Search results for: deep learning models
11968 An Approach on Intelligent Tolerancing of Car Body Parts Based on Historical Measurement Data
Authors: Kai Warsoenke, Maik Mackiewicz
Abstract:
To achieve a high quality of assembled car body structures, tolerancing is used to ensure a geometric accuracy of the single car body parts. There are two main techniques to determine the required tolerances. The first is tolerance analysis which describes the influence of individually tolerated input values on a required target value. Second is tolerance synthesis to determine the location of individual tolerances to achieve a target value. Both techniques are based on classical statistical methods, which assume certain probability distributions. To ensure competitiveness in both saturated and dynamic markets, production processes in vehicle manufacturing must be flexible and efficient. The dimensional specifications selected for the individual body components and the resulting assemblies have a major influence of the quality of the process. For example, in the manufacturing of forming tools as operating equipment or in the higher level of car body assembly. As part of the metrological process monitoring, manufactured individual parts and assemblies are recorded and the measurement results are stored in databases. They serve as information for the temporary adjustment of the production processes and are interpreted by experts in order to derive suitable adjustments measures. In the production of forming tools, this means that time-consuming and costly changes of the tool surface have to be made, while in the body shop, uncertainties that are difficult to control result in cost-intensive rework. The stored measurement results are not used to intelligently design tolerances in future processes or to support temporary decisions based on real-world geometric data. They offer potential to extend the tolerancing methods through data analysis and machine learning models. The purpose of this paper is to examine real-world measurement data from individual car body components, as well as assemblies, in order to develop an approach for using the data in short-term actions and future projects. For this reason, the measurement data will be analyzed descriptively in the first step in order to characterize their behavior and to determine possible correlations. In the following, a database is created that is suitable for developing machine learning models. The objective is to create an intelligent way to determine the position and number of measurement points as well as the local tolerance range. For this a number of different model types are compared and evaluated. The models with the best result are used to optimize equally distributed measuring points on unknown car body part geometries and to assign tolerance ranges to them. The current results of this investigation are still in progress. However, there are areas of the car body parts which behave more sensitively compared to the overall part and indicate that intelligent tolerancing is useful here in order to design and control preceding and succeeding processes more efficiently.Keywords: automotive production, machine learning, process optimization, smart tolerancing
Procedia PDF Downloads 11611967 Chinese Vocabulary Acquisition and Mobile Assisted Language Learning
Authors: Yuqing Sun
Abstract:
Chinese has been regarded as one of the most difficult languages in learning due to its complex spelling structure, difficult pronunciation, as well as its varying forms. Since vocabulary acquisition is the basic process to acquire a language, to express yourself, to compose a sentence, and to conduct a communication, so learning the vocabulary is of great importance. However, the vocabulary contains pronunciation, spelling, recognition and application which may seem as a huge work. This may pose a question for the language teachers (language teachers in China who teach Chinese to the foreign students): How to teach them in an effective way? Traditionally, teachers have no choice but teach it all by themselves, then with the development of technology, they can use computer as a tool to help them (Computer Assisted Language Learning or CALL). Now, they move into the Mobile Assisted Language Learning (MALL) method to guide their teaching, upon which the appraisal is convincing. It diversifies the learning material and the way of output, which can activate learners’ curiosity and accelerate their understanding. This paper will focus on actual case studies occurring in the universities in China of teaching the foreign students to learn Chinese, and the analysis of the utilization of WeChat channel as an example of MALL model to explore the active role of MALL to enhance the effectiveness of Chinese vocabulary acquisition.Keywords: Chinese, vocabulary acquisition, MALL, case
Procedia PDF Downloads 41411966 A Methodological Concept towards a Framework Development for Social Software Adoption in Higher Education System
Authors: Kenneth N. Ohei, Roelien Brink
Abstract:
For decades, teaching and learning processes have centered on the traditional approach (Web 1.0) that promoted teacher-directed pedagogical practices. Currently, there is a realization that the traditional approach is not adequate to effectively address and improve all student-learning outcomes. The subsequent incorporation of social software, Information, and Communication Technology (ICT) tools in universities may serve as complementary to support educational goals, offering students the affordability and opportunity to educational choices and learning platforms. Consequently, educators’ inability to incorporate these instructional ICT tools in their teaching and learning practices remains a challenge. This will signify that educators still lack the ICT skills required to administer lectures and bridging learning gaps. This study probes a methodological concept with the aim of developing a framework towards the adoption of social software in HES to help facilitate business processes and can build social presence among students. A mixed method will be appropriate to develop a comprehensive framework needed in Higher Educational System (HES). After research have been conducted, the adoption of social software will be based on the developed comprehensive framework which is supposed to impact positively on education and approach of delivery, improves learning experience, engagement and finally, increases educational opportunities and easy access to educational contents.Keywords: blended and integrated learning, learning experience and engagement, higher educational system, HES, information and communication technology, ICT, social presence, Web 1.0, Web 2.0, Web 3.0
Procedia PDF Downloads 15711965 A Case Report of Aberrant Vascular Anatomy of the Deep Inferior Epigastric Artery Flap
Authors: Karissa Graham, Andrew Campbell-Lloyd
Abstract:
The deep inferior epigastric artery perforator flap (DIEP) is used to reconstruct large volumes of tissue. The DIEP flap is based on the deep inferior epigastric artery (DIEA) and vein. Accurate knowledge of the anatomy of these vessels allows for efficient dissection of the flap, minimal damage to surrounding tissue, and a well vascularized flap. A 54 year old lady was assessed for bilateral delayed autologous reconstruction with DIEP free flaps. The right DIEA was consistent with the described anatomy. The left DIEA had a vessel branching shortly after leaving the external iliac artery and before entering the muscle. This independent branch entered the muscle and had a long intramuscular course to the largest perforator. The main DIEA vessel demonstrated a type II branching pattern but had perforators that were too small to have a viable DIEP flap. There were no communicating arterial branches between the independent vessel and DIEA, however, there was one venous communication between them. A muscle sparing transverse rectus abdominis muscle flap was raised using the main periumbilical perforator from the independent vessel. Our case report demonstrated an unreported anatomical variant of the DIEA. A few anatomical variants have been described in the literature, including a unilateral absent DIEA and peritoneal-cutaneous perforators that had no connection to the DIEA. Doing a pre-operative CTA helps to identify these rare anatomical variations, which leads to safer, more efficient, and effective operating.Keywords: aberrant anatomy, CT angiography, DIEP anatomy, free flap
Procedia PDF Downloads 13411964 The Practice of Teaching Chemistry by the Application of Online Tests
Authors: Nikolina Ribarić
Abstract:
E-learning is most commonly defined as a set of applications and processes, such as Web-based learning, computer-based learning, virtual classrooms, and digital collaboration, that enable access to instructional content through a variety of electronic media. The main goal of an e-learning system is learning, and the way to evaluate the impact of an e-learning system is by examining whether students learn effectively with the help of that system. Testmoz is a program for online preparation of knowledge evaluation assignments. The program provides teachers with computer support during the design of assignments and evaluating them. Students can review and solve assignments and also check the correctness of their solutions. Research into the increase of motivation by the practice of providing teaching content by applying online tests prepared in the Testmoz program was carried out with students of the 8th grade of Ljubo Babić Primary School in Jastrebarsko. The students took the tests in their free time, from home, for an unlimited number of times. SPSS was used to process the data obtained by the research instruments. The results of the research showed that students preferred to practice teaching content and achieved better educational results in chemistry when they had access to online tests for repetition and practicing in relation to subject content which was checked after repetition and practicing in "the classical way" -i.e., solving assignments in a workbook or writing assignments in worksheets.Keywords: chemistry class, e-learning, motivation, Testmoz
Procedia PDF Downloads 16011963 The Holistic Nursing WebQuest: An Interactive Teaching/Learning Strategy
Authors: Laura M. Schwarz
Abstract:
WebQuests are an internet-based interactive teaching/learning tool and utilize a scaffolded methodology. WebQuests employ critical thinking, afford inquiry-based constructivist learning, and readily employ Bloom’s Taxonomy. WebQuests have generally been used as instructional technology tools in primary and secondary education and have more recently grown in popularity in higher education. The study of the efficacy of WebQuests as an instructional approach to learning, however, has been limited, particularly in the nursing education arena. The purpose of this mixed-methods study was to determine nursing students’ perceptions of the effectiveness of the Nursing WebQuest as a teaching/learning strategy for holistic nursing-related content. Quantitative findings (N=42) suggested that learners were active participants, used reflection, thought of new ideas, used analysis skills, discovered something new, and assessed the worth of something while taking part in the WebQuests. Qualitative findings indicated that participants found WebQuest positives as easy to understand and navigate; clear and organized; interactive; good alternative learning format, and used a variety of quality resources. Participants saw drawbacks as requiring additional time and work; and occasional failed link or link causing them to lose their location in the WebQuest. Recommendations include using larger sample size and more diverse populations from various programs and universities. In conclusion, WebQuests were found to be an effective teaching/learning tool as positively assessed by study participants.Keywords: holistic nursing, nursing education, teaching/learning strategy, WebQuests
Procedia PDF Downloads 12611962 Post Growth Annealing Effect on Deep Level Emission and Raman Spectra of Hydrothermally Grown ZnO Nanorods Assisted by KMnO4
Authors: Ashish Kumar, Tejendra Dixit, I. A. Palani, Vipul Singh
Abstract:
Zinc oxide, with its interesting properties such as large band gap (3.37eV), high exciton binding energy (60 meV) and intense UV absorption has been studied in literature for various applications viz. optoelectronics, biosensors, UV-photodetectors etc. The performance of ZnO devices is highly influenced by morphologies, size, crystallinity of the ZnO active layer and processing conditions. Recently, our group has shown the influence of the in situ addition of KMnO4 in the precursor solution during the hydrothermal growth of ZnO nanorods (NRs) on their near band edge (NBE) emission. In this paper, we have investigated the effect of post-growth annealing on the variations in NBE and deep level (DL) emissions of as grown ZnO nanorods. These observed results have been explained on the basis of X-ray Diffraction (XRD) and Raman spectroscopic analysis, which clearly show that improved crystalinity and quantum confinement in ZnO nanorods.Keywords: ZnO, nanorods, hydrothermal, KMnO4
Procedia PDF Downloads 40011961 Evaluation of Environmental, Technical, and Economic Indicators of a Fused Deposition Modeling Process
Authors: M. Yosofi, S. Ezeddini, A. Ollivier, V. Lavaste, C. Mayousse
Abstract:
Additive manufacturing processes have changed significantly in a wide range of industries and their application progressed from rapid prototyping to production of end-use products. However, their environmental impact is still a rather open question. In order to support the growth of this technology in the industrial sector, environmental aspects should be considered and predictive models may help monitor and reduce the environmental footprint of the processes. This work presents predictive models based on a previously developed methodology for the environmental impact evaluation combined with a technical and economical assessment. Here we applied the methodology to the Fused Deposition Modeling process. First, we present the predictive models relative to different types of machines. Then, we present a decision-making tool designed to identify the optimum manufacturing strategy regarding technical, economic, and environmental criteria.Keywords: additive manufacturing, decision-makings, environmental impact, predictive models
Procedia PDF Downloads 13111960 Mercury Detection in Two Fishes from the Persian Gulf
Authors: Zahra Khoshnood, Mehdi Kazaie, Sajedeh Neisi
Abstract:
In 2013, 24 fish samples were taken from two fishery regions in the north of Persian Gulf near the Iranian coastal lines. The two flatfishes were Yellofin seabream (Acanthopagrus latus) and Longtail tuna (Thannus tonggol). We analyzed total Hg concentration of liver and muscle tissues by Mercury Analyzer (model LECO AMA 254). The average concentration of total Hg in edible Muscle tissue of deep-Flounder was measured in Bandar-Abbas and was found to be 18.92 and it was 10.19 µg.g-1 in Bandar-Lengeh. The corresponding values for Oriental sole were 8.47 and 0.08 µg.g-1. The average concentration of Hg in liver tissue of deep-Flounder, in Bandar-Abbas was 25.49 and that in Bandar-Lengeh was 12.52 µg.g-1.the values for Oriental sole were 11.88 and 3.2 µg.g-1 in Bandar-Abbas and Bandar-Lengeh, respectively.Keywords: mercury, Acanthopagrus latus, Thannus tonggol, Persian Gulf
Procedia PDF Downloads 60311959 Principal Creative Leadership for Teacher Learning and School Culture
Authors: Yashi Ye
Abstract:
Principles play vital roles in shaping the school culture and promoting teachers' professional learning by exerting their leadership. In the changing time of the 21st century, the creative leadership of school leaders is increasingly important in cultivating the professional learning communities of teachers for eventually improving student performance in every continent. This study examines under what conditions and how principal creative leadership contributes to teachers’ professional learning and school culture. Data collected from 632 teachers in 30 primary and middle schools in the cities of Chengdu and Chongqing in mainland China are analyzed using structural equation modeling and bootstrapping tests. A moderated mediation model of principle creative leadership effects is used to analyze professional teacher learning and school culture in which the mediator will be school culture and the moderator will be power distance orientation. The results indicate that principal creative leadership has significant direct and indirect effects on teachers' professional learning. A positive correlation between principal creative leadership, professional teacher learning, and school culture is observed. Further model testing found that teacher power distance orientation moderated the significant effect of principal creative leadership on school culture. When teachers perceived higher power distance in teacher-principal relations, the effects of principal creative leadership were stronger than for those who perceived low power distance. The results indicate the “culture change” in the young generation of teachers in China, and further implications to understanding the cultural context in the field of educational leadership are discussed.Keywords: power distance orientation, principal creative leadership, school culture, teacher professional learning
Procedia PDF Downloads 14211958 3D Printing for Maritime Cultural Heritage: A Design for All Approach to Public Interpretation
Authors: Anne Eugenia Wright
Abstract:
This study examines issues in accessibility to maritime cultural heritage. Using the Pillar Dollar Wreck in Biscayne National Park, Florida, this study presents an approach to public outreach based on the concept of Design for All. Design for All advocates creating products that are accessible and functional for all users, including those with visual, hearing, learning, mobility, or economic impairments. As a part of this study, a small exhibit was created that uses 3D products as a way to bring maritime cultural heritage to the public. It was presented to the public at East Carolina University’s Joyner Library. Additionally, this study presents a methodology for 3D printing scaled photogrammetry models of archaeological sites in full color. This methodology can be used to present a realistic depiction of underwater archaeological sites to those who are incapable of accessing them in the water. Additionally, this methodology can be used to present underwater archaeological sites that are inaccessible to the public due to conditions such as visibility, depth, or protected status. This study presents a practical use for 3D photogrammetry models, as well as an accessibility strategy to expand the outreach potential for maritime archaeology.Keywords: Underwater Archaeology, 3D Printing, Photogrammetry, Design for All
Procedia PDF Downloads 13811957 Water Quality Assessment of Deep Wells in Western Misamis Oriental, Philippines
Authors: Girlie D. Leopoldo, Myrna S. Ceniza, Ronnie L. Besagas, Antonio Y. Asoy, Noel T. Dael, Romeo M. Del Rosario
Abstract:
The quality of groundwater from main deep well sources of seven (7) municipalities in Western Misamis Oriental, Philippines was examined. The study looks at the well waters’ physicochemical properties (temperture, pH, turbidity, conductivity, TDS, salinity, chlorides, TOC, and total hardness), the heavy metals and other metals (Pb, Cd, Al, As, Hg, Sb, Zn, Cu, Fe) and their microbiological (total coliform and E. coli) characteristics. The physicochemical properties of groundwater samples were found to be within the Philippine National Standards for Drinking Water (PNSDW)/US-EPA except for the TDS, chlorides, and hardness of some sources. Well waters from both Initao and Gitagum municipalities have TDS values of 643.2 mg/L and 578.4 mg/L, respectively, as compared to PNSDW/US-EPA standard limit of 500 mg/L. These same two municipalities Initao and Gitagum as well as the municipality of Libertad also have chloride levels beyond the 250 mg/L limit of PNSDW/US-EPA/EU with values at 360, 318 and 277 mg/L respectively. The Libertad sample also registered a total hardness of 407.5 mg/L CaCO3 as compared to the 300 mg/L PNSDW limit. These mentioned three (3) municipalities are noticed to have similar geologic structures. Although metal analyses revealed the presence of Zn, Cu and Fe in almost all well water sources, their concentrations are below allowable limit. All well waters from the seven municipalities failed in total coliform count. Escherichia coli were also found in well waters from four (4) municipalities including Laguindingan, Lugait, Gitagum, and Libertad. The presence of these pathogens in the well waters needs to be addressed to make the waters suitable for human consumption.Keywords: groundwater, deep well, physico-chemical, heavy metal, microbiological
Procedia PDF Downloads 59311956 The Implementation of Social Responsibility with the Approach of Indonesian Realistic Mathematics Education in Teaching and Learning Mathematics on Students' Engagement and Learning
Authors: Nurwati Djaman, Suradi Tahmir, Nurdin Arsyad
Abstract:
The major objective of this study was to implement and evaluate the use of the implementation of social responsibility with the approach of Indonesian Realistic Mathematics Education (PMRI) in teaching and learning mathematics on students’ engagement and learning. The research problems investigated in this research: 1) What were the effects of the implementation of social responsibility with PMRI approach to learning mathematics? 2) What were the effects of the approach to students’ engagement? An action research and grounded theory methodology were adopted for the study. This study used mixed methods to collect, describe, and interpret the data. The data were collected through focus group discussion, classroom observations, questionnaire, interview, and students’ work. The participants in this study consisted of 45 students. The study revealed that the approach has given students the opportunity to develop their understanding of concepts and procedures, problem-solving ability, and communication ability. Also, students’ involvement in the approach improved their engagement in learning mathematics in the three domains of cognitive engagement, effective engagement, and behavioral engagement. In particular, the data collection from the focus group, classroom observations, and interviews suggest that, during this study, the students became more active participants in the mathematics lessons.Keywords: Indonesian Realistic Mathematics Education, PMRI, learning mathematics, social responsibility, students' engagement
Procedia PDF Downloads 14411955 Leveraging Unannotated Data to Improve Question Answering for French Contract Analysis
Authors: Touila Ahmed, Elie Louis, Hamza Gharbi
Abstract:
State of the art question answering models have recently shown impressive performance especially in a zero-shot setting. This approach is particularly useful when confronted with a highly diverse domain such as the legal field, in which it is increasingly difficult to have a dataset covering every notion and concept. In this work, we propose a flexible generative question answering approach to contract analysis as well as a weakly supervised procedure to leverage unannotated data and boost our models’ performance in general, and their zero-shot performance in particular.Keywords: question answering, contract analysis, zero-shot, natural language processing, generative models, self-supervision
Procedia PDF Downloads 19411954 The Impact of Virtual Learning Strategy on Youth Learning Motivation in Malaysian Higher Learning Instituitions
Authors: Hafizah Harun, Habibah Harun, Azlina Kamaruddin
Abstract:
Virtual reality has become a powerful and promising tool in education because of their unique technological characteristics that differentiate them from the other ICT applications. Despite the numerous interpretations of its definition, virtual reality can be concisely and precisely described as the integration of computer graphics and various input and display technologies to create the illusion of immersion in a computer generated reality. Generally, there are two major types based on the level of interaction and immersive environment that are immersive and non-immersive virtual reality. In the study of the role of virtual reality in built environment education, Horne and Thompson were reported as saying that the benefits of using visualization technologies were seen as having the potential to improve and extend the learning process, increase student motivation and awareness, and add to the diversity of teaching methods. Youngblut reported that students enjoy working with virtual worlds and this experience can be highly motivating. The impact of virtual reality on youth learning in Malaysia is currently not well explored because the technology is still not widely used here. Only a handful of the universities, such as University Malaya, MMU, and Unimas are applying virtual reality strategy in some of their undergraduate programs. From the literature, it has been identified that there are several virtual reality learning strategies currently available. Therefore, this study aims to investigate the impact of Virtual Reality strategy on Youth Learning Motivation in Malaysian higher learning institutions. We will explore the relationship between virtual reality (gaming, laboratory, simulation) and youth leaning motivation. Another aspect that we will explore is the framework for virtual reality implementation at higher learning institution in Malaysia. This study will be carried out quantitatively by distributing questionnaires to respondents from sample universities. Data analysis are descriptive and multiple regression. Researcher will carry out a pilot test prior to distributing the questionnaires to 300 undergraduate students who are undergoing their courses in virtual reality environment. The respondents come from two universities, MMU CyberJaya and University Malaya. The expected outcomes from this study are the identification of which virtual reality strategy has most impact on students’ motivation in learning and a proposed framework of virtual reality implementation at higher learning.Keywords: virtual reality, learning strategy, youth learning, motivation
Procedia PDF Downloads 38911953 Dow Polyols near Infrared Chemometric Model Reduction Based on Clustering: Reducing Thirty Global Hydroxyl Number (OH) Models to Less Than Five
Authors: Wendy Flory, Kazi Czarnecki, Matthijs Mercy, Mark Joswiak, Mary Beth Seasholtz
Abstract:
Polyurethane Materials are present in a wide range of industrial segments such as Furniture, Building and Construction, Composites, Automotive, Electronics, and more. Dow is one of the leaders for the manufacture of the two main raw materials, Isocyanates and Polyols used to produce polyurethane products. Dow is also a key player for the manufacture of Polyurethane Systems/Formulations designed for targeted applications. In 1990, the first analytical chemometric models were developed and deployed for use in the Dow QC labs of the polyols business for the quantification of OH, water, cloud point, and viscosity. Over the years many models have been added; there are now over 140 models for quantification and hundreds for product identification, too many to be reasonable for support. There are 29 global models alone for the quantification of OH across > 70 products at many sites. An attempt was made to consolidate these into a single model. While the consolidated model proved good statistics across the entire range of OH, several products had a bias by ASTM E1655 with individual product validation. This project summary will show the strategy for global model updates for OH, to reduce the number of models for quantification from over 140 to 5 or less using chemometric methods. In order to gain an understanding of the best product groupings, we identify clusters by reducing spectra to a few dimensions via Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). Results from these cluster analyses and a separate validation set allowed dow to reduce the number of models for predicting OH from 29 to 3 without loss of accuracy.Keywords: hydroxyl, global model, model maintenance, near infrared, polyol
Procedia PDF Downloads 13511952 Distance Learning and Modern Challenges of Education Management in Georgia
Authors: Giorgi Gaganidze, Eter Kharaishvili
Abstract:
The atypical crisis has created new challenges in the education system. Globally, including in Georgia, traditional methods of managing the education system have appeared particularly vulnerable. In addition, new opportunities for the introduction of innovative management of learning processes have emerged. The aim of the research is to identify the main challenges in the field of education management in the distance learning process in Georgia and to develop recommendations on the opportunities for the introduction of innovative management. The paper substantiates the relevance of the research, in particular, it notes that in Georgia, as in many countries, distance learning in higher education institutions became particularly crucial during the Covid-19 pandemic. What is more, theoretical and practical aspects of distance learning are less proven, and a number of problems have been identified in the field of education management in Georgia. The article justifies the need to study the challenges of distance learning for the formation of a sustainable education management system. Within the bibliographic research, there are grouped the opinions of researchers on the modern problems of distance learning and education management in the article. Based on scientific papers, the expectations formed about distance learning are studied, and the main focus is on the existing problems of education management during the atypical crisis. The article discusses the forms and opportunities of distance learning in different countries, evaluates different approaches and challenges to distance learning, and justifies the role of education management in effective distance learning. The paper uses various theoretical-methodological tools of research, including desk research on the research topic; Data selection-grouping, problem identification is carried out by analysis, synthesis, sampling, induction, and other methods;SWOT analysis is used to assess the strengths, weaknesses, opportunities, and threats of distance education and management; The level of student satisfaction with distance learning is determined through the Population-based / Census-based approach; The results of the research are processed by SPSS program. Quantitative research and semi-structured interviews with relevant focus groups were conducted to identify working directions for innovative management of distance learning and education. Research has shown that the demand for distance education is growing in Georgia, but the need to introduce innovative education management remains a particular challenge. Conclusions have been made on the introduction of innovative education management, and the relevant recommendations have been developed.Keywords: distance learning, management challenges, education management, innovative management
Procedia PDF Downloads 12511951 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator
Authors: Jaeyoung Lee
Abstract:
Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.Keywords: edge network, embedded network, MMA, matrix multiplication accelerator, semantic segmentation network
Procedia PDF Downloads 12911950 Undergraduates' Development of Interpersonal and Cooperative Competence in Service-Learning
Authors: Huixuan Xu
Abstract:
The present study was set out to investigate the extent to which and how service-learning fostered a sample of 138 Hong Kong undergraduates’ interpersonal competence and cooperative orientation development. Interpersonal competence is presented when an individual shows empathy with others, provides intelligent advice to others and has practical judgment. Cooperative orientation reflects individuals’ willingness to work with others to achieve common goals. A quality service-learning programme may exhibit the features of provision of meaningful service, close link to curriculum, continuous reflection, youth voice, and diversity. Mixed methods were employed in the present study. Pre-posttest survey was administered to capture individual undergraduates’ development of interpersonal competence and cooperative orientation over a period of four months. The respondents’ evaluation of service-learning elements was administered in the post-test survey. Focus groups were conducted after the end of the service-learning to further explore how the certain service-learning elements promoted individual undergraduates’ development of interpersonal competence and cooperative orientation. Three main findings were reported from the study. (1) The scores of interpersonal competence increased significantly from the pretest to the posttest, while the change of cooperative orientation was not significant. (2) Cooperative orientation and interpersonal competence were correlated positively with the overall course quality respectively, which suggested that the more a service-learning course complied with quality practice, the students became more competent in interpersonal competence and cooperative orientation. (3) The following service-learning elements showed higher impacts: (a) direct contact with service recipients, which engaged students in practicing interpersonal skills; (b) individual participants’ being exposed to a situation that required communication and dialogue with people from diverse backgrounds with different views; (c) experiencing interpersonal conflicts among team members and having the conflicts solved; (d) students’ taking a leading role in a project-based service. The present study provides compelling evidence about what elements in a service-learning program may foster undergraduates’ development of cooperative orientation and interpersonal competence. Implications for the design of service-learning programmes are provided.Keywords: undergraduates, interpersonal competence, cooperation orientation, service-learning
Procedia PDF Downloads 25611949 Teaching for Knowledge Transfer: Best Practices from a Graduate-Level Educational Psychology Distance Learning Program
Authors: Bobby Hoffman
Abstract:
One measure of effective instruction is the ability to solve authentic, real-world problems by effectively transferring and applying classroom and textbook knowledge. While many students can productively earn high grades and learn course content, they are not always able to apply the knowledge they gain. As such, this quasi-experimental study compared the comprehensive exit exam results of learners across instructional modalities who completed a prominent graduate-level educational psychology program. ANCOVA revealed superior knowledge transfer for blended-learning students compared to those who completed distance education and significantly greater transfer of declarative, procedural, and self-regulatory knowledge by the blended-learning students. This paper briefly summarizes the study results while highlighting evidence-based programmatic and course level modifications that were implemented to specifically address the transfer of learning and practical application of educational psychology knowledge.Keywords: assessment, distance learning, educational psychology, knowledge transfer
Procedia PDF Downloads 17711948 Design Off-Campus Interactive Cloud-Based Learning Model
Authors: Osamah Al Qadoori
Abstract:
Using cloud computing in educational sectors grow rapidly in UAE. Initially, within Cloud-Learning Environment Students whenever and wherever can remotely join the online-classroom, on the other hand, Cloud-Based Learning is greatly decreasing the infrastructure and the maintenance cost. Nowadays in many schools (K-12), institutes, colleges as well as universities in UAE Cloud-Based Teaching and Learning environments gain a higher demand and concern. Many students don’t use the available online-educational resources effectively. The challenging question is to which extend these educational resources which are installed in the cloud environment are valuable and constructive? In this paper the researcher is seeking to design an expert agent prototype where the huge information being accommodated inside the cloud environment will go through expert filtration before going to be utilized by other clients (students). To achieve this goal, the focus of the present research would be on two different directions the educational human expertise and the automated-educational expert systems.Keywords: cloud computing, cloud-learning environment, online-classroom, the educational human expertise, the automated-educational expert systems
Procedia PDF Downloads 54011947 Importance of an E-Learning Program in Stress Field for Postgraduate Courses of Doctors
Authors: Ramona-Niculina Jurcau, Ioana-Marieta Jurcau
Abstract:
Background: Preparing in the stress field (SF) is, increasingly, a concern for doctors of different specialties. Aims: The aim was to evaluate the importance of an e-learning program for doctors postgraduate courses, in SF. Methods: Doctors (n= 40 male, 40 female) of different specialties and ages (31-71 years), who attended postgraduate courses in SF, voluntarily responded to a questionnaire that included the following themes: Importance of SF courses for specialty practiced by each respondent doctor (using visual analogue scale, VAS); What SF themes would be indicated as e-learning (EL); Preferred form of SF information assimilation: Classical lectures (CL), EL or a combination of these methods (CL+EL); Which information on the SF course are facilitated by EL model versus CL; In their view which are the first four advantages and the first four disadvantages of EL compared to CL, for SF. Results: To most respondents, the SF courses are important for the specialty they practiced (VAS by an average of 4). The SF themes suggested to be done as EL were: Stress mechanisms; stress factor models for different medical specialties; stress assessment methods; primary stress management methods for different specialties. Preferred form of information assimilation was CL+EL. Aspects of the course facilitated by EL versus CL model: Active reading of theoretical information, with fast access to keywords details; watching documentaries in everyone's favorite order; practice through tests and the rapid control of results. The first four EL advantages, mentioned for SF were: Autonomy in managing the time allocated to the study; saving time for traveling to the venue; the ability to read information in various contexts of time and space; communication with colleagues, in good times for everyone. The first three EL disadvantages, mentioned for SF were: It decreases capabilities for group discussion and mobilization for active participation; EL information accession may depend on electrical source or/and Internet; learning slowdown can appear, by temptation of postponing the implementation. Answering questions was partially influenced by the respondent's age and genre. Conclusions: 1) Post-graduate courses in SF are of interest to doctors of different specialties. 2) The majority of participating doctors preferred EL, but combined with CL (CL+EL). 3) Preference for EL was manifested mainly by young or middle age men doctors. 4) It is important to balance the proper formula for chosen EL, to be the most efficient, interesting, useful and agreeable.Keywords: stress field, doctors’ postgraduate courses, classical lectures, e-learning lecture
Procedia PDF Downloads 23811946 Text Similarity in Vector Space Models: A Comparative Study
Authors: Omid Shahmirzadi, Adam Lugowski, Kenneth Younge
Abstract:
Automatic measurement of semantic text similarity is an important task in natural language processing. In this paper, we evaluate the performance of different vector space models to perform this task. We address the real-world problem of modeling patent-to-patent similarity and compare TFIDF (and related extensions), topic models (e.g., latent semantic indexing), and neural models (e.g., paragraph vectors). Contrary to expectations, the added computational cost of text embedding methods is justified only when: 1) the target text is condensed; and 2) the similarity comparison is trivial. Otherwise, TFIDF performs surprisingly well in other cases: in particular for longer and more technical texts or for making finer-grained distinctions between nearest neighbors. Unexpectedly, extensions to the TFIDF method, such as adding noun phrases or calculating term weights incrementally, were not helpful in our context.Keywords: big data, patent, text embedding, text similarity, vector space model
Procedia PDF Downloads 17511945 Deep Well Grounded Magnetite Anode Chains Retrieval and Installation for Raslanuf Complex Impressed Current Cathodic Protection System Rectification
Authors: Mohamed Ahmed Khali
Abstract:
Numbers of deep well anode ground beds (GBs) have been retrieved due to un operated anode chains. New identical magnetite anode chains(MAC) have been installed at Raslanuf complex impressed current Cathodic protection(ICCP) system, distributed at different plants(Utility, ethylene and polyethylene). All problems associated with retrieving and installation of MACs have been discussed, rectified and presented. All GB associated severely corroded wellhead casings were well maintained and/ or replaced by new fabricated and modified ones. The main cause of wellhead casings internal corrosion was discussed, and the conducted remedy action to overcome future corrosion problem is presented. All GB connected anode junction boxes (AJBs) and shunts were closely inspected, maintained, and necessary replacement/and or modification were carried out on shunts. All damaged GB concrete foundations (CF) have been inspected and completely replaced. All GB associated Transformer-Rectifiers units (TRUs) were subjected to through inspection, and necessary maintenance has been performed on each individual TRU. After completion of all MACs and TRU maintenance activities, each cathodic protection station (CPS) has been re-operated. An alternative current (AC), direct current (DC), voltage and structure to soil potential (S/P) measurements have been conducted, recorded, and all obtained test results are presented. DC current outputs has been adjusted, and DC current outputs of each MAC has been recorded for each GB AJB.Keywords: magnatite anode, deep well, ground bed, cathodic protection, transformer rectifies, impreced current, junction box
Procedia PDF Downloads 11211944 Genetic Algorithms for Feature Generation in the Context of Audio Classification
Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes
Abstract:
Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.Keywords: feature generation, feature learning, genetic algorithm, music information retrieval
Procedia PDF Downloads 43511943 The Effect of Problem-Based Mobile-Assisted Tasks on Spoken Intelligibility of English as a Foreign Language Learners
Authors: Loghman Ansarian, Teoh Mei Lin
Abstract:
In an attempt to increase oral proficiency of Iranian EFL learners, the researchers compared the effect of problem-based mobile-assisted language learning with the conventional language learning approach (Communicative Language Teaching) in Iran. The experimental group (n=37) went through PBL instruction and the control group (n=33) went through conventional instruction. The results of quantitative data analysis after 26 sessions of treatment revealed that PBL could positively affect participants' knowledge of grammar, vocabulary, spoken fluency, and pronunciation; however, in terms of task achievement, no significant effect was found. This study can have pedagogical implications for language teachers, and material developers.Keywords: problem-based learning, spoken intelligibility, Iranian EFL context, cognitive learning
Procedia PDF Downloads 17511942 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network
Authors: Li Hui, Riyadh Hindi
Abstract:
Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network
Procedia PDF Downloads 6611941 Site-based Internship Experiences: From Research to Implementation and Community Collaboration
Authors: Jamie Sundvall, Lisa Jennings
Abstract:
Site based field internship learning (SBL) is an educational approach within a Master’s of Social Work (MSW) university field placement department that promotes a more streamlined approach to the integration of theory and evidence based practices for social work students. The SBL model is founded on research in the field, consideration of current work force needs, United States national trends of MSW graduate skill and knowledge deficits, educational trends in students pursing a master’s degree in social work, and current social problems that require unique problem solving skills. This study explores the use of site-based learning in a hybrid social work program. In this setting, site based learning pairs online education courses and social work field education to create training opportunities for social work students within their own community and cultural context. Students engage in coursework in an online setting with both synchronous and asynchronous features that facilitate development of core competencies for MSW students. Through the SBL model, students are then partnered with faculty in a virtual course room and a university vetted site within their community. The study explores how this model of learning creates community partnerships, through which students engage in a learning loop to develop social work skills, while preparing students to address current community, social, and global issues with the engagement of technology. The goal of SBL is to more effectively equip social work students for practice according to current workforce demands, provide access to education and care to populations who have limited access, and create self-sustainable partnerships. Further, the model helps students learn integration of evidence based practices and helps instructors more effectively teach integration of ethics into practice. The study found that the SBL model increases the influence and professional relevance of the social work profession, and ultimately facilitates stronger approaches to integrating theory into practice. Current implementation of the practice in the United States will be presented in the study. dditionally, future research conceptualization of SBL models will be presented, in order to collaborate on advancing best approaches of translating theory into practice, according to the current needs of the profession and needs of social work students.Keywords: collaboration, fieldwork, research, site-based learning, technology
Procedia PDF Downloads 12511940 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization
Authors: Soheila Sadeghi
Abstract:
Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction
Procedia PDF Downloads 5911939 Geographic Information System for District Level Energy Performance Simulations
Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck
Abstract:
The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.Keywords: CityGML, EnergyADE, energy performance simulation, GIS
Procedia PDF Downloads 168