sportswear

Authors: Inês Boticas, Diana P. Ferreira, Ana Eusébio, Carlos Silva, Pedro Magalhães, Ricardo Silva, Raul Fangueiro

Abstract:

Since the beginning of the 20th century, sportswear has a major contribution to the impact of fashion on our lives. Nowadays, the embracing of sportswear fashion/looks is undoubtedly noticeable, as the modern consumer searches for high comfort and linear aesthetics for its clothes. This compromise lead to the arise of the athleisure trend. Athleisure surges as a new style area that combines both wearability and fashion sense, differentiated from the archetypal sportswear, usually associated to “gym clothes”. Additionally, the possibility to functionalize and implement new technologies have shifted and progressively empowers the connection between the concepts of physical activities practice and well-being, allowing clothing to be more interactive and responsive with its surroundings. In this study, a design inspired in retro and urban lifestyle was envisioned, engineering textile structures that can respond to external stimuli. These structures are enhanced to be responsive to heat, water vapor and humidity, integrating shape memory polymers (SMP) to improve the breathability and heat-responsive behavior of the textiles and zinc oxide nanoparticles (ZnO NPs) to heighten the surface hydrophobic properties. The best results for hydrophobic exhibited superhydrophobic behavior with water contact angle (WAC) of more than 150 degrees. For the breathability and heat-response properties, SMP-coated samples showed an increase in water vapour permeability values of about 50% when compared with non SMP-coated samples. These innovative technological approaches were endorsed to design innovative clothing, in line with circular economy and eco-design principles, by assigning a substantial degree of mutability and versatility to the clothing. The development of a coat and shirt, in which different parts can be purchased separately to create multiple products, aims to combine the technicality of both the fabrics used and the making of the garments. This concept translates itself into a real constructive mechanism through the symbiosis of high-tech functionalities and the timeless design that follows the athleisure aesthetics.

Keywords: breathability, sportswear and casual clothing, sustainable design, superhydrophobicity

Procedia PDF Downloads 136
4899 High Efficiency Solar Thermal Collectors Utilization in Process Heat: A Case Study of Textile Finishing Industry

Authors: Gökçen A. Çiftçioğlu, M. A. Neşet Kadırgan, Figen Kadırgan

Abstract:

Solar energy, since it is available every day, is seen as one of the most valuable renewable energy resources. Thus, the energy of sun should be efficiently used in various applications. The most known applications that use solar energy are heating water and spaces. High efficiency solar collectors need appropriate selective surfaces to absorb the heat. Selective surfaces (Selektif-Sera) used in this study are applied to flat collectors, which are produced by a roll to roll cost effective coating of nano nickel layers, developed in Selektif Teknoloji Co. Inc. Efficiency of flat collectors using Selektif-Sera absorbers are calculated in collaboration with Institute for Solar Technik Rapperswil, Switzerland. The main cause of high energy consumption in industry is mostly caused from low temperature level processes. There is considerable effort in research to minimize the energy use by renewable energy sources such as solar energy. A feasibility study will be presented to obtain the potential of solar thermal energy utilization in the textile industry using these solar collectors. For the feasibility calculations presented in this study, textile dyeing and finishing factory located at Kahramanmaras is selected since the geographic location was an important factor. Kahramanmaras is located in the south east part of Turkey thus has a great potential to have solar illumination much longer. It was observed that, the collector area is limited by the available area in the factory, thus a hybrid heating generating system (lignite/solar thermal) was preferred in the calculations of this study to be more realistic. During the feasibility work, the calculations took into account the preheating process, where well waters heated from 15 °C to 30-40 °C by using the hot waters in heat exchangers. Then the preheated water was heated again by high efficiency solar collectors. Economic comparison between the lignite use and solar thermal collector use was provided to determine the optimal system that can be used efficiently. The optimum design of solar thermal systems was studied depending on the optimum collector area. It was found that the solar thermal system is more economic and efficient than the merely lignite use. Return on investment time is calculated as 5.15 years.

Keywords: energy, renewable energy, selective surface, solar collector

Procedia PDF Downloads 207
4898 Biorefinery Annexed to South African Sugar Mill: Energy Sufficiency Analysis

Authors: S. Farzad, M. Ali Mandegari, J. F. Görgens

Abstract:

The South African Sugar Industry, which has a significant impact on the national economy, is currently facing problems due to increasing energy price and low global sugar price. The available bagasse is already combusted in low-efficiency boilers of the sugar mills while bagasse is generally recognized as a promising feedstock for second generation bioethanol production. Establishment of biorefinery annexed to the existing sugar mills, as an alternative for the revitalization of sugar industry producing biofuel and electricity has been proposed and considered in this study. Since the scale is an important issue in the feasibility of the technology, this study has taken into account a typical sugar mill with 300 ton/hr sugar cane capacity. The biorefinery simulation is carried out using Aspen PlusTM V8.6, in which the sugar mill’s power and steam demand has been considered. Hence, sugar mills in South Africa can be categorized as highly efficient, efficient, and not efficient with steam consumption of 33, 40, and 60 tons of steam per ton of cane and electric power demand of 10 MW; three different scenarios are studied. The sugar cane bagasse and tops/trash are supplied to the biorefinery process and the wastes/residues (mostly lignin) from the process are burnt in the CHP plant in order to produce steam and electricity for the biorefinery and sugar mill as well. Considering the efficient sugar mill, the CHP plant has generated 5 MW surplus electric powers, but the obtained energy is not enough for self-sufficiency of the plant (Biorefinery and Sugar mill) due to lack of 34 MW heat. One of the advantages of second generation biorefinery is its low impact on the environment and carbon footprint, thus the plant should be self-sufficient in energy without using fossil fuels. For this reason, a portion of fresh bagasse should be sent to the CHP plant to meet the energy requirements. An optimization procedure was carried out to find out the appropriate portion to be burnt in the combustor. As a result, 20% of the bagasse is re-routed to the combustor which leads to 5 tons of LP Steam and 8.6 MW electric power surpluses.

Keywords: biorefinery, sugarcane bagasse, sugar mill, energy analysis, bioethanol

Procedia PDF Downloads 475
4897 Thermo-Mechanical Treatments of Cu-Ti Alloys

Authors: M. M. Morgham, A. A. Hameda, N. A. Zriba, H. A. Jawan

Abstract:

This paper aims to study the effect of cold work condition on the microstructure of Cu-1.5wt%Ti, and Cu-3.5wt%Ti and hence mechanical properties. The samples under investigation were machined and solution heat treated. X-ray diffraction technique is used to identify the different phases present after cold deformation by compression and also different heat treatment and also measuring the relative quantities of phases present. Metallographic examination is used to study the microstructure of the samples. The hardness measurements were used to indicate the change in mechanical properties. The results are compared with the mechanical properties obtained by previous workers. Experiments on cold compression followed by aging of Cu-Ti alloys have indicated that the most effective hardening of the material results from continuous precipitation of very fine particles within the matrix. These particles were reported to be β`-type, Cu4Ti phase. The β`-β transformation and particles coarsening within the matrix as well as a long grain boundaries were responsible for the averaging of Cu-1.5wt%Ti and Cu-3.5wt%Ti alloys. It is well know that plate like particles are β – type, Cu3Ti phase. Discontinuous precipitation was found to start at the grain boundaries and expand into grain interior. At the higher aging temperature a classic widmanstätten morphology forms giving rise to a coarse microstructure comprised of α and the equilibrium phase β. Those results were confirmed by X-ray analysis, which found that a few percent of Cu3Ti, β precipitates are formed during aging at high temperature for long time for both Cu- Ti alloys (i.e. Cu-1.5wt%Ti and Cu-3.5wt%Ti).

Keywords: metallographic, hardness, precipitation, aging

Procedia PDF Downloads 406
4896 Analysis of Tilting Cause of a Residential Building in Durres by the Use of Cptu Test

Authors: Neritan Shkodrani

Abstract:

On November 26, 2019, an earthquake hit the central western part of Albania. It was assessed as Mw 6.4. Its epicenter was located offshore north western Durrës, about 7 km north of the city. In this paper, the consequences of settlements of very soft soils have been discussed for the case of a residential building, mentioned as “K Building”, which was suffering a significant tilting after the earthquake. “KBuilding” is an RC framed building having 12+1 (basement) storiesand a floor area of 21000 m2. The construction of the building was completed in 2012. “KBuilding”, located in Durres city, suffered severe non-structural damage during November 26, 2019, Durrës Earthquake sequences. During the in-site inspections immediately after the earthquake, the general condition of the buildings, the presence of observable settlements on the ground, and the crack situation in the structure were determined, and damage inspection were performed. It was significant to note that the “K Building” presented tilting that might be attributed, as it was believed at the beginning, partially to the failure of the columns of the ground floor and partially to liquefaction phenomena, but it did not collapse. At the first moment was not clear if the foundation had a bearing capacity failure or the foundation failed because of the soil liquefaction. Geotechnical soil investigations by using CPTU test were executed, and their data are usedto evaluatebearing capacity, consolidation settlement of the mat foundation, and soil liquefaction since they were believed to be the main reasons of this building tilting.Geotechnical soil investigation consist in 5 (five) Static Cone Penetration tests with pore pressure measurement (piezocone test). They reached a penetration depth of 20.0 m to 30.0 mand, clearly shown the presence of very soft and organic soils in the soil profile of the site. Geotechnical CPT based analysis of bearing capacity, consolidation, and secondary settlement are applied, and results are reported for each test. These results shown very small values of allowable bearing capacity and very high values of consolidation and secondary settlements. Liquefaction analysis based on the data of CPTU tests and the characteristics of ground shaking of the mentioned earthquake has shown the possibility of liquefaction for some layers of the considered soil profile, but the estimated vertical settlements are at a small range and clearly shown that the main reason of the building tilting was not related to the consequences of liquefaction, but was an existing settlement caused from the applied bearing pressure of this building. All the CPTU tests were carried out on August 2021, almost two years after the November 26, 2019, Durrës Earthquake and when the building itself was demolished. After removing the mat foundation on September 2021, it was possible to carry out CPTU tests even on the footprint of the existing building, which made possible to observe the effects of long time applied of foundation bearing pressure to the consolidation on the considered soil profile.

Keywords: bearing capacity, cone penetration test, consolidation settlement, secondary settlement, soil liquefaction, etc

Procedia PDF Downloads 96
4895 Unbranched, Saturated, Carboxylic Esters as Phase-Change Materials

Authors: Anastasia Stamatiou, Melissa Obermeyer, Ludger J. Fischer, Philipp Schuetz, Jörg Worlitschek

Abstract:

This study evaluates unbranched, saturated carboxylic esters with respect to their suitability to be used as storage media for latent heat storage applications. Important thermophysical properties are gathered both by means of literature research as well as by experimental measurements. Additionally, esters are critically evaluated against other common phase-change materials in terms of their environmental impact and their economic potential. The experimental investigations are performed for eleven selected ester samples with a focus on the determination of their melting temperature and their enthalpy of fusion using differential scanning calorimetry. Transient Hot Bridge was used to determine the thermal conductivity of the liquid samples while thermogravimetric analysis was employed for the evaluation of the 5% weight loss temperature as well as of the decomposition temperature of the non-volatile samples. Both experimental results and literature data reveal the high potential of esters as phase-change materials. Their good thermal and environmental properties as well as the possibility for production from natural sources (e.g. vegetable oils) render esters as very promising for future storage applications. A particularly high short term application potential of esters could lie in low temperature storage applications where the main alternative is using salt hydrates as phase-change material.

Keywords: esters, phase-change materials, thermal properties, latent heat storage

Procedia PDF Downloads 415
4894 Contrasting Infrastructure Sharing and Resource Substitution Synergies Business Models

Authors: Robin Molinier

Abstract:

Industrial symbiosis (I.S) rely on two modes of cooperation that are infrastructure sharing and resource substitution to obtain economic and environmental benefits. The former consists in the intensification of use of an asset while the latter is based on the use of waste, fatal energy (and utilities) as alternatives to standard inputs. Both modes, in fact, rely on the shift from a business-as-usual functioning towards an alternative production system structure so that in a business point of view the distinction is not clear. In order to investigate the way those cooperation modes can be distinguished, we consider the stakeholders' interplay in the business model structure regarding their resources and requirements. For infrastructure sharing (following economic engineering literature) the cost function of capacity induces economies of scale so that demand pooling reduces global expanses. Grassroot investment sizing decision and the ex-post pricing strongly depends on the design optimization phase for capacity sizing whereas ex-post operational cost sharing minimizing budgets are less dependent upon production rates. Value is then mainly design driven. For resource substitution, synergies value stems from availability and is at risk regarding both supplier and user load profiles and market prices of the standard input. Baseline input purchasing cost reduction is thus more driven by the operational phase of the symbiosis and must be analyzed within the whole sourcing policy (including diversification strategies and expensive back-up replacement). Moreover, while resource substitution involves a chain of intermediate processors to match quality requirements, the infrastructure model relies on a single operator whose competencies allow to produce non-rival goods. Transaction costs appear higher in resource substitution synergies due to the high level of customization which induces asset specificity, and non-homogeneity following transaction costs economics arguments.

Keywords: business model, capacity, sourcing, synergies

Procedia PDF Downloads 175
4893 Integration of Acoustic Solutions for Classrooms

Authors: Eyibo Ebengeobong Eddie, Halil Zafer Alibaba

Abstract:

The neglect of classroom acoustics is dominant in most educational facilities, meanwhile, hearing and listening is the learning process in this kind of facilities. A classroom should therefore be an environment that encourages listening, without an obstacles to understanding what is being taught. Although different studies have shown teachers to complain that noise is the everyday factor that causes stress in classroom, the capacity of individuals to understand speech is further affected by Echoes, Reverberation, and room modes. It is therefore necessary for classrooms to have an ideal acoustics to aid the intelligibility of students in the learning process. The influence of these acoustical parameters on learning and teaching in schools needs to be further researched upon to enhance the teaching and learning capacity of both teacher and student. For this reason, there is a strong need to provide and collect data to analyse and define the suitable quality of classrooms needed for a learning environment. Research has shown that acoustical problems are still experienced in both newer and older schools. However, recently, principle of acoustics has been analysed and room acoustics can now be measured with various technologies and sound systems to improve and solve the problem of acoustics in classrooms. These acoustic solutions, materials, construction methods and integration processes would be discussed in this paper.

Keywords: classroom, acoustics, materials, integration, speech intelligibility

Procedia PDF Downloads 417
4892 Ethical Considerations for Conducting Research on Violence against Women with Disabilities: Discussing Issues of Reasonable Accommodation, Capacity and Equal Participation

Authors: Ingrid Van Der Heijden, Naeemah Abrahams, Jane Harries

Abstract:

Background: Women with disabilities are largely missing from global research on violence prevention, yet research shows that women with disabilities are a particularly marginalised group who experience heightened levels and unique forms of violence than men with disabilities, and women without disabilities. They face heightened stigma, discrimination, and violence due to their gender and their disability. Including women with disabilities in violence, research helps inform policy and prevention interventions that are relevant and inclusive. To ensure their inclusion in violence research, we need ethical guidelines that are sensitive to their heightened risk and vulnerability, that recognize the diversity in the disabled population, but that also promote disabled people’s agency in defining their own violence prevention needs and agendas. Objective: To highlight pertinent ethical issues around women with disabilities’ inclusion and participation in violence research. Methodology: Considering the lack of formalized guidelines for research of people with disabilities, we draw from the literature on international ethics guidelines for researching violence against women, and the Emancipatory Disability Research paradigm, as well as drawing from our own experiences from the field in applying the guidelines when doing research with disabled women. Findings: Following the guiding ethical principles of respect, benefit, justice, and do no harm, we argue that reasonable accommodation, capacity, and equal participation need to be considered in conceptualizing and conducting ethical violence research with women with disabilities. We conclude that disability research in the area of violence is highly politicized and must be carefully scrutinized to ensure justice and the contribution of women with disabilities to their own welfare. Implications: We suggest that these issues are practically applied in the field and tested and critiqued to enhance best practice for undertaking ethical research with this particular group. It is important that not only researchers and ethics committees, but also disabled women and disabled organizations, are involved in enhancing and formalizing ethical research guidelines for marginalized populations.

Keywords: capacity, emancipatory disability research paradigm equal participation, reasonable accommodation, research ethics, violence against women with disabilities

Procedia PDF Downloads 341
4891 Removal of Nickel and Zinc Ions from Aqueous Solution by Graphene Oxide and Graphene Oxide Functionalized Glycine

Authors: M. Rajabi, O. Moradi

Abstract:

In this study, removal of Nickel and Zinc by graphene oxide and functionalized graphene oxide–gelaycin surfaces was examined. Amino group was added to surface of graphene oxide to produced functionalized graphene oxide–gelaycin. Effect of contact time and initial concentration of Ni (II) and Zn(II) ions were studied. Results showed that with increase of initial concentration of Ni (II) and Zn(II) adsorption capacity was increased. After 50 min has not a large change at adsorption capacity therefore, 50 min was selected as optimaze time. Scanning electron microscope (SEM) and fourier transform infrared (FT-IR) spectroscopy spectra used for the analysis confirmed the successful fictionalization of the Graphene oxide surface. Adsorption experiments of Ni (II) and Zn(II) ions graphene oxide and functionalized graphene oxide–gelaycin surfaces fixed at 298 K and pH=6. The Pseudo Firs-order and the Pseudo Second-order (types I, II, III and IV) kinetic models were tested for adsorption process and results showed that the kinetic parameters best fits with to type (I) of pseudo-second-order model because presented low X2 values and also high R2 values.

Keywords: graphene oxide, gelaycin, nickel, zinc, adsorption, kinetic, graphene oxide, gelaycin, nickel, zinc, adsorption, kinetic

Procedia PDF Downloads 308
4890 Analytical Study of Flexural Strength of Concrete-Filled Steel Tube Beams

Authors: Maru R., Singh V. P.

Abstract:

In this research, analytical study of the flexural strength of Concrete Filled Steel Tube (CFST) beams is carried out based on wide-range finite element models to obtain the better perspective for flexural strength achievement with the use of ABAQUS finite element program. This work adopts concrete damaged plasticity model to get the actual simulation of CFST under bending. To get the decent interaction between concrete and steel, normal and tangential surface interaction provided by ABAQUS is used with hard contact for normal surface interaction and for 0.65 friction coefficient for tangential surface interactions. In this study, rectangular and square CFST beam model cross-sections are adopted with its limits pertained to Eurocode specifications. To get the visualization for flexural strength of CFST beams, total of 74 rectangular CFST beams and 86 square CFST beams are used with four-point bending test setup and the length of the beam model as 1000mm. The grades of concrete and grades of steel are used as 30 MPa & 35MPa and 235 MPa and 275MPa respectively for both sections to get the confinement factor 0.583 to 2.833, steel ratio of 0.069 to 0.236 and length to depth ratio of 4.167 to 16.667. It was found based on this study that flexural strength of CFST beams falls around strain of 0.012. Eurocode provides the results harmonically with finite elemental results. It was also noted for square sections that reduction of steel ratio is not useful as compared to rectangular section although it increases moment capacity up to certain limits because for square sectional area similar to that of rectangular, it possesses lesser depth than rectangular sections. Also It can be said that effect of increment of grade of concrete can be achieved when thicker steel tube is present. It is observed that there is less increment in moment capacity initially but after D/b ratio 1.2, moment capacity of CFST beam rapidly.

Keywords: ABAQUS, CFST beams, flexural strength, four-point bending, rectangular and square sections

Procedia PDF Downloads 164
4889 Sustainable Capacity Building on Tourism Management of Touristic Destinations in Ghana: The Case of James and Ussher Forts in the Accra Metropolis

Authors: Fiona Gibson

Abstract:

This study is on sustainable capacity building in tourism management of the touristic destination of forts and castles within the Accra Metropolis, of the Greater Accra Region of Ghana, notably, the Christianbough Castle, the James and Ussher Forts. These forts and castle mentioned above have a rich colonial historical past that emerged from the 17th century onwards on the Gulf Coast of Guinea of the West Africa Sub-Region. Unfortunately, apart from the Christianbough Castle, which used to be the seat of government until recently, the environment of James and Ussher Forts are in a deployable state of decay due to years of neglect. Jamestown and Usshertown fishing communities with historical colonial past of a rich touristic heritage sites are predominantly indigenous Gas who speak only the Ga language, one of the languages of the six local languages spoken in Ghana, as a medium for sustainable tourism management. The purpose of this study is to investigate the reasons for years of decay and neglect, using both qualitative and quantitative research approach for individual interviews, to develop a rich picture of life situational story of the people of James and Ussher Forts environs and finding solutions to their predicaments through internal generated funds for sustainability of tourism management within the communities. The study recommends nation-wide educational campaigns and programmes on culture of maintenance and management for sustainable tourism development and management at all historical heritage sites in the country, specifically with the aim of promoting tourism in Ghana, using the indigenous local languages. The study also recommends formal and informal education for the residents, especially the youth to help them learn skills, either through local training or the formal education and this call for collaboration between the government of Ghana and other local and international bodies.

Keywords: sustainable capacity building, tourism management, forts, castles

Procedia PDF Downloads 496
4888 Exploratory Tests on Structures Resistance during Forest Fires

Authors: Luis M. Ribeiro, Jorge Raposo, Ricardo Oliveira, David Caballero, Domingos X. Viegas

Abstract:

Under the scope of European project WUIWATCH a set of experimental tests on house vulnerability was performed in order to assess the resistance of selected house components during the passage of a forest fire. Among the individual elements most affected by the passage of a wildfire the windows are the ones with greater exposure. In this sense, a set of exploratory experimental tests was designed to assess some particular aspects related to the vulnerability of windows and blinds. At the same time, the importance of leaving them closed (as well as the doors inside a house) during a wild fire was explored in order to give some scientific background to guidelines for homeowners. Three sets of tests were performed: 1. Windows and blinds resistance to heat. Three types of protective blinds were tested (aluminium, PVC and wood) on 2 types of windows (single and double pane). The objective was to assess the structures resistance. 2. The influence of air flow on the transport of burning embers inside a house. A room was built to scale, and placed inside a wind tunnel, with one window and one door on opposite sides. The objective was to assess the importance of leaving an inside door opened on the probability of burning embers entering the room. 3. The influence of the dimension of openings on a window or door related to the probability of ignition inside a house. The objective was to assess the influence of different window openings in relation to the amount of burning particles that can enter a house. The main results were: 1. The purely radiative heat source provides 1.5 KW/m2 of heat impact in the structure, while the real fire generates 10 Kw/m2. When protected by the blind, the single pane window reaches 30ºC on both sides, and the double pane window has a differential of 10º from the side facing the heat (30ºC) and the opposite side (40ºC). Unprotected window constantly increases temperature until the end of the test. Window blinds reach considerably higher temperatures. PVC loses its consistency above 150ºC and melts. 2. Leaving the inside door closed results in a positive pressure differential of +1Pa from the outside to the inside, inhibiting the air flow. Opening the door in half or full reverts the pressure differential to -6 and -8 times respectively, favouring the air flow from the outside to the inside. The number of particles entering the house follows the same tendency. 3. As the bottom opening in a window increases from 0,5 cm to 4 cm the number of particles that enter the house per second also increases greatly. From 5 cm until 80cm there is no substantial increase in the number of entering particles. This set of exploratory tests proved to be an added value in supporting guidelines for home owners, regarding self-protection in WUI areas.

Keywords: forest fire, wildland urban interface, house vulnerability, house protective elements

Procedia PDF Downloads 284
4887 Exploring Tree Growth Variables Influencing Carbon Sequestration in the Face of Climate Change

Authors: Funmilayo Sarah Eguakun, Peter Oluremi Adesoye

Abstract:

One of the major problems being faced by human society is that the global temperature is believed to be rising due to human activity that releases carbon IV oxide (CO2) to the atmosphere. Carbon IV oxide is the most important greenhouse gas influencing global warming and possible climate change. With climate change becoming alarming, reducing CO2 in our atmosphere has become a primary goal of international efforts. Forest landsare major sink and could absorb large quantities of carbon if the trees are judiciously managed. The study aims at estimating the carbon sequestration capacity of Pinus caribaea (pine)and Tectona grandis (Teak) under the prevailing environmental conditions and exploring tree growth variables that influencesthe carbon sequestration capacity in Omo Forest Reserve, Ogun State, Nigeria. Improving forest management by manipulating growth characteristics that influences carbon sequestration could be an adaptive strategy of forestry to climate change. Random sampling was used to select Temporary Sample Plots (TSPs) in the study area from where complete enumeration of growth variables was carried out within the plots. The data collected were subjected to descriptive and correlational analyses. The results showed that average carbon stored by Pine and Teak are 994.4±188.3 Kg and 1350.7±180.6 Kg respectively. The difference in carbon stored in the species is significant enough to consider choice of species relevant in climate change adaptation strategy. Tree growth variables influence the capacity of the tree to sequester carbon. Height, diameter, volume, wood density and age are positively correlated to carbon sequestration. These tree growth variables could be manipulated by the forest manager as an adaptive strategy for climate change while plantations of high wood density speciescould be relevant for management strategy to increase carbon storage.

Keywords: adaptation, carbon sequestration, climate change, growth variables, wood density

Procedia PDF Downloads 380
4886 Sustainable Thermal Energy Storage Technologies: Enhancing Post-Harvest Drying Efficiency in Sub-Saharan Agriculture

Authors: Luís Miguel Estevão Cristóvão, Constâncio Augusto Machanguana, Fernando Chichango, Salvador Grande

Abstract:

Sub-Saharan African nations depend greatly on agriculture, a sector mainly marked by low production. Most of the farmers live in rural areas and employ basic labor-intensive technologies that lead to time inefficiencies and low overall effectiveness. Even with attempts to enhance farmers’ welfare through improved seeds and fertilizers, meaningful outcomes are yet to be achieved due to huge amounts of post-harvest losses. Such losses significantly endanger food security, economic stability, and result in unsustainable agricultural practices because more land, water, labor, energy, fertilizer, and other inputs must be used to produce more food. Drying, as a critical post-harvest process involving simultaneous heat and mass transfer, deserves attention. Among alternative green-energy sources, solar energy-based drying garners attention, particularly for small-scale farmers in remote communities. However, the intermittent nature of solar radiation poses challenges. To address this, energy storage solutions like rock-based thermal energy storage offer cost-effective solutions tailored to the needs of farmers. Methodologically, three solar dryers were constructed of metal, wood, and clay brick. Several tests were carried out with and without energy storage material. Notably, it has been demonstrated that soapstone stands out as a promising material due to its affordability and high specific energy capacity. By implementing these greener technologies, Sub-Saharan African countries could mitigate post-harvest losses, enhance food availability, improve nutrition, and promote sustainable resource utilization.

Keywords: energy storage, food security, post-harvest, solar dryer

Procedia PDF Downloads 24
4885 A Steady State Characteristics of Four-Lobe Journal Bearing Lubricated with a Couple Stress Fluids in Turbulent Flow Regime

Authors: Boualem Chetti, Samir Zahaf

Abstract:

This paper presents the steady-state performance analysis of a four-lobe journal bearing lubricated with a couple stress fluids operating in the turbulent regime, following Constantinescu’s turbulent lubrication theory. The modified Reynolds equation is solved numerically using the finite difference method taking into consideration the effects of the turbulence and the couple stress. In this analysis, the steady-state parameters in terms of the attitude angle, load carrying capacity, side leakage and friction coefficient are determined at various values of eccentricities ratio. The computed results show that the turbulence increases the load carrying capacity, the attitude angle and the friction coefficient for a journal bearing lubricated with a Newtonian or a couple stress fluids. It is found that the turbulence has strongly influence on the steady-state performances of the four-lobe journal bearing lubricated with Newtonian fluids or a couple stress fluids.

Keywords: Four-lobe journal bearings, static characteristics, couple-stress fluids, turbulent flow

Procedia PDF Downloads 194
4884 Influence of Exfoliated Graphene Nanoplatelets on Thermal Stability of Polypropylene Reinforced Hybrid Graphen-rice Husk Nanocomposites

Authors: Obinna Emmanuel Ezenkwa, Sani Amril Samsudin, Azman Hassan, Ede Anthony

Abstract:

A major challenge of polypropylene (PP) in high-heat application areas is its poor thermal stability. Under high temperature, PP burns readily with high degradation temperature and can self-ignite. In this study, PP is reinforced with hybrid filler of graphene (xGNP) and rice husk (RH) with RH at 15 wt%, and xGNP varied at 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 parts per hundred (phr) of the composite. Compatibilizer MAPP was also added in each sample at 4phr of the composite. Sample formulations were melt-blended using twin screw extruder and injection moulding machine. At xGNP optimum content of 1.5 phr, hybrid PP/RH/G1.5/MAPP nanocomposite increased in thermal stability by 24 °C and 30 °C compared to pure PP and unhybridized PP/RH composite respectively; char residue increased by 513% compared to pure PP and degree of crystallization (Xc) increased from 35.4% to 36.4%. The observed thermal properties enhancement in the hybrid nanocomposites can be related to the high surface area, gap-filling effect and exfoliation characteristics of the graphene nanofiller which worked in synergy with rice husk fillers in reinforcing PP. This study therefore, shows that graphene nanofiller inclusion in polymer composites fabrication can enhance the thermal stability of polyolefins for high heat applications.

Keywords: polymer nanocomposites, thermal stability, exfoliation, hybrid fillers, polymer reinforcement

Procedia PDF Downloads 39
4883 3D Structuring of Thin Film Solid State Batteries for High Power Demanding Applications

Authors: Alfonso Sepulveda, Brecht Put, Nouha Labyedh, Philippe M. Vereecken

Abstract:

High energy and power density are the main requirements of today’s high demanding applications in consumer electronics. Lithium ion batteries (LIB) have the highest energy density of all known systems and are thus the best choice for rechargeable micro-batteries. Liquid electrolyte LIBs present limitations in safety, size and design, thus thin film all-solid state batteries are predominantly considered to overcome these restrictions in small devices. Although planar all-solid state thin film LIBs are at present commercially available they have low capacity (<1mAh/cm2) which limits their application scenario. By using micro-or nanostructured surfaces (i.e. 3D batteries) and appropriate conformal coating technology (i.e. electrochemical deposition, ALD) the capacity can be increased while still keeping a high rate performance. The main challenges in the introduction of solid-state LIBs are low ionic conductance and limited cycle life time due to mechanical stress and shearing interfaces. Novel materials and innovative nanostructures have to be explored in order to overcome these limitations. Thin film 3D compatible materials need to provide with the necessary requirements for functional and viable thin-film stacks. Thin film electrodes offer shorter Li-diffusion paths and high gravimetric and volumetric energy densities which allow them to be used at ultra-fast charging rates while keeping their complete capacities. Thin film electrolytes with intrinsically high ion conductivity (~10-3 S.cm) do exist, but are not electrochemically stable. On the other hand, electronically insulating electrolytes with a large electrochemical window and good chemical stability are known, but typically have intrinsically low ionic conductivities (<10-6 S cm). In addition, there is the need for conformal deposition techniques which can offer pinhole-free coverage over large surface areas with large aspect ratio features for electrode, electrolyte and buffer layers. To tackle the scaling of electrodes and the conformal deposition requirements on future 3D batteries we study LiMn2O4 (LMO) and Li4Ti5O12 (LTO). These materials are among the most interesting electrode candidates for thin film batteries offering low cost, low toxicity, high voltage and high capacity. LMO and LTO are considered 3D compatible materials since they can be prepared through conformal deposition techniques. Here, we show the scaling effects on rate performance and cycle stability of thin film cathode layers of LMO created by RF-sputtering. Planar LMO thin films below 100 nm have been electrochemically characterized. The thinnest films show the highest volumetric capacity and the best cycling stability. The increased stability of the films below 50 nm allows cycling in both the 4 and 3V potential region, resulting in a high volumetric capacity of 1.2Ah/cm3. Also, the creation of LTO anode layers through a post-lithiation process of TiO2 is demonstrated here. Planar LTO thin films below 100 nm have been electrochemically characterized. A 70 nm film retains 85% of its original capacity after 100 (dis)charging cycles at 10C. These layers can be implemented into a high aspect ratio structures. IMEC develops high aspect Si pillars arrays which is the base for the advance of 3D thin film all-solid state batteries of future technologies.

Keywords: Li-ion rechargeable batteries, thin film, nanostructures, rate performance, 3D batteries, all-solid state

Procedia PDF Downloads 338
4882 Increasing the Capacity of Plant Bottlenecks by Using of Improving the Ratio of Mean Time between Failures to Mean Time to Repair

Authors: Jalal Soleimannejad, Mohammad Asadizeidabadi, Mahmoud Koorki, Mojtaba Azarpira

Abstract:

A significant percentage of production costs is the maintenance costs, and analysis of maintenance costs could to achieve greater productivity and competitiveness. With this is mind, the maintenance of machines and installations is considered as an essential part of organizational functions and applying effective strategies causes significant added value in manufacturing activities. Organizations are trying to achieve performance levels on a global scale with emphasis on creating competitive advantage by different methods consist of RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance) etc. In this study, increasing the capacity of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GEG) was examined by using of reliability and maintainability analyses. The results of this research showed that instead of increasing the number of machines (in order to solve the bottleneck problems), the improving of reliability and maintainability would solve bottleneck problems in the best way. It should be mention that in the abovementioned study, the data set of Concentration Plant of GEG as a case study, was applied and analyzed.

Keywords: bottleneck, golgohar iron ore mining & industrial company, maintainability, maintenance costs, reliability

Procedia PDF Downloads 363
4881 Hard Carbon Derived From Dextrose as High-Performance Anode Material for Sodium-Ion Batteries

Authors: Rupan Das Chakraborty, Surendra K. Martha

Abstract:

Hard carbons (HCs) are extensively used as anode materials for sodium-ion batteries due to their availability, low cost, and ease of synthesis. It possesses the ability to store Na ion between stacked sp2 carbon layers and micropores. In this work, hard carbons are synthesized from different concentrations (0.5M to 5M) of dextrose solutions by hydrothermal synthesis followed by high-temperature calcination at 1100 ⁰C in an inert atmosphere. Dextrose has been chosen as a precursor material as it is a eco-friendly and renewable source. Among all hard carbon derived from different concentrations of dextrose solutions, hard carbon derived from 3M dextrose solution delivers superior electrochemical performance compared to other hard carbons. Hard carbon derived from 3M dextrose solution (Dextrose derived Hard Carbon-3M) provides an initial reversible capacity of 257 mAh g-1 with a capacity retention of 83 % at the end of 100 cycles at 30 mA g-1). The carbons obtained from different dextrose concentration show very similar Cyclic Voltammetry and chargedischarging behavior at a scan rate of 0.05 mV s-1 the Cyclic Voltammetry curve indicate that solvent reduction and the solid electrolyte interface (SEI) formation start at E < 1.2 V (vs Na/Na+). Among all 3M dextrose derived electrode indicate as a promising anode material for Sodium-ion batteries (SIBs).

Keywords: dextrose derived hard carbon, anode, sodium-ion battery, electrochemical performance

Procedia PDF Downloads 118
4880 Optimal Scheduling of Load and Operational Strategy of a Load Aggregator to Maximize Profit with PEVs

Authors: Md. Shafiullah, Ali T. Al-Awami

Abstract:

This project proposes optimal scheduling of imported power of a load aggregator with the utilization of EVs to maximize its profit. As with the increase of renewable energy resources, electricity price in competitive market becomes more uncertain and, on the other hand, with the penetration of renewable distributed generators in the distribution network the predicted load of a load aggregator also becomes uncertain in real time. Though there is uncertainties in both load and price, the use of EVs storage capacity can make the operation of load aggregator flexible. LA submits its offer to day-ahead market based on predicted loads and optimized use of its EVs to maximize its profit, as well as in real time operation it uses its energy storage capacity in such a way that it can maximize its profit. In this project, load aggregators profit maximization algorithm is formulated and the optimization problem is solved with the help of CVX. As in real time operation the forecasted loads differ from actual load, the mismatches are settled in real time balancing market. Simulation results compare the profit of a load aggregator with a hypothetical group of 1000 EVs and without EVs.

Keywords: CVX, electricity market, load aggregator, load and price uncertainties, profit maximization, real time balancing operation

Procedia PDF Downloads 417
4879 Attitudes, Experiences and Good Practices of Writing Online Course Material: A Case Study in Makerere University

Authors: Ruth Nsibirano

Abstract:

Online mode of delivery in higher institutions of learning, popularly known in some circles as e-Learning or distance education is a new phenomenon that is steadily taking root in African universities but specifically at Makerere University. For slightly over a decade, the Department of Open and Distance Learning has been offering the first generation mode of distance education. In this, learning and teaching experiences were based on the use of hard copy materials circulated through postal services in a rather correspondence mode. There were more challenges to this including high dropout rates, limited support to the learners and sustainability issues. Fortunately, the Department was supported by the Norwegian Government through a NORHED grant to “leapfrog” to the fifth generation of distance education that makes more use of educational technologies and tools. The capacity of faculty staff was gradually enhanced through a series of training to handle the upgraded structure of fifth generation distance education. The trained staff was then tasked to develop modules befitting an online delivery mode, for use on the program. This paper will present attitudes, experiences of the course writers with a view of sharing the good practices that enabled them leap from e-faculty trainees to distinct online course writers. This perspective will hopefully serve as building blocks to enhance the capacity of other upcoming distance education programs in low capacity universities and also promote the uptake of e-Education on the continent and beyond. Methodologically the findings were collected through individual interviews with the 30 course writers. In addition, semi structured questionnaires were designed to collect data on the profile, challenges and lessons from the writers. Findings show that the attitudes of course writers on project supported activities are so much tagged to the returns from their committed efforts. In conclusion, therefore, it is strategically useful to assess and selectively choose which individual to nominate for involvement at the initial stages.

Keywords: distance education, online course content, staff attitudes, best practices in online learning

Procedia PDF Downloads 253
4878 Effect of Coronary Insulators in Increasing the Lifespan of Electrolytic Cells: Short-circuit and Heat Resistance

Authors: Robert P. Dufresne, Hamid Arabzadeh

Abstract:

The current study investigates the effectiveness of a new form of permanent baseboard insulators with an umbrella action, hereinafter referred to as Coronary Insulator, in supporting and protecting the assembly of electrodes immersed in an electrolytic cell and in increasing the lifespan of the lateral sides of the electrolytic cell, in both electro-winning and electro-refinery method. The advantages of using a coronary insulator in addition to the top capping board (equipotential insulator) were studied compared to the conventional assembly of an electrolytic cell. Then, a thermal imaging technique was utilized during high-temperature thermal (heat transfer) tests for sample cell walls with and without coronary insulators in their assembly to show the effectiveness of coronary insulators in protecting the cell wall under extreme conditions. It was shown that, unlike the conventional assembly, which is highly prone to damages to the cell wall under thermal shocks, the presence of coronary insulator can significantly increase the level of protection of the cell due to their ultra-high thermal and chemical resistance, as well as decreasing the replacement frequency of insulators to almost zero. Besides, the results of the study showed that the test assembly with the coronary insulator provides better consistency in positioning and, subsequently, better contact, compared to the conventional method, which reduces the chance of electric short-circuit in the system.

Keywords: capping board, coronary insulator, electrolytic cell, thermal shock.

Procedia PDF Downloads 188
4877 Presenting the Mathematical Model to Determine Retention in the Watersheds

Authors: S. Shamohammadi, L. Razavi

Abstract:

This paper based on the principle concepts of SCS-CN model, a new mathematical model for computation of retention potential (S) presented. In the mathematical model, not only precipitation-runoff concepts in SCS-CN model are precisely represented in a mathematical form, but also new concepts, called “maximum retention” and “total retention” is introduced, and concepts of potential retention capacity, maximum retention, and total retention have been separated from each other. In the proposed model, actual retention (F), maximum actual retention (Fmax), total retention (S), maximum retention (Smax), and potential retention (Sp), for the first time clearly defined, so that Sp is not variable, but a function of morphological characteristics of the watershed. Indeed, based on the mathematical relation of the conceptual curve of SCS-CN model, the proposed model provides a new method for the computation of actual retention in watershed and it simply determined runoff based on. In the corresponding relations, in addition to Precipitation (P), Initial retention (Ia), cumulative values of actual retention capacity (F), total retention (S), runoff (Q), antecedent moisture (M), potential retention (Sp), total retention (S), we introduced Fmax and Fmin referring to maximum and minimum actual retention, respectively. As well as, ksh is a coefficient which depends on morphological characteristics of the watershed. Advantages of the modified version versus the original model include a better precision, higher performance, easier calibration and speed computing.

Keywords: model, mathematical, retention, watershed, SCS

Procedia PDF Downloads 458
4876 Modelling and Simulation of a Commercial Thermophilic Biogas Plant

Authors: Jeremiah L. Chukwuneke, Obiora E. Anisiji, Chinonso H. Achebe, Paul C. Okolie

Abstract:

This paper developed a mathematical model of a commercial biogas plant for urban area clean energy requirement. It identified biodegradable waste materials like domestic/city refuse as economically viable alternative source of energy. The mathematical formulation of the proposed gas plant follows the fundamental principles of thermodynamics, and further analyses were accomplished to develop an algorithm for evaluating the plant performance preferably in terms of daily production capacity. In addition, the capacity of the plant is equally estimated for a given cycle of operation and presented in time histories. A nominal 1500 m3 power gas plant was studied characteristically and its performance efficiency evaluated. It was observed that the rate of bio gas production is essentially a function of the reactor temperature, pH, substrate concentration, rate of degradation of the biomass, and the accumulation of matter in the system due to bacteria growth. The results of this study conform to a very large extent with reported empirical data of some existing plant and further model validations were conducted in line with classical records found in literature.

Keywords: energy and mass conservation, specific growth rate, thermophilic bacteria, temperature, rate of bio gas production

Procedia PDF Downloads 442
4875 Influence of Annealing on the Mechanical Properties of Polyester-Cotton Friction Spun Yarn

Authors: Sujit Kumar Sinha, R. Chattopadhyay

Abstract:

In the course of processing phases and use, fibres, yarns, or fabrics are subjected to a variety of stresses and strains, which cause the development of internal stresses. Given an opportunity, these inherent stresses try to bring back the structure to the original state. As an example, a twisted yarn always shows a tendency to untwist whenever its one end is made free. If the yarn is not held under tension, it may form snarls due to the presence of excessive torque. The running performance of such yarn or thread may, therefore, get negatively affected by it, as a snarl may not pass through the knitting or sewing needle smoothly, leading to an end break. A fabric shows a tendency to form wrinkles whenever squeezed. It may also shrink when brought to a relaxed state. In order to improve performance (i.e., dimensional stability or appearance), stabilization of the structure is needed. The stabilization can be attained through the release of internal stresses, which can be brought about by the process of annealing and/or other finishing treatments. When a fabric is subjected to heat, a change in the properties of the fibers, yarns, and fabric is expected. The degree to which the properties are affected would depend upon the condition of heat treatment and on the properties & structure of fibres, yarns, and fabric. In the present study, an attempt has been made to investigate the effect of annealing treatment on the properties of polyester cotton yarns with varying sheath structures.

Keywords: friction spun yarn, annealing, tenacity, structural integrity, decay

Procedia PDF Downloads 64
4874 Properties of Ettringite According to Hydration, Dehydration and Carbonation Process

Authors: Bao Chen, Frederic Kuznik, Matthieu Horgnies, Kevyn Johannes, Vincent Morin, Edouard Gengembre

Abstract:

The contradiction between energy consumption, environment protection, and social development is increasingly intensified during recent decade years. At the same time, as avoiding fossil-fuels-thirsty, people turn their view on the renewable green energy, such as solar energy, wind power, hydropower, etc. However, due to the unavoidable mismatch on geography and time for production and consumption, energy storage seems to be one of the most reasonable solutions to enlarge the use of renewable energies. Thermal energy storage (TES), a branch of energy storage solution, mainly concerns the capture, storage and consumption of thermal energy for later use in different scales (individual house, apartment, district, and city). In TES research field, sensible heat and latent heat storage have been widely studied and presented at an advanced stage of development. Compared with them, thermochemical energy storage is still at initial phase but provides a relatively higher theoretical energy density and a long shelf life without heat dissipation during storage. Among thermochemical energy storage materials, inorganic pure or composite compounds like micro-porous silica gel, SrBr₂ hydrate and MgSO₄-Zeolithe have been reported as promising to be integrated into thermal energy storage systems. However, the cost of these materials, one of main obstacles, may hinder the wide use of energy storage systems in real application scales (individual house, apartment, district and even city). New studies on ettringite show promising application for thermal energy storage since its high energy density and large resource from cementitious materials. Ettringite, or calcium trisulfoaluminate hydrate, of which chemical formula is 3CaO∙Al₂O₃∙3CaSO₄∙32H₂O, or C₆AS̅₃H₃₂ as known in cement chemistry notation, is one of the most important members of AFt group. As a common compound in hydrated cements, ettringite has been widely studied for its performances in construction but barely known as a thermochemical material. For this study, we summarize available data about the structure and properties of ettringite and its metastable phase (meta-ettringite), including the processes of hydration, thermal conversion and carbonation durability for thermal energy storage.

Keywords: building materials, ettringite, meta-ettringite, thermal energy storage

Procedia PDF Downloads 214
4873 Feasibility Study of a Solar Solid Desiccant Cooling System in Algerian Areas

Authors: N. Hatraf, l. Merabeti, M. Abbas

Abstract:

The interest in air conditioning using renewable energies is increasing. The Thermal energy produced from the solar energy can be transformed to useful cooling and heating through the thermo chemical or thermo physical processes by using thermally activated energy conversion system. Solid desiccant conditioning systems can represent a reliable alternative solution compared with other thermal cooling technologies. Their basic characteristics refer to the capability to regulate both temperature and humidity of the conditioned space in one side and to its potential in electrical energy saving in the other side. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). Basically, solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: absorption process and the regeneration process; The silica gel in the desiccant wheel which is the most important device in the system absorbs the moisture from the incoming air to the desiccant material in this case the silica gel, then it changes the heat with an rotary heat exchanger, after that the air passes through an humidifier to have the humidity required before entering to the local. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software.

Keywords: desiccation, dehumidification, TRNSYS, efficiency

Procedia PDF Downloads 419
4872 Adsorptive Removal of Cd(II) Ions from Aqueous Systems by Wood Ash-Alginate Composite Beads

Authors: Tichaona Nharingo, Hope Tauya, Mambo Moyo

Abstract:

Wood ash has been demonstrated to have favourable adsorption capacity for heavy metal ions but suffers the application problem of difficult to separate/isolate from the batch adsorption systems. Fabrication of wood ash beads using multifunctional group and non-toxic carbohydrate, alginate, may improve the applicability of wood ash in environmental pollutant remediation. In this work, alginate-wood ash beads (AWAB) were fabricated and applied to the removal of cadmium ions from aqueous systems. The beads were characterized by FTIR, TGA/DSC, SEM-EDX and their pHZPC before and after the adsorption of Cd(II) ions. Important adsorption parameters i.e. pH, AWAB dosage, contact time and ionic strength were optimized and the effect of initial concentration of Cd(II) ions to the adsorption process was established. Adsorption kinetics, adsorption isotherms, adsorption mechanism and application of AWAB to real water samples spiked with Cd(II) ions were ascertained. The composite adsorbent was characterized by a heterogeneous macro pore surface comprising of metal oxides, multiple hydroxyl groups and carbonyl groups that were involved in electrostatic interaction and Lewis acid-base interactions with the Cd(II) ions. The pseudo second order and the Freundlich isotherm models best fitted the adsorption kinetics and isotherm data respectively suggesting chemical sorption process and surface heterogeneity. The presence of Pb(II) ions inhibited the adsorption of Cd(II) ions (reduced by 40 %) attributed to the competition for the adsorption sites. The Cd(II) loaded beads could be regenerated using 0.1 M HCl and could be applied to four sorption-desorption cycles without significant loss in its initial adsorption capacity. The high maximum adsorption capacity, stability, selectivity and reusability of AWAB make the adsorbent ideal for application in the removal of Cd(II) ions from real water samples. Column type adsorption experiments need to be explored to establish the potential of the adsorbent in removing Cd(II) ions using continuous flow systems.

Keywords: adsorption, Cd(II) ions, regeneration, wastewater, wood ash-alginate beads

Procedia PDF Downloads 245
4871 Experimental Analysis on the Thermal Performance of Vacuum Membrane Distillation Module Using Polyvinylidene Fluoride Hollow Fiber Membrane

Authors: Hong-Jin Joo, Hee-Yoel Kwak

Abstract:

Vacuum Membrane Distillation (VMD) uses pressure lower than the atmospheric pressure. The feed seawater is capable of producing more vapor at the same temperature than Direct Contact Membrane Distillation (DCMD), Air Gap Membrane Distillation (AGMD) or Sweep Gas Membrane Distillation (SGMD). It is advantageous because it is operable at a lower temperature than other membrane distillations. However, no commercial product is available that uses the VMD method, as it is still in the study stage. In this study, therefore, thermal performance test according to the feed water conditions was performed prior to both construction of the demonstration plant, which uses VMD module of the capacity of 400m³/d in South Korea, and commercialization of VMD module with hollow fiber membrane. Such study was performed by designing and constructing the VMD module of the capacity of 2 m³/day which utilizes the polyvinylidene fluoride (PVDF) hollow fiber membrane. The results obtained from the VMD module manufactured by ECONITY Co., Ltd in South Korea, showed that the maximum performance ratio (PR) value of 0.904, feed water temperature of 75 ℃, and the flow rate of 8 m3/h. As the temperature of and flow rate of the feed water increased, the PR value of the VMD module also increased.

Keywords: membrane distillation, vacuum membrane distillation, hollow fiber membrane, desalination

Procedia PDF Downloads 210