Search results for: spatial and temporal data
24811 A Modular Framework for Enabling Analysis for Educators with Different Levels of Data Mining Skills
Authors: Kyle De Freitas, Margaret Bernard
Abstract:
Enabling data mining analysis among a wider audience of educators is an active area of research within the educational data mining (EDM) community. The paper proposes a framework for developing an environment that caters for educators who have little technical data mining skills as well as for more advanced users with some data mining expertise. This framework architecture was developed through the review of the strengths and weaknesses of existing models in the literature. The proposed framework provides a modular architecture for future researchers to focus on the development of specific areas within the EDM process. Finally, the paper also highlights a strategy of enabling analysis through either the use of predefined questions or a guided data mining process and highlights how the developed questions and analysis conducted can be reused and extended over time.Keywords: educational data mining, learning management system, learning analytics, EDM framework
Procedia PDF Downloads 32624810 Using Audit Tools to Maintain Data Quality for ACC/NCDR PCI Registry Abstraction
Authors: Vikrum Malhotra, Manpreet Kaur, Ayesha Ghotto
Abstract:
Background: Cardiac registries such as ACC Percutaneous Coronary Intervention Registry require high quality data to be abstracted, including data elements such as nuclear cardiology, diagnostic coronary angiography, and PCI. Introduction: The audit tool created is used by data abstractors to provide data audits and assess the accuracy and inter-rater reliability of abstraction performed by the abstractors for a health system. This audit tool solution has been developed across 13 registries, including ACC/NCDR registries, PCI, STS, Get with the Guidelines. Methodology: The data audit tool was used to audit internal registry abstraction for all data elements, including stress test performed, type of stress test, data of stress test, results of stress test, risk/extent of ischemia, diagnostic catheterization detail, and PCI data elements for ACC/NCDR PCI registries. This is being used across 20 hospital systems internally and providing abstraction and audit services for them. Results: The data audit tool had inter-rater reliability and accuracy greater than 95% data accuracy and IRR score for the PCI registry in 50 PCI registry cases in 2021. Conclusion: The tool is being used internally for surgical societies and across hospital systems. The audit tool enables the abstractor to be assessed by an external abstractor and includes all of the data dictionary fields for each registry.Keywords: abstraction, cardiac registry, cardiovascular registry, registry, data
Procedia PDF Downloads 10524809 Artificial Intelligence Based Comparative Analysis for Supplier Selection in Multi-Echelon Automotive Supply Chains via GEP and ANN Models
Authors: Seyed Esmail Seyedi Bariran, Laysheng Ewe, Amy Ling
Abstract:
Since supplier selection appears as a vital decision, selecting supplier based on the best and most accurate ways has a lot of importance for enterprises. In this study, a new Artificial Intelligence approach is exerted to remove weaknesses of supplier selection. The paper has three parts. First part is choosing the appropriate criteria for assessing the suppliers’ performance. Next one is collecting the data set based on experts. Afterwards, the data set is divided into two parts, the training data set and the testing data set. By the training data set the best structure of GEP and ANN are selected and to evaluate the power of the mentioned methods the testing data set is used. The result obtained shows that the accuracy of GEP is more than ANN. Moreover, unlike ANN, a mathematical equation is presented by GEP for the supplier selection.Keywords: supplier selection, automotive supply chains, ANN, GEP
Procedia PDF Downloads 63124808 Locating the Best Place for Earthquake Refugee Camps by OpenSource Software: A Case Study for Tehran, Iran
Authors: Reyhaneh Saeedi
Abstract:
Iran is one of the regions which are most prone for earthquakes annually having a large number of financial and mortality and financial losses. Every year around the world, a large number of people lose their home and life due to natural disasters such as earthquakes. It is necessary to provide and specify some suitable places for settling the homeless people before the occurrence of the earthquake, one of the most important factors in crisis planning and management. Some of the natural disasters can be Modeling and shown by Geospatial Information System (GIS). By using GIS, it would be possible to manage the spatial data and reach several goals by making use of the analyses existing in it. GIS has a determining role in disaster management because it can determine the best places for temporary resettling after such a disaster. In this research QuantumGIS software is used that It is an OpenSource software so that easy to access codes and It is also free. In this system, AHP method is used as decision model and to locate the best places for temporary resettling, is done based on the related organizations criteria with their weights and buffers. Also in this research are made the buffer layers of criteria and change them to the raster layers. Later on, the raster layers are multiplied on desired weights then, the results are added together. Eventually, there are suitable places for resettling of victims by desired criteria by different colors with their optimum rate in QuantumGIS platform.Keywords: disaster management, temporary resettlement, earthquake, QuantumGIS
Procedia PDF Downloads 39624807 Increasing the Apparent Time Resolution of Tc-99m Diethylenetriamine Pentaacetic Acid Galactosyl Human Serum Albumin Dynamic SPECT by Use of an 180-Degree Interpolation Method
Authors: Yasuyuki Takahashi, Maya Yamashita, Kyoko Saito
Abstract:
In general, dynamic SPECT data acquisition needs a few minutes for one rotation. Thus, the time-activity curve (TAC) derived from the dynamic SPECT is relatively coarse. In order to effectively shorten the interval, between data points, we adopted a 180-degree interpolation method. This method is already used for reconstruction of the X-ray CT data. In this study, we applied this 180-degree interpolation method to SPECT and investigated its effectiveness.To briefly describe the 180-degree interpolation method: the 180-degree data in the second half of one rotation are combined with the 180-degree data in the first half of the next rotation to generate a 360-degree data set appropriate for the time halfway between the first and second rotations. In both a phantom and a patient study, the data points from the interpolated images fell in good agreement with the data points tracking the accumulation of 99mTc activity over time for appropriate region of interest. We conclude that data derived from interpolated images improves the apparent time resolution of dynamic SPECT.Keywords: dynamic SPECT, time resolution, 180-degree interpolation method, 99mTc-GSA.
Procedia PDF Downloads 49324806 Numerical Modelling of Effective Diffusivity in Bone Tissue Engineering
Authors: Ayesha Sohail, Khadija Maqbool, Anila Asif, Haroon Ahmad
Abstract:
The field of tissue engineering is an active area of research. Bone tissue engineering helps to resolve the clinical problems of critical size and non-healing defects by the creation of man-made bone tissue. We will design and validate an efficient numerical model, which will simulate the effective diffusivity in bone tissue engineering. Our numerical model will be based on the finite element analysis of the diffusion-reaction equations. It will have the ability to optimize the diffusivity, even at multi-scale, with the variation of time. It will also have a special feature, with which we will not only be able to predict the oxygen, glucose and cell density dynamics, more accurately, but will also sort the issues arising due to anisotropy. We will fix these problems with the help of modifying the governing equations, by selecting appropriate spatio-temporal finite element schemes, by adaptive grid refinement strategy and by transient analysis.Keywords: scaffolds, porosity, diffusion, transient analysis
Procedia PDF Downloads 54124805 AI-Driven Solutions for Optimizing Master Data Management
Authors: Srinivas Vangari
Abstract:
In the era of big data, ensuring the accuracy, consistency, and reliability of critical data assets is crucial for data-driven enterprises. Master Data Management (MDM) plays a crucial role in this endeavor. This paper investigates the role of Artificial Intelligence (AI) in enhancing MDM, focusing on how AI-driven solutions can automate and optimize various stages of the master data lifecycle. By integrating AI (Quantitative and Qualitative Analysis) into processes such as data creation, maintenance, enrichment, and usage, organizations can achieve significant improvements in data quality and operational efficiency. Quantitative analysis is employed to measure the impact of AI on key metrics, including data accuracy, processing speed, and error reduction. For instance, our study demonstrates an 18% improvement in data accuracy and a 75% reduction in duplicate records across multiple systems post-AI implementation. Furthermore, AI’s predictive maintenance capabilities reduced data obsolescence by 22%, as indicated by statistical analyses of data usage patterns over a 12-month period. Complementing this, a qualitative analysis delves into the specific AI-driven strategies that enhance MDM practices, such as automating data entry and validation, which resulted in a 28% decrease in manual errors. Insights from case studies highlight how AI-driven data cleansing processes reduced inconsistencies by 25% and how AI-powered enrichment strategies improved data relevance by 24%, thus boosting decision-making accuracy. The findings demonstrate that AI significantly enhances data quality and integrity, leading to improved enterprise performance through cost reduction, increased compliance, and more accurate, real-time decision-making. These insights underscore the value of AI as a critical tool in modern data management strategies, offering a competitive edge to organizations that leverage its capabilities.Keywords: artificial intelligence, master data management, data governance, data quality
Procedia PDF Downloads 1724804 Genetic Data of Deceased People: Solving the Gordian Knot
Authors: Inigo de Miguel Beriain
Abstract:
Genetic data of deceased persons are of great interest for both biomedical research and clinical use. This is due to several reasons. On the one hand, many of our diseases have a genetic component; on the other hand, we share genes with a good part of our biological family. Therefore, it would be possible to improve our response considerably to these pathologies if we could use these data. Unfortunately, at the present moment, the status of data on the deceased is far from being satisfactorily resolved by the EU data protection regulation. Indeed, the General Data Protection Regulation has explicitly excluded these data from the category of personal data. This decision has given rise to a fragmented legal framework on this issue. Consequently, each EU member state offers very different solutions. For instance, Denmark considers the data as personal data of the deceased person for a set period of time while some others, such as Spain, do not consider this data as such, but have introduced some specifically focused regulations on this type of data and their access by relatives. This is an extremely dysfunctional scenario from multiple angles, not least of which is scientific cooperation at the EU level. This contribution attempts to outline a solution to this dilemma through an alternative proposal. Its main hypothesis is that, in reality, health data are, in a sense, a rara avis within data in general because they do not refer to one person but to several. Hence, it is possible to think that all of them can be considered data subjects (although not all of them can exercise the corresponding rights in the same way). When the person from whom the data were obtained dies, the data remain as personal data of his or her biological relatives. Hence, the general regime provided for in the GDPR may apply to them. As these are personal data, we could go back to thinking in terms of a general prohibition of data processing, with the exceptions provided for in Article 9.2 and on the legal bases included in Article 6. This may be complicated in practice, given that, since we are dealing with data that refer to several data subjects, it may be complex to refer to some of these bases, such as consent. Furthermore, there are theoretical arguments that may oppose this hypothesis. In this contribution, it is shown, however, that none of these objections is of sufficient substance to delegitimize the argument exposed. Therefore, the conclusion of this contribution is that we can indeed build a general framework on the processing of personal data of deceased persons in the context of the GDPR. This would constitute a considerable improvement over the current regulatory framework, although it is true that some clarifications will be necessary for its practical application.Keywords: collective data conceptual issues, data from deceased people, genetic data protection issues, GDPR and deceased people
Procedia PDF Downloads 15424803 Malaysian ESL Writing Process: A Comparison with England’s
Authors: Henry Nicholas Lee, George Thomas, Juliana Johari, Carmilla Freddie, Caroline Val Madin
Abstract:
Research in comparative and international education often provides value-laden views of an education system within and in between other countries. These views are frequently used by policy makers or educators to explore similarities and differences for, among others, benchmarking purposes. In this study, a comparison is made between Malaysia and England, focusing on the process of writing children went through to create a text, using a multimodal theoretical framework to analyse this comparison. The main purpose is political in nature as it served as an answer to Malaysia’s call for benchmarking of best practices for language learning. Furthermore, the focus on writing in this study adds into more empirical findings about early writers’ writing development and writing improvement, especially for children at the ages of 5-9. In research, comparative studies in English as a Second Language (ESL) writing pedagogy – particularly in Malaysia since the introduction of the Standard- based English Language Curriculum (KSSR) in 2011 as a draft and its full implementation in 2017; reviewed 2018 KSSR-CEFR aligned – has not been done comparatively. In theory, a multimodal theoretical framework somehow allows a logical comparison between first language and ESL which would provide useful insights to illuminate the writing process between Malaysia and England. The comparisons are not representative because of the different school systems in both countries. So far, the literature informs us that the curriculum for language learning is very much emphasised on children’s linguistic abilities, which include their proficiency and mastery of the language, its conventions, and technicalities. However, recent empirical findings suggested that literacy in its concepts and characters need change. In view of this suggestion, the comparison will look at how the process of writing is implemented through the five modes of communication: linguistic, visual, aural, spatial, and gestural. This project draws on data from Malaysia and England, involving 10 teachers, 26 classroom observations, 20 lesson plans, 20 interviews, and 20 brief conversations with teachers. The research focused upon 20 primary children of different genders aged 5-9, and in addition to primary data descriptions, 40 children’s works, 40 brief classroom conversations, 30 classroom photographs, and 30 school compound photographs were undertaken to investigate teachers and children’s use of modes and semiotic resources to design a text. The data were analysed by means of within-case analysis, cross-case analysis, and constant comparative analysis, with an initial stage of data categorisation, followed by general and specific coding, which clustered the data into thematic groups. The study highlights the importance of teachers’ and children’s engagement and interaction with various modes of communication, an adaptation from the English approaches to teaching writing within the KSSR framework and providing ‘voice’ to ESL writers to ensure that both have access to the knowledge and skills required to make decisions in developing multimodal texts and artefacts.Keywords: comparative education, early writers, KSSR, multimodal theoretical framework, writing development
Procedia PDF Downloads 6824802 Particle Size Characteristics of Aerosol Jets Produced by a Low Powered E-Cigarette
Authors: Mohammad Shajid Rahman, Tarik Kaya, Edgar Matida
Abstract:
Electronic cigarettes, also known as e-cigarettes, may have become a tool to improve smoking cessation due to their ability to provide nicotine at a selected rate. Unlike traditional cigarettes, which produce toxic elements from tobacco combustion, e-cigarettes generate aerosols by heating a liquid solution (commonly a mixture of propylene glycol, vegetable glycerin, nicotine and some flavoring agents). However, caution still needs to be taken when using e-cigarettes due to the presence of addictive nicotine and some harmful substances produced from the heating process. Particle size distribution (PSD) and associated velocities generated by e-cigarettes have significant influence on aerosol deposition in different regions of human respiratory tracts. On another note, low actuation power is beneficial in aerosol generating devices since it exhibits a reduced emission of toxic chemicals. In case of e-cigarettes, lower heating powers can be considered as powers lower than 10 W compared to a wide range of powers (0.6 to 70.0 W) studied in literature. Due to the importance regarding inhalation risk reduction, deeper understanding of particle size characteristics of e-cigarettes demands thorough investigation. However, comprehensive study on PSD and velocities of e-cigarettes with a standard testing condition at relatively low heating powers is still lacking. The present study aims to measure particle number count and size distribution of undiluted aerosols of a latest fourth-generation e-cigarette at low powers, within 6.5 W using real-time particle counter (time-of-flight method). Also, temporal and spatial evolution of particle size and velocity distribution of aerosol jets are examined using phase Doppler anemometry (PDA) technique. To the authors’ best knowledge, application of PDA in e-cigarette aerosol measurement is rarely reported. In the present study, preliminary results about particle number count of undiluted aerosols measured by time-of-flight method depicted that an increase of heating power from 3.5 W to 6.5 W resulted in an enhanced asymmetricity in PSD, deviating from log-normal distribution. This can be considered as an artifact of rapid vaporization, condensation and coagulation processes on aerosols caused by higher heating power. A novel mathematical expression, combining exponential, Gaussian and polynomial (EGP) distributions, was proposed to describe asymmetric PSD successfully. The value of count median aerodynamic diameter and geometric standard deviation laid within a range of about 0.67 μm to 0.73 μm, and 1.32 to 1.43, respectively while the power varied from 3.5 W to 6.5 W. Laser Doppler velocimetry (LDV) and PDA measurement suggested a typical centerline streamwise mean velocity decay of aerosol jet along with a reduction of particle sizes. In the final submission, a thorough literature review, detailed description of experimental procedure and discussion of the results will be provided. Particle size and turbulent characteristics of aerosol jets will be further examined, analyzing arithmetic mean diameter, volumetric mean diameter, volume-based mean diameter, streamwise mean velocity and turbulence intensity. The present study has potential implications in PSD simulation and validation of aerosol dosimetry model, leading to improving related aerosol generating devices.Keywords: E-cigarette aerosol, laser doppler velocimetry, particle size distribution, particle velocity, phase Doppler anemometry
Procedia PDF Downloads 4924801 Theoretical Prediction on the Lifetime of Sessile Evaporating Droplet in Blade Cooling
Authors: Yang Shen, Yongpan Cheng, Jinliang Xu
Abstract:
The effective blade cooling is of great significance for improving the performance of turbine. The mist cooling emerges as the promising way compared with the transitional single-phase cooling. In the mist cooling, the injected droplet will evaporate rapidly, and cool down the blade surface due to the absorbed latent heat, hence the lifetime for evaporating droplet becomes critical for design of cooling passages for the blade. So far there have been extensive studies on the droplet evaporation, but usually the isothermal model is applied for most of the studies. Actually the surface cooling effect can affect the droplet evaporation greatly, it can prolong the droplet evaporation lifetime significantly. In our study, a new theoretical model for sessile droplet evaporation with surface cooling effect is built up in toroidal coordinate. Three evaporation modes are analyzed during the evaporation lifetime, include “Constant Contact Radius”(CCR) mode、“Constant Contact Angle”(CCA) mode and “stick-slip”(SS) mode. The dimensionless number E0 is introduced to indicate the strength of the evaporative cooling, it is defined based on the thermal properties of the liquid and the atmosphere. Our model can predict accurately the lifetime of evaporation by validating with available experimental data. Then the temporal variation of droplet volume, contact angle and contact radius are presented under CCR, CCA and SS mode, the following conclusions are obtained. 1) The larger the dimensionless number E0, the longer the lifetime of three evaporation cases is; 2) The droplet volume over time still follows “2/3 power law” in the CCA mode, as in the isothermal model without the cooling effect; 3) In the “SS” mode, the large transition contact angle can reduce the evaporation time in CCR mode, and increase the time in CCA mode, the overall lifetime will be increased; 4) The correction factor for predicting instantaneous volume of the droplet is derived to predict the droplet life time accurately. These findings may be of great significance to explore the dynamics and heat transfer of sessile droplet evaporation.Keywords: blade cooling, droplet evaporation, lifetime, theoretical analysis
Procedia PDF Downloads 14224800 Steps towards the Development of National Health Data Standards in Developing Countries
Authors: Abdullah I. Alkraiji, Thomas W. Jackson, Ian Murray
Abstract:
The proliferation of health data standards today is somewhat overlapping and conflicting, resulting in market confusion and leading to increasing proprietary interests. The government role and support in standardization for health data are thought to be crucial in order to establish credible standards for the next decade, to maximize interoperability across the health sector, and to decrease the risks associated with the implementation of non-standard systems. The normative literature missed out the exploration of the different steps required to be undertaken by the government towards the development of national health data standards. Based on the lessons learned from a qualitative study investigating the different issues to the adoption of health data standards in the major tertiary hospitals in Saudi Arabia and the opinions and feedback from different experts in the areas of data exchange and standards and medical informatics in Saudi Arabia and UK, a list of steps required towards the development of national health data standards was constructed. Main steps are the existence of: a national formal reference for health data standards, an agreed national strategic direction for medical data exchange, a national medical information management plan and a national accreditation body, and more important is the change management at the national and organizational level. The outcome of this study can be used by academics and practitioners to develop the planning of health data standards, and in particular those in developing countries.Keywords: interoperabilty, medical data exchange, health data standards, case study, Saudi Arabia
Procedia PDF Downloads 33824799 Influencing Factors on Stability of Shale with Silt Layers at Slopes
Authors: A. K. M. Badrul Alam, Yoshiaki Fujii, Nahid Hasan Dipu, Shakil Ahmed Razo
Abstract:
Shale rockmasses often include silt layers, impacting slope stability in construction and mining. Analyzing their interaction is crucial for long-term stability. A study used an elastoplastic model, incorporating the stress transfer method and Coulomb's criterion, to assess a shale rock mass with silt layers. It computed stress distribution, assessed failure potential, and identified vulnerable regions where nodal forces were calculated for a comprehensive analysis. A shale rock mass ranging from 14.75 to 16.75 meters thick, with silt layers varying from 0.36 to 0.5 meters, was considered in the model. It examined four silt layer conditions: horizontal (SiHL), vertical (SiVL), inclined against slope (SiIincAGS), and along slope (SilincALO). Mechanical parameters like uniaxial compressive strength (UCS), tensile strength (TS), Young’s modulus (E), Poisson’s ratio, and density were adjusted for varied scenarios: UCS (0.5 to 5 MPa), TS (0.1 to 1 MPa), and E (6 to 60 MPa). In elastic analysis of shale rock masses, stress distributions vary based on layer properties. When shale and silt layers have the same elasticity modulus (E), stress concentrates at corners. If the silt layer has a lower E than shale, marginal changes in maximum stress (σmax) occur for SilHL. A decrease in σmax is evident at SilVL. Slight variations in σmax are observed for SilincAGS and SilincALO. In the elastoplastic analysis, the overall decrease of 20%, 40%, 60%, 80%, and 90% was considered. For SilHL:(i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: strength decrease led to shear (S), tension then shear (T then S) failure; noticeable failure at 60% decrease, significant at 80%, collapse at 90%. (ii) Lower E for silt layer, same strength as shale: No significant differences. (iii) Lower E and UCS, silt layer strength 1/10: No significant differences. For SilVL: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Similar effects as SilHL. (ii) Lower E for silt layer, same strength as shale: Slip occurred. (iii) Lower E and UCS, silt layer strength 1/10: Bitension failure also observed with larger slip. For SilincAGS: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Effects similar to SilHL. (ii) Lower E for silt layer, same strength as shale: Slip occurred. (iii) Lower E and UCS, silt layer strength 1/10: Tension failure also observed with larger slip. For SilincALO: (i) Same E, UCS, and TS for silt layer and shale, UCS/TS ratio 5: Similar to SilHL with tension failure. (ii) Lower E for silt layer, same strength as shale: No significant differences; failure diverged. (iii) Lower E and UCS, silt layer strength 1/10: Bitension failure also observed with larger slip; failure diverged. Toppling failure was observed for lower E cases of SilVL and SilincAGS. The presence of silt interlayers in shale greatly impacts slope stability. Designing slopes requires careful consideration of both the silt and shale's mechanical properties. The temporal degradation of strength in these layers is a major concern. Thus, slope design must comprehensively analyze the immediate and long-term mechanical behavior of interlayer silt and shale to effectively mitigate instability.Keywords: shale rock masses, silt layers, slope stability, elasto-plastic model, temporal degradation
Procedia PDF Downloads 5624798 A Proposal for U-City (Smart City) Service Method Using Real-Time Digital Map
Authors: SangWon Han, MuWook Pyeon, Sujung Moon, DaeKyo Seo
Abstract:
Recently, technologies based on three-dimensional (3D) space information are being developed and quality of life is improving as a result. Research on real-time digital map (RDM) is being conducted now to provide 3D space information. RDM is a service that creates and supplies 3D space information in real time based on location/shape detection. Research subjects on RDM include the construction of 3D space information with matching image data, complementing the weaknesses of image acquisition using multi-source data, and data collection methods using big data. Using RDM will be effective for space analysis using 3D space information in a U-City and for other space information utilization technologies.Keywords: RDM, multi-source data, big data, U-City
Procedia PDF Downloads 43324797 Spatial Distribution of Virus-Transmitting Aphids of Plants in Al Bahah Province, Saudi Arabia
Authors: Sabir Hussain, Muhammad Naeem, Yousif Aldryhim, Susan E. Halbert, Qingjun Wu
Abstract:
Plant viruses annually cause severe economic losses in crop production and globally, different aphid species are responsible for the transmission of such viruses. Additionally, aphids are also serious pests of trees, and agricultural crops. Al Bahah Province, Kingdom of Saudi Arabia (KSA) has a high native and introduced plant species with a temperate climate that provides ample habitats for aphids. In this study, we surveyed virus-transmitting aphids from the Province to highlight their spatial distributions and hot spot areas for their target control strategies. During our fifteen month's survey in Al Bahah Province, three hundred and seventy samples of aphids were collected using both beating sheets and yellow water pan traps. Consequently, fifty-four aphid species representing 30 genera belonging to four families were recorded from Al Bahah Province. Alarmingly, 35 aphid species from our records are virus transmitting species. The most common virus transmitting aphid species based on number of collecting samples, were Macrosiphum euphorbiae (Thomas, 1878), Brachycaudus rumexicolens (Patch, 1917), Uroleucon sonchi (Linnaeus, 1767), Brachycaudus helichrysi (Kaltenbach, 1843), and Myzus persicae (Sulzer, 1776). The numbers of samples for the forementioned species were 66, 24, 23, 22, and 20, respectively. The widest range of plant hosts were found for M. euphorbiae (39 plant species), B. helichrysi (12 plant species), M. persicae (12 plant species), B. rumexicolens (10 plant species), and U. sonchi (9 plant species). The hottest spot areas were found in Al-Baha, Al Mekhwah and Biljarashi cities of the province on the basis of their abundance. This study indicated that Al Bahah Province has relatively rich aphid diversity due to the relatively high plant diversity in a favorable climatic condition. ArcGIS tools can be helpful for biologists to implement the target control strategies against these pests in the integrated pest management, and ultimately to save money and time.Keywords: Al Bahah province, aphid-virus interaction, biodiversity, global information system
Procedia PDF Downloads 18424796 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis
Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee
Abstract:
In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences
Procedia PDF Downloads 74324795 Integrative Analysis of Urban Transportation Network and Land Use Using GIS: A Case Study of Siddipet City
Authors: P. Priya Madhuri, J. Kamini, S. C. Jayanthi
Abstract:
Assessment of land use and transportation networks is essential for sustainable urban growth, urban planning, efficient public transportation systems, and reducing traffic congestion. The study focuses on land use, population density, and their correlation with the road network for future development. The scope of the study covers inventory and assessment of the road network dataset (line) at the city, zonal, or ward level, which is extracted from very high-resolution satellite data (spatial resolution < 0.5 m) at 1:4000 map scale and ground truth verification. Road network assessment is carried out by computing various indices that measure road coverage and connectivity. In this study, an assessment of the road network is carried out for the study region at the municipal and ward levels. In order to identify gaps, road coverage and connectivity were associated with urban land use, built-up area, and population density in the study area. Ward-wise road connectivity and coverage maps have been prepared. To assess the relationship between road network metrics, correlation analysis is applied. The study's conclusions are extremely beneficial for effective road network planning and detecting gaps in the road network at the ward level in association with urban land use, existing built-up, and population.Keywords: road connectivity, road coverage, road network, urban land use, transportation analysis
Procedia PDF Downloads 3324794 Automated Testing to Detect Instance Data Loss in Android Applications
Authors: Anusha Konduru, Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai
Abstract:
Mobile applications are increasing in a significant amount, each to address the requirements of many users. However, the quick developments and enhancements are resulting in many underlying defects. Android apps create and handle a large variety of 'instance' data that has to persist across runs, such as the current navigation route, workout results, antivirus settings, or game state. Due to the nature of Android, an app can be paused, sent into the background, or killed at any time. If the instance data is not saved and restored between runs, in addition to data loss, partially-saved or corrupted data can crash the app upon resume or restart. However, it is difficult for the programmer to manually test this issue for all the activities. This results in the issue of data loss that the data entered by the user are not saved when there is any interruption. This issue can degrade user experience because the user needs to reenter the information each time there is an interruption. Automated testing to detect such data loss is important to improve the user experience. This research proposes a tool, DroidDL, a data loss detector for Android, which detects the instance data loss from a given android application. We have tested 395 applications and found 12 applications with the issue of data loss. This approach is proved highly accurate and reliable to find the apps with this defect, which can be used by android developers to avoid such errors.Keywords: Android, automated testing, activity, data loss
Procedia PDF Downloads 23724793 Big Data: Appearance and Disappearance
Authors: James Moir
Abstract:
The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.Keywords: big data, appearance, disappearance, surface, epistemology
Procedia PDF Downloads 42124792 Exploring the Feasibility of Utilizing Blockchain in Cloud Computing and AI-Enabled BIM for Enhancing Data Exchange in Construction Supply Chain Management
Authors: Tran Duong Nguyen, Marwan Shagar, Qinghao Zeng, Aras Maqsoodi, Pardis Pishdad, Eunhwa Yang
Abstract:
Construction supply chain management (CSCM) involves the collaboration of many disciplines and actors, which generates vast amounts of data. However, inefficient, fragmented, and non-standardized data storage often hinders this data exchange. The industry has adopted building information modeling (BIM) -a digital representation of a facility's physical and functional characteristics to improve collaboration, enhance transmission security, and provide a common data exchange platform. Still, the volume and complexity of data require tailored information categorization, aligning with stakeholders' preferences and demands. To address this, artificial intelligence (AI) can be integrated to handle this data’s magnitude and complexities. This research aims to develop an integrated and efficient approach for data exchange in CSCM by utilizing AI. The paper covers five main objectives: (1) Investigate existing framework and BIM adoption; (2) Identify challenges in data exchange; (3) Propose an integrated framework; (4) Enhance data transmission security; and (5) Develop data exchange in CSCM. The proposed framework demonstrates how integrating BIM and other technologies, such as cloud computing, blockchain, and AI applications, can significantly improve the efficiency and accuracy of data exchange in CSCM.Keywords: construction supply chain management, BIM, data exchange, artificial intelligence
Procedia PDF Downloads 2624791 Representation Data without Lost Compression Properties in Time Series: A Review
Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.Keywords: compression properties, uncertainty, uncertain time series, mining technique, weather prediction
Procedia PDF Downloads 42824790 Data Mining As A Tool For Knowledge Management: A Review
Authors: Maram Saleh
Abstract:
Knowledge has become an essential resource in today’s economy and become the most important asset of maintaining competition advantage in organizations. The importance of knowledge has made organizations to manage their knowledge assets and resources through all multiple knowledge management stages such as: Knowledge Creation, knowledge storage, knowledge sharing and knowledge use. Researches on data mining are continues growing over recent years on both business and educational fields. Data mining is one of the most important steps of the knowledge discovery in databases process aiming to extract implicit, unknown but useful knowledge and it is considered as significant subfield in knowledge management. Data miming have the great potential to help organizations to focus on extracting the most important information on their data warehouses. Data mining tools and techniques can predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. This review paper explores the applications of data mining techniques in supporting knowledge management process as an effective knowledge discovery technique. In this paper, we identify the relationship between data mining and knowledge management, and then focus on introducing some application of date mining techniques in knowledge management for some real life domains.Keywords: Data Mining, Knowledge management, Knowledge discovery, Knowledge creation.
Procedia PDF Downloads 20824789 Predicting Shot Making in Basketball Learnt Fromadversarial Multiagent Trajectories
Authors: Mark Harmon, Abdolghani Ebrahimi, Patrick Lucey, Diego Klabjan
Abstract:
In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. Previous approaches to similar problems center on hand-crafting features to capture domain-specific knowledge. Although intuitive, recent work in deep learning has shown, this approach is prone to missing important predictive features. To circumvent this issue, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multichannel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories, we use “fading.” We find that this approach is superior to a traditional FFN model. By using gradient ascent, we were able to discover what the CNN filters look for during training. Last, we find that a combined FFN+CNN is the best performing network with an error rate of 39%.Keywords: basketball, computer vision, image processing, convolutional neural network
Procedia PDF Downloads 15324788 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data
Authors: Murat Yazici
Abstract:
Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data
Procedia PDF Downloads 5324787 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encyption Scheme
Authors: Victor Onomza Waziri, John K. Alhassan, Idris Ismaila, Noel Dogonyara
Abstract:
This paper describes the problem of building secure computational services for encrypted information in the Cloud. Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy or confidentiality, availability and integrity of the data and user’s security. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute a theoretical presentations in a high-level computational processes that are based on number theory that is derivable from abstract algebra which can easily be integrated and leveraged in the Cloud computing interface with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based on cryptographic security algorithm.Keywords: big data analytics, security, privacy, bootstrapping, Fully Homomorphic Encryption Scheme
Procedia PDF Downloads 48024786 A Computerized Tool for Predicting Future Reading Abilities in Pre-Readers Children
Authors: Stephanie Ducrot, Marie Vernet, Eve Meiss, Yves Chaix
Abstract:
Learning to read is a key topic of debate today, both in terms of its implications on school failure and illiteracy and regarding what are the best teaching methods to develop. It is estimated today that four to six percent of school-age children suffer from specific developmental disorders that impair learning. The findings from people with dyslexia and typically developing readers suggest that the problems children experience in learning to read are related to the preliteracy skills that they bring with them from kindergarten. Most tools available to professionals are designed for the evaluation of child language problems. In comparison, there are very few tools for assessing the relations between visual skills and the process of learning to read. Recent literature reports that visual-motor skills and visual-spatial attention in preschoolers are important predictors of reading development — the main goal of this study aimed at improving screening for future reading difficulties in preschool children. We used a prospective, longitudinal approach where oculomotor processes (assessed with the DiagLECT test) were measured in pre-readers, and the impact of these skills on future reading development was explored. The dialect test specifically measures the online time taken to name numbers arranged irregularly in horizontal rows (horizontal time, HT), and the time taken to name numbers arranged in vertical columns (vertical time, VT). A total of 131 preschoolers took part in this study. At Time 0 (kindergarten), the mean VT, HT, errors were recorded. One year later, at Time 1, the reading level of the same children was evaluated. Firstly, this study allowed us to provide normative data for a standardized evaluation of the oculomotor skills in 5- and 6-year-old children. The data also revealed that 25% of our sample of preschoolers showed oculomotor impairments (without any clinical complaints). Finally, the results of this study assessed the validity of the DiagLECT test for predicting reading outcomes; the better a child's oculomotor skills are, the better his/her reading abilities will be.Keywords: vision, attention, oculomotor processes, reading, preschoolers
Procedia PDF Downloads 14724785 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach
Authors: Sarisa Pinkham, Kanyarat Bussaban
Abstract:
The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.Keywords: daily rainfall, image processing, approximation, pixel value data
Procedia PDF Downloads 38724784 A Next-Generation Blockchain-Based Data Platform: Leveraging Decentralized Storage and Layer 2 Scaling for Secure Data Management
Authors: Kenneth Harper
Abstract:
The rapid growth of data-driven decision-making across various industries necessitates advanced solutions to ensure data integrity, scalability, and security. This study introduces a decentralized data platform built on blockchain technology to improve data management processes in high-volume environments such as healthcare and financial services. The platform integrates blockchain networks using Cosmos SDK and Polkadot Substrate alongside decentralized storage solutions like IPFS and Filecoin, and coupled with decentralized computing infrastructure built on top of Avalanche. By leveraging advanced consensus mechanisms, we create a scalable, tamper-proof architecture that supports both structured and unstructured data. Key features include secure data ingestion, cryptographic hashing for robust data lineage, and Zero-Knowledge Proof mechanisms that enhance privacy while ensuring compliance with regulatory standards. Additionally, we implement performance optimizations through Layer 2 scaling solutions, including ZK-Rollups, which provide low-latency data access and trustless data verification across a distributed ledger. The findings from this exercise demonstrate significant improvements in data accessibility, reduced operational costs, and enhanced data integrity when tested in real-world scenarios. This platform reference architecture offers a decentralized alternative to traditional centralized data storage models, providing scalability, security, and operational efficiency.Keywords: blockchain, cosmos SDK, decentralized data platform, IPFS, ZK-Rollups
Procedia PDF Downloads 2724783 Some Considerations about the Theory of Spatial-Motor Thinking Applied to a Traditional Fife Band in Brazil
Authors: Murilo G. Mendes
Abstract:
This text presents part of the results presented in the Ph.D. thesis that has used John Baily's theory and method as well as its ethnographic application in the context of the fife flutes of the Banda Cabaçal dos Irmãos Aniceto in the state of Ceará, northeast of Brazil. John Baily is a British ethnomusicologist dedicated to studying the relationships between music, musical gesture, and embodied cognition. His methodology became a useful tool to highlight historical-social aspects present in the group's instrumental music. Remaining indigenous and illiterate, these musicians played and transmitted their music from generation to generation, for almost two hundred years, without any nomenclature or systematization of the fingering performed on the flute. In other words, his music, free from any theorization, is learned, felt, perceived, and processed directly through hearing and through the relationship between the instrument's motor skills and its sound result. For this reason, Baily's assumptions became fundamental in the analysis processes. As the author's methodology recommends, classes were held with the natives and provided technical musical learning and some important concepts. Then, transcriptions and analyses of musical aspects were made from patterns of movement on the instrument incorporated by repetitions and/or by the intrinsic facility of the instrument. As a result, it was discovered how the group reconciled its indigenous origins with the demand requested by the public power and the interests of the local financial elite from the mid-twentieth century. The article is structured from the cultural context of the group, where local historical and social aspects influence the social and musical practices of the group. Then, will be present the methodological conceptions of John Baily and, finally, their application in the music of the Irmãos Aniceto. The conclusion points to the good results of identifying, through this methodology and analysis, approximations between discourse, historical-social factors, and musical text. Still, questions are raised about its application in other contexts.Keywords: Banda Cabaçal dos Irmãos Aniceto, John Baily, pífano, spatial-motor thinking
Procedia PDF Downloads 13524782 Impact of Climate Change on Flow Regime in Himalayan Basins, Nepal
Authors: Tirtha Raj Adhikari, Lochan Prasad Devkota
Abstract:
This research studied the hydrological regime of three glacierized river basins in Khumbu, Langtang and Annapurna regions of Nepal using the Hydraologiska Byrans Vattenbalansavde (HBV), HVB-light 3.0 model. Future scenario of discharge is also studied using downscaled climate data derived from statistical downscaling method. General Circulation Models (GCMs) successfully simulate future climate variability and climate change on a global scale; however, poor spatial resolution constrains their application for impact studies at a regional or a local level. The dynamically downscaled precipitation and temperature data from Coupled Global Circulation Model 3 (CGCM3) was used for the climate projection, under A2 and A1B SRES scenarios. In addition, the observed historical temperature, precipitation and discharge data were collected from 14 different hydro-metrological locations for the implementation of this study, which include watershed and hydro-meteorological characteristics, trends analysis and water balance computation. The simulated precipitation and temperature were corrected for bias before implementing in the HVB-light 3.0 conceptual rainfall-runoff model to predict the flow regime, in which Groups Algorithms Programming (GAP) optimization approach and then calibration were used to obtain several parameter sets which were finally reproduced as observed stream flow. Except in summer, the analysis showed that the increasing trends in annual as well as seasonal precipitations during the period 2001 - 2060 for both A2 and A1B scenarios over three basins under investigation. In these river basins, the model projected warmer days in every seasons of entire period from 2001 to 2060 for both A1B and A2 scenarios. These warming trends are higher in maximum than in minimum temperatures throughout the year, indicating increasing trend of daily temperature range due to recent global warming phenomenon. Furthermore, there are decreasing trends in summer discharge in Langtang Khola (Langtang region) which is increasing in Modi Khola (Annapurna region) as well as Dudh Koshi (Khumbu region) river basin. The flow regime is more pronounced during later parts of the future decades than during earlier parts in all basins. The annual water surplus of 1419 mm, 177 mm and 49 mm are observed in Annapurna, Langtang and Khumbu region, respectively.Keywords: temperature, precipitation, water discharge, water balance, global warming
Procedia PDF Downloads 344