Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18063

Search results for: real time balancing operation

18063 Optimal Scheduling of Load and Operational Strategy of a Load Aggregator to Maximize Profit with PEVs

Authors: Md. Shafiullah, Ali T. Al-Awami


This project proposes optimal scheduling of imported power of a load aggregator with the utilization of EVs to maximize its profit. As with the increase of renewable energy resources, electricity price in competitive market becomes more uncertain and, on the other hand, with the penetration of renewable distributed generators in the distribution network the predicted load of a load aggregator also becomes uncertain in real time. Though there is uncertainties in both load and price, the use of EVs storage capacity can make the operation of load aggregator flexible. LA submits its offer to day-ahead market based on predicted loads and optimized use of its EVs to maximize its profit, as well as in real time operation it uses its energy storage capacity in such a way that it can maximize its profit. In this project, load aggregators profit maximization algorithm is formulated and the optimization problem is solved with the help of CVX. As in real time operation the forecasted loads differ from actual load, the mismatches are settled in real time balancing market. Simulation results compare the profit of a load aggregator with a hypothetical group of 1000 EVs and without EVs.

Keywords: CVX, electricity market, load aggregator, load and price uncertainties, profit maximization, real time balancing operation

Procedia PDF Downloads 320
18062 An Approach to the Assembly Line Balancing Problem with Uncertain Operation Time

Authors: Zhongmin Wang, Lin Wei, Hengshan Zhang, Tianhua Chen, Yimin Zhou


The assembly line balancing problems are signficant in mass production systems. In order to deal with the uncertainties that practically exist but barely mentioned in the literature, this paper develops a mathematic model with an optimisation algorithm to solve the assembly line balancing problem with uncertainty operation time. The developed model is able to work with a variable number of workstations under the uncertain environment, aiming to obtain the minimal number of workstation and minimal idle time for each workstation. In particular, the proposed approach first introduces the concept of protection time that closely works with the uncertain operation time. Four dominance rules and the mechanism of determining up and low bounds are subsequently put forward, which serve as the basis for the proposed branch and bound algorithm. Experimental results show that the proposed work verified on a benchmark data set is able to solve the uncertainties efficiently.

Keywords: assembly lines, SALBP-UOT, uncertain operation time, branch and bound algorithm.

Procedia PDF Downloads 67
18061 Real-Time Detection of Space Manipulator Self-Collision

Authors: Zhang Xiaodong, Tang Zixin, Liu Xin


In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder enveloping surface, and then the detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator.

Keywords: space manipulator, collision detection, self-collision, the real-time collision detection

Procedia PDF Downloads 358
18060 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition

Authors: Ali Nadi, Ali Edrissi


Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.

Keywords: disaster management, real-time demand, reinforcement learning, relief demand

Procedia PDF Downloads 202
18059 A New OvS Approach in Assembly Line Balancing Problem

Authors: P. Azimi, B. Behtoiy, A. A. Najafi, H. R. Charmchi


According to the previous studies, one of the most famous techniques which affect the efficiency of a production line is the assembly line balancing (ALB) technique. This paper examines the balancing effect of a whole production line of a real auto glass manufacturer in three steps. In the first step, processing time of each activity in the workstations is generated according to a practical approach. In the second step, the whole production process is simulated and the bottleneck stations have been identified, and finally in the third step, several improvement scenarios are generated to optimize the system throughput, and the best one is proposed. The main contribution of the current research is the proposed framework which combines two famous approaches including Assembly Line Balancing and Optimization via Simulation technique (OvS). The results show that the proposed framework could be applied in practical environments, easily.

Keywords: assembly line balancing problem, optimization via simulation, production planning

Procedia PDF Downloads 400
18058 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization

Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang


Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.

Keywords: energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning

Procedia PDF Downloads 344
18057 Hierarchical Operation Strategies for Grid Connected Building Microgrid with Energy Storage and Photovoltatic Source

Authors: Seon-Ho Yoon, Jin-Young Choi, Dong-Jun Won


This paper presents hierarchical operation strategies which are minimizing operation error between day ahead operation plan and real time operation. Operating power systems between centralized and decentralized approaches can be represented as hierarchical control scheme, featured as primary control, secondary control and tertiary control. Primary control is known as local control, featuring fast response. Secondary control is referred to as microgrid Energy Management System (EMS). Tertiary control is responsible of coordinating the operations of multi-microgrids. In this paper, we formulated 3 stage microgrid operation strategies which are similar to hierarchical control scheme. First stage is to set a day ahead scheduled output power of Battery Energy Storage System (BESS) which is only controllable source in microgrid and it is optimized to minimize cost of exchanged power with main grid using Particle Swarm Optimization (PSO) method. Second stage is to control the active and reactive power of BESS to be operated in day ahead scheduled plan in case that State of Charge (SOC) error occurs between real time and scheduled plan. The third is rescheduling the system when the predicted error is over the limited value. The first stage can be compared with the secondary control in that it adjusts the active power. The second stage is comparable to the primary control in that it controls the error in local manner. The third stage is compared with the secondary control in that it manages power balancing. The proposed strategies will be applied to one of the buildings in Electronics and Telecommunication Research Institute (ETRI). The building microgrid is composed of Photovoltaic (PV) generation, BESS and load and it will be interconnected with the main grid. Main purpose of that is minimizing operation cost and to be operated in scheduled plan. Simulation results support validation of proposed strategies.

Keywords: Battery Energy Storage System (BESS), Energy Management System (EMS), Microgrid (MG), Particle Swarm Optimization (PSO)

Procedia PDF Downloads 185
18056 Load Balancing Algorithms for SIP Server Clusters in Cloud Computing

Authors: Tanmay Raj, Vedika Gupta


For its groundbreaking and substantial power, cloud computing is today’s most popular breakthrough. It is a sort of Internet-based computing that allows users to request and receive numerous services in a cost-effective manner. Virtualization, grid computing, and utility computing are the most widely employed emerging technologies in cloud computing, making it the most powerful. However, cloud computing still has a number of key challenges, such as security, load balancing, and non-critical failure adaption, to name a few. The massive growth of cloud computing will put an undue strain on servers. As a result, network performance will deteriorate. A good load balancing adjustment can make cloud computing more productive and in- crease client fulfillment execution. Load balancing is an important part of cloud computing because it prevents certain nodes from being overwhelmed while others are idle or have little work to perform. Response time, cost, throughput, performance, and resource usage are all parameters that may be improved using load balancing.

Keywords: cloud computing, load balancing, computing, SIP server clusters

Procedia PDF Downloads 6
18055 A Two Level Load Balancing Approach for Cloud Environment

Authors: Anurag Jain, Rajneesh Kumar


Cloud computing is the outcome of rapid growth of internet. Due to elastic nature of cloud computing and unpredictable behavior of user, load balancing is the major issue in cloud computing paradigm. An efficient load balancing technique can improve the performance in terms of efficient resource utilization and higher customer satisfaction. Load balancing can be implemented through task scheduling, resource allocation and task migration. Various parameters to analyze the performance of load balancing approach are response time, cost, data processing time and throughput. This paper demonstrates a two level load balancer approach by combining join idle queue and join shortest queue approach. Authors have used cloud analyst simulator to test proposed two level load balancer approach. The results are analyzed and compared with the existing algorithms and as observed, proposed work is one step ahead of existing techniques.

Keywords: cloud analyst, cloud computing, join idle queue, join shortest queue, load balancing, task scheduling

Procedia PDF Downloads 225
18054 Real-Time Visualization Using GPU-Accelerated Filtering of LiDAR Data

Authors: Sašo Pečnik, Borut Žalik


This paper presents a real-time visualization technique and filtering of classified LiDAR point clouds. The visualization is capable of displaying filtered information organized in layers by the classification attribute saved within LiDAR data sets. We explain the used data structure and data management, which enables real-time presentation of layered LiDAR data. Real-time visualization is achieved with LOD optimization based on the distance from the observer without loss of quality. The filtering process is done in two steps and is entirely executed on the GPU and implemented using programmable shaders.

Keywords: filtering, graphics, level-of-details, LiDAR, real-time visualization

Procedia PDF Downloads 193
18053 Pigging Operation in Two-Phase Flow Pipeline- Empirical and Simulation

Authors: Behnaz Jamshidi, Seyed Hassan Hashemabadi


The main objective of this study is to investigate on pigging operation of two phase flow pipeline and compare the empirical and simulation results for 108 km long , 0.7934 mm (32 inches) diameter sea line of "Phase 1 South Pars Gas Complex", located in south of Iran. The pigging time, pig velocity, the amount of slug and slug catcher pressure were calculated and monitored closely as the key parameters. Simulation was done by "OLGA" dynamic simulation software and obtained results were compared and validated with empirical data in real operation. The relative errors between empirical data and simulation of the process were 3 % and 9 % for pigging time and accumulated slug volume respectively. Simulated pig velocity and changes of slug catcher pressure were consistent with real values, too. It was also found the slug catcher and condensate stabilization units have been adequately sized for gas-liquid separation and handle the slug batch during transient conditions such as pigging and start up.

Keywords: sea line, pigging, slug catcher, two-phase flow, dynamic simulation

Procedia PDF Downloads 389
18052 Intelligent Process Data Mining for Monitoring for Fault-Free Operation of Industrial Processes

Authors: Hyun-Woo Cho


The real-time fault monitoring and diagnosis of large scale production processes is helpful and necessary in order to operate industrial process safely and efficiently producing good final product quality. Unusual and abnormal events of the process may have a serious impact on the process such as malfunctions or breakdowns. This work try to utilize process measurement data obtained in an on-line basis for the safe and some fault-free operation of industrial processes. To this end, this work evaluated the proposed intelligent process data monitoring framework based on a simulation process. The monitoring scheme extracts the fault pattern in the reduced space for the reliable data representation. Moreover, this work shows the results of using linear and nonlinear techniques for the monitoring purpose. It has shown that the nonlinear technique produced more reliable monitoring results and outperforms linear methods. The adoption of the qualitative monitoring model helps to reduce the sensitivity of the fault pattern to noise.

Keywords: process data, data mining, process operation, real-time monitoring

Procedia PDF Downloads 500
18051 Shaking Force Balancing of Mechanisms: An Overview

Authors: Vigen Arakelian


The balancing of mechanisms is a well-known problem in the field of mechanical engineering because the variable dynamic loads cause vibrations, as well as noise, wear and fatigue of the machines. A mechanical system with unbalance shaking force and shaking moment transmits substantial vibration to the frame. Therefore, the objective of the balancing is to cancel or reduce the variable dynamic reactions transmitted to the frame. The resolution of this problem consists in the balancing of the shaking force and shaking moment. It can be fully or partially, by internal mass redistribution via adding counterweights or by modification of the mechanism's architecture via adding auxiliary structures. The balancing problems are of continue interest to researchers. Several laboratories around the world are very active in this area and new results are published regularly. However, despite its ancient history, mechanism balancing theory continues to be developed and new approaches and solutions are constantly being reported. Various surveys have been published that disclose particularities of balancing methods. The author believes that this is an appropriate moment to present a state of the art of the shaking force balancing studies completed by new research results. This paper presents an overview of methods devoted to the shaking force balancing of mechanisms, as well as the historical aspects of the origins and the evolution of the balancing theory of mechanisms.

Keywords: inertial forces, shaking forces, balancing, dynamics, mechanism design

Procedia PDF Downloads 48
18050 Brainwave Classification for Brain Balancing Index (BBI) via 3D EEG Model Using k-NN Technique

Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan


In this paper, the comparison between k-Nearest Neighbor (kNN) algorithms for classifying the 3D EEG model in brain balancing is presented. The EEG signal recording was conducted on 51 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, maximum PSD values were extracted as features from the model. There are three indexes for the balanced brain; index 3, index 4 and index 5. There are significant different of the EEG signals due to the brain balancing index (BBI). Alpha-α (8–13 Hz) and beta-β (13–30 Hz) were used as input signals for the classification model. The k-NN classification result is 88.46% accuracy. These results proved that k-NN can be used in order to predict the brain balancing application.

Keywords: power spectral density, 3D EEG model, brain balancing, kNN

Procedia PDF Downloads 390
18049 Modeling and Simulation Methods Using MATLAB/Simulink

Authors: Jamuna Konda, Umamaheswara Reddy Karumuri, Sriramya Muthugi, Varun Pishati, Ravi Shakya,


This paper investigates the challenges involved in mathematical modeling of plant simulation models ensuring the performance of the plant models much closer to the real time physical model. The paper includes the analysis performed and investigation on different methods of modeling, design and development for plant model. Issues which impact the design time, model accuracy as real time model, tool dependence are analyzed. The real time hardware plant would be a combination of multiple physical models. It is more challenging to test the complete system with all possible test scenarios. There are possibilities of failure or damage of the system due to any unwanted test execution on real time.

Keywords: model based design (MBD), MATLAB, Simulink, stateflow, plant model, real time model, real-time workshop (RTW), target language compiler (TLC)

Procedia PDF Downloads 248
18048 The Application of Line Balancing Technique and Simulation Program to Increase Productivity in Hard Disk Drive Components

Authors: Alonggot Limcharoen, Jintana Wannarat, Vorawat Panich


This study aims to investigate the balancing of the number of operators (Line Balancing technique) in the production line of hard disk drive components in order to increase efficiency. At present, the trend of using hard disk drives has continuously declined leading to limits in a company’s revenue potential. It is important to improve and develop the production process to create market share and to have the ability to compete with competitors with a higher value and quality. Therefore, an effective tool is needed to support such matters. In this research, the Arena program was applied to analyze the results both before and after the improvement. Finally, the precedent was used before proceeding with the real process. There were 14 work stations with 35 operators altogether in the RA production process where this study was conducted. In the actual process, the average production time was 84.03 seconds per product piece (by timing 30 times in each work station) along with a rating assessment by implementing the Westinghouse principles. This process showed that the rating was 123% underlying an assumption of 5% allowance time. Consequently, the standard time was 108.53 seconds per piece. The Takt time was calculated from customer needs divided by working duration in one day; 3.66 seconds per piece. Of these, the proper number of operators was 30 people. That meant five operators should be eliminated in order to increase the production process. After that, a production model was created from the actual process by using the Arena program to confirm model reliability; the outputs from imitation were compared with the original (actual process) and this comparison indicated that the same output meaning was reliable. Then, worker numbers and their job responsibilities were remodeled into the Arena program. Lastly, the efficiency of production process enhanced from 70.82% to 82.63% according to the target.

Keywords: hard disk drive, line balancing, ECRS, simulation, arena program

Procedia PDF Downloads 152
18047 Load Balancing and Resource Utilization in Cloud Computing

Authors: Gagandeep Kaur


Cloud computing uses various computing resources such as CPU, memory, processor etc. which is used to deliver service over the network and is one of the emerging fields for large scale distributed computing. In cloud computing, execution of large number of tasks with available resources to achieve high performance, minimal total time for completion, minimum response time, effective utilization of resources etc. are the major research areas. In the proposed research, an algorithm has been proposed to achieve high performance in load balancing and resource utilization. The proposed algorithm is used to reduce the makespan, increase the resource utilization and performance cost for independent tasks. Further scheduling metrics based on algorithm in cloud computing has been proposed.

Keywords: resource utilization, response time, load balancing, performance cost

Procedia PDF Downloads 97
18046 An Improved Modular Multilevel Converter Voltage Balancing Approach for Grid Connected PV System

Authors: Safia Bashir, Zulfiqar Memon


During the last decade, renewable energy sources in particular solar photovoltaic (PV) has gained increased attention. Therefore, various PV converters topologies have emerged. Among this topology, the modular multilevel converter (MMC) is considered as one of the most promising topologies for the grid-connected PV system due to its modularity and transformerless features. When it comes to the safe operation of MMC, the balancing of the Submodules Voltages (SMs) plays a critical role. This paper proposes a balancing approach based on space vector PWM (SVPWM). Unlike the existing techniques, this method generates the switching vectors for the MMC by using only one SVPWM for the upper arm. The lower arm switching vectors are obtained by finding the complement of the upper arm switching vectors. The use of one SVPWM not only simplifies the calculation but also helped in reducing the circulating current in the MMC. The proposed method is varied through simulation using Matlab/Simulink and compared with other available modulation methods. The results validate the ability of the suggested method in balancing the SMs capacitors voltages and reducing the circulating current which will help in reducing the power loss of the PV system.

Keywords: capacitor voltage balancing, circulating current, modular multilevel converter, PV system

Procedia PDF Downloads 86
18045 Sensitivity, Specificity and Efficiency Real-Time PCR Using SYBR Green Method to Determine Porcine and Bovine DNA Using Specific Primer Cytochrome B Gene

Authors: Ahlam Inayatullah Badrul Munir, M. Husaini A. Rahman, Mohd Sukri Hassan


Real-time PCR is a molecular biology technique that is currently being widely used for halal services to differentiating between porcine and bovine DNA. The useful of technique become very important for student or workers (who works in the laboratory) to learn how the technique could be run smoothly without fail. Same concept with conventional PCR, real-time PCR also needed DNA template, primer, enzyme polymerase, dNTP, and buffer. The difference is in real-time PCR, have additional component namely fluorescent dye. The most common use of fluorescent dye in real-time PCR is SYBR green. The purpose of this study was to find out how sensitive, specific and efficient real-time PCR technique was combined with SYBR green method and specific primers of CYT b. The results showed that real-time PCR technique using SYBR Green, capable of detecting porcine and bovine DNA concentrations up to 0.0001 µl/ng. The level of efficiency for both types of DNA was 91% (90-110). Not only that in specific primer CYT b bovine primer could detect only bovine DNA, and porcine primer could detect only porcine primer. So, from the study could be concluded that real-time PCR technique that was combined with specific primer CYT b and SYBR green method, was sensitive, specific and efficient to detect porcine and bovine DNA.

Keywords: sensitivity, specificity, efficiency, real-time PCR, SYBR green, Cytochrome b, porcine DNA, bovine DNA

Procedia PDF Downloads 232
18044 Optimal Solutions for Real-Time Scheduling of Reconfigurable Embedded Systems Based on Neural Networks with Minimization of Power Consumption

Authors: Ghofrane Rehaiem, Hamza Gharsellaoui, Samir Benahmed


In this study, Artificial Neural Networks (ANNs) were used for modeling the parameters that allow the real-time scheduling of embedded systems under resources constraints designed for real-time applications running. The objective of this work is to implement a neural networks based approach for real-time scheduling of embedded systems in order to handle real-time constraints in execution scenarios. In our proposed approach, many techniques have been proposed for both the planning of tasks and reducing energy consumption. In fact, a combination of Dynamic Voltage Scaling (DVS) and time feedback can be used to scale the frequency dynamically adjusting the operating voltage. Indeed, we present in this paper a hybrid contribution that handles the real-time scheduling of embedded systems, low power consumption depending on the combination of DVS and Neural Feedback Scheduling (NFS) with the energy Priority Earlier Deadline First (PEDF) algorithm. Experimental results illustrate the efficiency of our original proposed approach.

Keywords: optimization, neural networks, real-time scheduling, low-power consumption

Procedia PDF Downloads 273
18043 Framework Study on Single Assembly Line to Improve Productivity with Six Sigma and Line Balancing Approach

Authors: Inaki Maulida Hakim, T. Yuri M. Zagloel, Astari Wulandari


Six sigma is a framework that is used to identify inefficiency so that the cause of inefficiency will be known and right improvement to overcome cause of inefficiency can be conducted. This paper presents result of implementing six sigma to improve piston assembly line in Manufacturing Laboratory, Universitas Indonesia. Six sigma framework will be used to analyze the significant factor of inefficiency that needs to be improved which causes bottleneck in assembly line. After analysis based on six sigma framework conducted, line balancing method was chosen for improvement to overcome causative factor of inefficiency which is differences time between workstation that causes bottleneck in assembly line. Then after line balancing conducted in piston assembly line, the result is increase in efficiency. Efficiency is shown in the decreasing of Defects per Million Opportunities (DPMO) from 900,000 to 700,000, the increasing of level of labor productivity from 0.0041 to 0.00742, the decreasing of idle time from 121.3 seconds to 12.1 seconds, and the increasing of output, which is from 1 piston in 5 minutes become 3 pistons in 5 minutes.

Keywords: assembly line, line balancing, productivity, six sigma

Procedia PDF Downloads 205
18042 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi


Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on time-controlled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSP algorithm outperformed the others and is a versatile management model for the operation of real-world water distribution system.

Keywords: JPSO, operation, optimization, water distribution system

Procedia PDF Downloads 172
18041 Hybrid Bee Ant Colony Algorithm for Effective Load Balancing and Job Scheduling in Cloud Computing

Authors: Thomas Yeboah


Cloud Computing is newly paradigm in computing that promises a delivery of computing as a service rather than a product, whereby shared resources, software, and information are provided to computers and other devices as a utility (like the electricity grid) over a network (typically the Internet). As Cloud Computing is a newly style of computing on the internet. It has many merits along with some crucial issues that need to be resolved in order to improve reliability of cloud environment. These issues are related with the load balancing, fault tolerance and different security issues in cloud environment.In this paper the main concern is to develop an effective load balancing algorithm that gives satisfactory performance to both, cloud users and providers. This proposed algorithm (hybrid Bee Ant Colony algorithm) is a combination of two dynamic algorithms: Ant Colony Optimization and Bees Life algorithm. Ant Colony algorithm is used in this hybrid Bee Ant Colony algorithm to solve load balancing issues whiles the Bees Life algorithm is used for optimization of job scheduling in cloud environment. The results of the proposed algorithm shows that the hybrid Bee Ant Colony algorithm outperforms the performances of both Ant Colony algorithm and Bees Life algorithm when evaluated the proposed algorithm performances in terms of Waiting time and Response time on a simulator called CloudSim.

Keywords: ant colony optimization algorithm, bees life algorithm, scheduling algorithm, performance, cloud computing, load balancing

Procedia PDF Downloads 481
18040 Adaptive Discharge Time Control for Battery Operation Time Enhancement

Authors: Jong-Bae Lee, Seongsoo Lee


This paper proposes an adaptive discharge time control method to balance cell voltages in alternating battery cell discharging method. In the alternating battery cell discharging method, battery cells are periodically discharged in turn. Recovery effect increases battery output voltage while the given battery cell rests without discharging, thus battery operation time of target system increases. However, voltage mismatch between cells leads two problems. First, voltage difference between cells induces inter-cell current with wasted power. Second, it degrades battery operation time, since system stops when any cell reaches to the minimum system operation voltage. To solve this problem, the proposed method adaptively controls cell discharge time to equalize both cell voltages. In the proposed method, battery operation time increases about 19%, while alternating battery cell discharging method shows about 7% improvement.

Keywords: battery, recovery effect, low-power, alternating battery cell discharging, adaptive discharge time control

Procedia PDF Downloads 260
18039 Shopping Cart System: Load Balancing and Fault Tolerance in the OSGi Service Platform

Authors: Irina Astrova, Arne Koschel, Thole Schneider, Johannes Westhuis, Jürgen Westerkamp


The main purpose of this paper was to find a simple solution for load balancing and fault tolerance in OSGi. The challenge was to implement a highly available web application such as a shopping cart system with load balancing and fault tolerance, without having to change the core of OSGi.

Keywords: fault tolerance, load balancing, OSGi, shopping cart system

Procedia PDF Downloads 304
18038 Real-Time Online Tracking Platform

Authors: Denis Obrul, Borut Žalik


We present an extendable online real-time tracking platform that can be used to track a wide variety of location-aware devices. These can range from GPS devices mounted inside a vehicle, closed and secure systems such as Teltonika and to mobile phones running multiple platforms. Special consideration is given to decentralized approach, security and flexibility. A number of different use cases are presented as a proof of concept.

Keywords: real-time, online, gps, tracking, web application

Procedia PDF Downloads 271
18037 Automated Method Time Measurement System for Redesigning Dynamic Facility Layout

Authors: Salam Alzubaidi, G. Fantoni, F. Failli, M. Frosolini


The dynamic facility layout problem is a really critical issue in the competitive industrial market; thus, solving this problem requires robust design and effective simulation systems. The sustainable simulation requires inputting reliable and accurate data into the system. So this paper describes an automated system integrated into the real environment to measure the duration of the material handling operations, collect the data in real-time, and determine the variances between the actual and estimated time schedule of the operations in order to update the simulation software and redesign the facility layout periodically. The automated method- time measurement system collects the real data through using Radio Frequency-Identification (RFID) and Internet of Things (IoT) technologies. Hence, attaching RFID- antenna reader and RFID tags enables the system to identify the location of the objects and gathering the time data. The real duration gathered will be manipulated by calculating the moving average duration of the material handling operations, choosing the shortest material handling path, and then updating the simulation software to redesign the facility layout accommodating with the shortest/real operation schedule. The periodic simulation in real-time is more sustainable and reliable than the simulation system relying on an analysis of historical data. The case study of this methodology is in cooperation with a workshop team for producing mechanical parts. Although there are some technical limitations, this methodology is promising, and it can be significantly useful in the redesigning of the manufacturing layout.

Keywords: dynamic facility layout problem, internet of things, method time measurement, radio frequency identification, simulation

Procedia PDF Downloads 47
18036 Load Balancing Technique for Energy - Efficiency in Cloud Computing

Authors: Rani Danavath, V. B. Narsimha


Cloud computing is emerging as a new paradigm of large scale distributed computing. Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., three service models, and four deployment networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model is composed of five essential characteristics models. Load balancing is one of the main challenges in cloud computing, which is required to distribute the dynamic workload across multiple nodes, to ensure that no single node is overloaded. It helps in optimal utilization of resources, enhancing the performance of the system. The goal of the load balancing is to minimize the resource consumption and carbon emission rate, that is the direct need of cloud computing. This determined the need of new metrics energy consumption and carbon emission for energy-efficiency load balancing techniques in cloud computing. Existing load balancing techniques mainly focuses on reducing overhead, services, response time and improving performance etc. In this paper we introduced a Technique for energy-efficiency, but none of the techniques have considered the energy consumption and carbon emission. Therefore, our proposed work will go towards energy – efficiency. So this energy-efficiency load balancing technique can be used to improve the performance of cloud computing by balancing the workload across all the nodes in the cloud with the minimum resource utilization, in turn, reducing energy consumption, and carbon emission to an extent, which will help to achieve green computing.

Keywords: cloud computing, distributed computing, energy efficiency, green computing, load balancing, energy consumption, carbon emission

Procedia PDF Downloads 370
18035 The Application of Bayesian Heuristic for Scheduling in Real-Time Private Clouds

Authors: Sahar Sohrabi


The emergence of Cloud data centers has revolutionized the IT industry. Private Clouds in specific provide Cloud services for certain group of customers/businesses. In a real-time private Cloud each task that is given to the system has a deadline that desirably should not be violated. Scheduling tasks in a real-time private CLoud determine the way available resources in the system are shared among incoming tasks. The aim of the scheduling policy is to optimize the system outcome which for a real-time private Cloud can include: energy consumption, deadline violation, execution time and the number of host switches. Different scheduling policies can be used for scheduling. Each lead to a sub-optimal outcome in a certain settings of the system. A Bayesian Scheduling strategy is proposed for scheduling to further improve the system outcome. The Bayesian strategy showed to outperform all selected policies. It also has the flexibility in dealing with complex pattern of incoming task and has the ability to adapt.

Keywords: cloud computing, scheduling, real-time private cloud, bayesian

Procedia PDF Downloads 279
18034 A Fundamental Study for Real-Time Safety Evaluation System of Landing Pier Using FBG Sensor

Authors: Heungsu Lee, Youngseok Kim, Jonghwa Yi, Chul Park


A landing pier is subjected to safety assessment by visual inspection and design data, but it is difficult to check the damage in real-time. In this study, real - time damage detection and safety evaluation methods were studied. As a result of structural analysis of the arbitrary landing pier structure, the inflection point of deformation and moment occurred at 10%, 50%, and 90% of pile length. The critical value of Fiber Bragg Grating (FBG) sensor was set according to the safety factor, and the FBG sensor application method for real - time safety evaluation was derived.

Keywords: FBG sensor, harbor structure, maintenance, safety evaluation system

Procedia PDF Downloads 102