Search results for: social research networks sites (SRNS)
31086 Women Educational Leaders in an Age of Accountability
Authors: Ann Vibert, Heather Hemming
Abstract:
This paper presentation summarizes the findings and implications of research on the plight and practices of women educational leaders in public school systems and in one university. The authors, both women university administrators, are also scholars and researchers of education. The research project on which this paper presentation is based proposed to examine how women educational leaders imagined, experienced, and carried out their leadership roles in the context of a growing local and global accountability-based performativity discourse which is reshaping educational work especially for women, we argue, in both public school and post-secondary sites. The research employed critical ethnographic interviews with 20 women educational leaders in P-12 school systems and three women university level educational leaders. Data were collected on women educational leaders’ perceptions of the effects of accountability and performativity discourses on the nature of their work. Specifically, leaders were asked to speak to whether they experienced a growth in managerial work as a consequence of increased accountability demands; how they experienced their work changing as a consequence of accountability and performativity demands; how these changes impacted the central values they enacted in their work as women educational leaders changes; and how they responded to/negotiated/accommodated changes in the nature of their work developing as a consequence of accountability and performativity frameworks. Findings from the research data and analyses confirm and extend recent scholarly work on the gendered nature of performativity and accountability discourses and frameworks, and their differential effects across differing genders. The oral presentation we propose here focusses on those findings in terms of similarities for women educational leaders across different educational contexts.Keywords: women in educational leadership, gender and educational performativity, accountability and women leaders, gender and educational leadership
Procedia PDF Downloads 30031085 Social Health and Adaptation of Armenian Physicians
Authors: A. G. Margaryan
Abstract:
Ability of adaptation of the organism is considered as an important component of health in maintaining relative dynamic constancy of the hemostasis and functioning of all organs and systems. Among the various forms of adaptation (individual, species and mental), social adaptation of the organism has a particular role. The aim of this study was to evaluate the subjective perception of social factors, social welfare and the level of adaptability of Armenian physicians. The survey involved 2,167 physicians (592 men and 1,575 women). According to the survey, most physicians (75.1%) were married. It was found that 88.6% of respondents had harmonious family relationships, 7.6% of respondents – tense relationships, and 1.0% – marginal relationships. The results showed that the average monthly salary with all premium payments amounted to 88 263.6±5.0 drams, and 16.7% of physicians heavily relied on the material support of parents or other relatives. Low material welfare was also confirmed by the analysis of the living conditions. Analysis of the results showed that the degree of subjective perception of social factors of different specialties averaged 11.3±3.1 points, which corresponds to satisfactory results (a very good result – 4.0 points). The degree of social adaptation of physicians on average makes 4.13±1.9 points, which corresponds to poor results (allowable less than 3.0 points). The distribution of the results of social adaptation severity revealed that the majority of physicians (58.6%) showed low social adaptation, average social adaptation is observed in 22.4% of the physicians and high adaptation – in only 17.4% of physicians. In conclusions, the findings of this study suggest that the degree of social adaptation of currently practicing physicians is low.Keywords: physician's health, social adaptation, social factor, social health
Procedia PDF Downloads 30331084 Social Data Aggregator and Locator of Knowledge (STALK)
Authors: Rashmi Raghunandan, Sanjana Shankar, Rakshitha K. Bhat
Abstract:
Social media contributes a vast amount of data and information about individuals to the internet. This project will greatly reduce the need for unnecessary manual analysis of large and diverse social media profiles by filtering out and combining the useful information from various social media profiles, eliminating irrelevant data. It differs from the existing social media aggregators in that it does not provide a consolidated view of various profiles. Instead, it provides consolidated INFORMATION derived from the subject’s posts and other activities. It also allows analysis over multiple profiles and analytics based on several profiles. We strive to provide a query system to provide a natural language answer to questions when a user does not wish to go through the entire profile. The information provided can be filtered according to the different use cases it is used for.Keywords: social network, analysis, Facebook, Linkedin, git, big data
Procedia PDF Downloads 44631083 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network
Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin
Abstract:
In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network. The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters. Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output. This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc. From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.Keywords: project profitability, multi-objective optimization, genetic algorithm, Pareto set, neural networks
Procedia PDF Downloads 44831082 New Knowledge Co-Creation in Mobile Learning: A Classroom Action Research with Multiple Case Studies Using Mobile Instant Messaging
Authors: Genevieve Lim, Arthur Shelley, Dongcheol Heo
Abstract:
Abstract—Mobile technologies can enhance the learning process as it enables social engagement around concepts beyond the classroom and the curriculum. Early results in this ongoing research is showing that when learning interventions are designed specifically to generate new insights, mobile devices support regulated learning and encourage learners to collaborate, socialize and co-create new knowledge. As students navigate across the space and time boundaries, the fundamental social nature of learning transforms into mobile computer supported collaborative learning (mCSCL). The metacognitive interaction in mCSCL via mobile applications reflects the regulation of learning among the students. These metacognitive experiences whether self-, co- or shared-regulated are significant to the learning outcomes. Despite some insightful empirical studies, there has not yet been significant research that investigates the actual practice and processes of the new knowledge co-creation. This leads to question as to whether mobile learning provides a new channel to leverage learning? Alternatively, does mobile interaction create new types of learning experiences and how do these experiences co-create new knowledge. The purpose of this research is to explore these questions and seek evidence to support one or the other. This paper addresses these questions from the students’ perspective to understand how students interact when constructing knowledge in mCSCL and how students’ self-regulated learning (SRL) strategies support the co-creation of new knowledge in mCSCL. A pilot study has been conducted among international undergraduates to understand students’ perspective of mobile learning and concurrently develops a definition in an appropriate context. Using classroom action research (CAR) with multiple case studies, this study is being carried out in a private university in Thailand to narrow the research gaps in mCSCL and SRL. The findings will allow teachers to see the importance of social interaction for meaningful student engagement and envisage learning outcomes from a knowledge management perspective and what role mobile devices can play in these. The findings will signify important indicators for academics to rethink what is to be learned and how it should be learned. Ultimately, the study will bring new light into the co-creation of new knowledge in a social interactive learning environment and challenges teachers to embrace the 21st century of learning with mobile technologies to deepen and extend learning opportunities.Keywords: mobile computer supported collaborative learning, mobile instant messaging, mobile learning, new knowledge co-creation, self-regulated learning
Procedia PDF Downloads 23631081 The Impact of Social Support on Anxiety and Depression under the Context of COVID-19 Pandemic: A Scoping Review and Meta-Analysis
Authors: Meng Wu, Atif Rahman, Eng Gee, Lim, Jeong Jin Yu, Rong Yan
Abstract:
Context: The COVID-19 pandemic has had a profound impact on mental health, with increased rates of anxiety and depression observed. Social support, a critical factor in mental well-being, has also undergone significant changes during the pandemic. This study aims to explore the relationship between social support, anxiety, and depression during COVID-19, taking into account various demographic and contextual factors. Research Aim: The main objective of this study is to conduct a comprehensive systematic review and meta-analysis to examine the impact of social support on anxiety and depression during the COVID-19 pandemic. The study aims to determine the consistency of these relationships across different age groups, occupations, regions, and research paradigms. Methodology: A scoping review and meta-analytic approach were employed in this study. A search was conducted across six databases from 2020 to 2022 to identify relevant studies. The selected studies were then subjected to random effects models, with pooled correlations (r and ρ) estimated. Homogeneity was assessed using Q and I² tests. Subgroup analyses were conducted to explore variations across different demographic and contextual factors. Findings: The meta-analysis of both cross-sectional and longitudinal studies revealed significant correlations between social support, anxiety, and depression during COVID-19. The pooled correlations (ρ) indicated a negative relationship between social support and anxiety (ρ = -0.30, 95% CI = [-0.333, -0.255]) as well as depression (ρ = -0.27, 95% CI = [-0.370, -0.281]). However, further investigation is required to validate these results across different age groups, occupations, and regions. Theoretical Importance: This study emphasizes the multifaceted role of social support in mental health during the COVID-19 pandemic. It highlights the need to reevaluate and expand our understanding of social support's impact on anxiety and depression. The findings contribute to the existing literature by shedding light on the associations and complexities involved in these relationships. Data Collection and Analysis Procedures: The data collection involved an extensive search across six databases to identify relevant studies. The selected studies were then subjected to rigorous analysis using random effects models and subgroup analyses. Pooled correlations were estimated, and homogeneity was assessed using Q and I² tests. Question Addressed: This study aimed to address the question of the impact of social support on anxiety and depression during the COVID-19 pandemic. It sought to determine the consistency of these relationships across different demographic and contextual factors. Conclusion: The findings of this study highlight the significant association between social support, anxiety, and depression during the COVID-19 pandemic. However, further research is needed to validate these findings across different age groups, occupations, and regions. The study emphasizes the need for a comprehensive understanding of social support's multifaceted role in mental health and the importance of considering various contextual and demographic factors in future investigations.Keywords: social support, anxiety, depression, COVID-19, meta-analysis
Procedia PDF Downloads 6531080 Social Skills for Students with and without Learning Disabilities in Primary Education in Saudi Arabia
Authors: Omer Agail
Abstract:
The purpose of this study was to assess the social skills of students with and without learning disabilities in primary education in Saudi Arabia. A Social Skills Rating Scale for Teachers Form (SSRS-TF) was used to evaluate students' social skills as perceived by teachers. A randomly-selected sample was chosen from students with and without learning disabilities. Descriptive statistics were used to describe the demographic characteristics of participants. Analysis indicated that there were statistically significant differences in SSRS-TF by academic status, i.e. students with learning disabilities exhibit less social skills compared to students without learning disabilities. In addition, analysis indicated that there were no statistically significant differences in SSRS-TF by gender. A conclusion and recommendations are presented.Keywords: primary education, students with learning disabilities, social skills, social competence
Procedia PDF Downloads 39331079 Neural Reshaping: The Plasticity of Human Brain and Artificial Intelligence in the Learning Process
Authors: Seyed-Ali Sadegh-Zadeh, Mahboobe Bahrami, Sahar Ahmadi, Seyed-Yaser Mousavi, Hamed Atashbar, Amir M. Hajiyavand
Abstract:
This paper presents an investigation into the concept of neural reshaping, which is crucial for achieving strong artificial intelligence through the development of AI algorithms with very high plasticity. By examining the plasticity of both human and artificial neural networks, the study uncovers groundbreaking insights into how these systems adapt to new experiences and situations, ultimately highlighting the potential for creating advanced AI systems that closely mimic human intelligence. The uniqueness of this paper lies in its comprehensive analysis of the neural reshaping process in both human and artificial intelligence systems. This comparative approach enables a deeper understanding of the fundamental principles of neural plasticity, thus shedding light on the limitations and untapped potential of both human and AI learning capabilities. By emphasizing the importance of neural reshaping in the quest for strong AI, the study underscores the need for developing AI algorithms with exceptional adaptability and plasticity. The paper's findings have significant implications for the future of AI research and development. By identifying the core principles of neural reshaping, this research can guide the design of next-generation AI technologies that can enhance human and artificial intelligence alike. These advancements will be instrumental in creating a new era of AI systems with unparalleled capabilities, paving the way for improved decision-making, problem-solving, and overall cognitive performance. In conclusion, this paper makes a substantial contribution by investigating the concept of neural reshaping and its importance for achieving strong AI. Through its in-depth exploration of neural plasticity in both human and artificial neural networks, the study unveils vital insights that can inform the development of innovative AI technologies with high adaptability and potential for enhancing human and AI capabilities alike.Keywords: neural plasticity, brain adaptation, artificial intelligence, learning, cognitive reshaping
Procedia PDF Downloads 5631078 Performance Analysis in 5th Generation Massive Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, Jean-Pierre Dubois, Georges El Soury
Abstract:
Fifth generation wireless networks guarantee significant capacity enhancement to suit more clients and services at higher information rates with better reliability while consuming less power. The deployment of massive multiple-input-multiple-output technology guarantees broadband wireless networks with the use of base station antenna arrays to serve a large number of users on the same frequency and time-slot channels. In this work, we evaluate the performance of massive multiple-input-multiple-output systems (MIMO) systems in 5th generation cellular networks in terms of capacity and bit error rate. Several cases were considered and analyzed to compare the performance of massive MIMO systems while varying the number of antennas at both transmitting and receiving ends. We found that, unlike classical MIMO systems, reducing the number of transmit antennas while increasing the number of antennas at the receiver end provides a better solution to performance enhancement. In addition, enhanced orthogonal frequency division multiplexing and beam division multiple access schemes further improve the performance of massive MIMO systems and make them more reliable.Keywords: beam division multiple access, D2D communication, enhanced OFDM, fifth generation broadband, massive MIMO
Procedia PDF Downloads 26231077 Corporate Social Responsibility, Earnings, and Tax Avoidance: Evidence from Indonesia
Authors: Cahyaningsih Cahyaningsih, Fu'ad Rakhman
Abstract:
This study examines empirically the association between corporate social responsibility (CSR) and tax avoidance. This study also investigates the effect of earnings on the relation between CSR and tax avoidance. Effective tax rate (ETR) and cash effective tax rate (CETR) were used to measure tax avoidance. Corporate social responsibility fund (CSRF) and corporate social responsibility disclosure (CSRD) were used as proxies for CSR. Test was conducted for public firms which were listed in the Indonesia Stock Exchange during the period of 2011-2014. Based on slack resource theory, this study finds that the relation between CSR and tax avoidance is moderated by earnings.Keywords: corporate social responsibility disclosure, corporate social responsibility fund, earnings, tax avoidance
Procedia PDF Downloads 28331076 Assessing Social Sustainability for Biofuels Supply Chains: The Case of Jet Biofuel in Brazil
Authors: Z. Wang, F. Pashaei Kamali, J. A. Posada Duque, P. Osseweijer
Abstract:
Globally, the aviation sector is seeking for sustainable solutions to comply with the pressure to reduce greenhouse gas emissions. Jet fuels derived from biomass are generally perceived as a sustainable alternative compared with their fossil counterparts. However, the establishment of jet biofuels supply chains will have impacts on environment, economy, and society. While existing studies predominantly evaluated environmental impacts and techno-economic feasibility of jet biofuels, very few studies took the social / socioeconomic aspect into consideration. Therefore, this study aims to provide a focused evaluation of social sustainability for aviation biofuels with a supply chain perspective. Three potential jet biofuel supply chains based on different feedstocks, i.e. sugarcane, eucalyptus, and macauba were analyzed in the context of Brazil. The assessment of social sustainability is performed with a process-based approach combined with input-output analysis. Over the supply chains, a set of social sustainability issues including employment, working condition (occupational accident and wage level), labour right, education, equity, social development (GDP and trade balance) and food security were evaluated in a (semi)quantitative manner. The selection of these social issues is based on two criteria: (1) the issues are highly relevant and important to jet biofuel production; (2) methodologies are available for assessing these issues. The results show that the three jet biofuel supply chains lead to a differentiated level of social effects. The sugarcane-based supply chain creates the highest number of jobs whereas the biggest contributor of GDP turns out to be the macauba-based supply chain. In comparison, the eucalyptus-based supply chain stands out regarding working condition. It is also worth noting that biojet fuel supply chain with high level of social benefits could result in high level of social concerns (such as occupational accident, violation of labour right and trade imbalance). Further research is suggested to investigate the possible interactions between different social issues. In addition, the exploration of a wider range of social effects is needed to expand the comprehension of social sustainability for biofuel supply chains.Keywords: biobased supply chain, jet biofuel, social assessment, social sustainability, socio-economic impacts
Procedia PDF Downloads 26631075 Organic Tuber Production Fosters Food Security and Soil Health: A Decade of Evidence from India
Authors: G. Suja, J. Sreekumar, A. N. Jyothi, V. S. Santhosh Mithra
Abstract:
Worldwide concerns regarding food safety, environmental degradation and threats to human health have generated interest in alternative systems like organic farming. Tropical tuber crops, cassava, sweet potato, yams, and aroids are food-cum-nutritional security-cum climate resilient crops. These form stable or subsidiary food for about 500 million global population. Cassava, yams (white yam, greater yam, and lesser yam) and edible aroids (elephant foot yam, taro, and tannia) are high energy tuberous vegetables with good taste and nutritive value. Seven on-station field experiments at ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India and seventeen on-farm trials in three districts of Kerala, were conducted over a decade (2004-2015) to compare the varietal response, yield, quality and soil properties under organic vs conventional system in these crops and to develop a learning system based on the data generated. The industrial, as well as domestic varieties of cassava, the elite and local varieties of elephant foot yam and taro and the three species of Dioscorea (yams), were on a par under both systems. Organic management promoted yield by 8%, 20%, 9%, 11% and 7% over conventional practice in cassava, elephant foot yam, white yam, greater yam and lesser yam respectively. Elephant foot yam was the most responsive to organic management followed by yams and cassava. In taro, slight yield reduction (5%) was noticed under organic farming with almost similar tuber quality. The tuber quality was improved with higher dry matter, starch, crude protein, K, Ca and Mg contents. The anti-nutritional factors, oxalate content in elephant foot yam and cyanogenic glucoside content in cassava were lowered by 21 and 12.4% respectively. Organic plots had significantly higher water holding capacity, pH, available K, Fe, Mn and Cu, higher soil organic matter, available N, P, exchangeable Ca and Mg, dehydrogenase enzyme activity and microbial count. Organic farming scored significantly higher soil quality index (1.93) than conventional practice (1.46). The soil quality index was driven by water holding capacity, pH and available Zn followed by soil organic matter. Organic management enhanced net profit by 20-40% over chemical farming. A case in point is the cost-benefit analysis in elephant foot yam which indicated that the net profit was 28% higher and additional income of Rs. 47,716 ha-1 was obtained due to organic farming. Cost-effective technologies were field validated. The on-station technologies developed were validated and popularized through on-farm trials in 10 sites (5 ha) under National Horticulture Mission funded programme in elephant foot yam and seven sites in yams and taro. The technologies are included in the Package of Practices Recommendations for crops of Kerala Agricultural University. A learning system developed using artificial neural networks (ANN) predicted the performance of elephant foot yam organic system. Use of organically produced seed materials, seed treatment in cow-dung, neem cake, bio-inoculant slurry, farmyard manure incubated with bio-inoculants, green manuring, use of neem cake, bio-fertilizers and ash formed the strategies for organic production. Organic farming is an eco-friendly management strategy that enables 10-20% higher yield, quality tubers and maintenance of soil health in tuber crops.Keywords: eco-agriculture, quality, root crops, healthy soil, yield
Procedia PDF Downloads 34131074 Artificial Intelligence for Traffic Signal Control and Data Collection
Authors: Reggie Chandra
Abstract:
Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal
Procedia PDF Downloads 17631073 The Challenge of Assessing Social AI Threats
Authors: Kitty Kioskli, Theofanis Fotis, Nineta Polemi
Abstract:
The European Union (EU) directive Artificial Intelligence (AI) Act in Article 9 requires that risk management of AI systems includes both technical and human oversight, while according to NIST_AI_RFM (Appendix C) and ENISA AI Framework recommendations, claim that further research is needed to understand the current limitations of social threats and human-AI interaction. AI threats within social contexts significantly affect the security and trustworthiness of the AI systems; they are interrelated and trigger technical threats as well. For example, lack of explainability (e.g. the complexity of models can be challenging for stakeholders to grasp) leads to misunderstandings, biases, and erroneous decisions. Which in turn impact the privacy, security, accountability of the AI systems. Based on the NIST four fundamental criteria for explainability it can also classify the explainability threats into four (4) sub-categories: a) Lack of supporting evidence: AI systems must provide supporting evidence or reasons for all their outputs. b) Lack of Understandability: Explanations offered by systems should be comprehensible to individual users. c) Lack of Accuracy: The provided explanation should accurately represent the system's process of generating outputs. d) Out of scope: The system should only function within its designated conditions or when it possesses sufficient confidence in its outputs. Biases may also stem from historical data reflecting undesired behaviors. When present in the data, biases can permeate the models trained on them, thereby influencing the security and trustworthiness of the of AI systems. Social related AI threats are recognized by various initiatives (e.g., EU Ethics Guidelines for Trustworthy AI), standards (e.g. ISO/IEC TR 24368:2022 on AI ethical concerns, ISO/IEC AWI 42105 on guidance for human oversight of AI systems) and EU legislation (e.g. the General Data Protection Regulation 2016/679, the NIS 2 Directive 2022/2555, the Directive on the Resilience of Critical Entities 2022/2557, the EU AI Act, the Cyber Resilience Act). Measuring social threats, estimating the risks to AI systems associated to these threats and mitigating them is a research challenge. In this paper it will present the efforts of two European Commission Projects (FAITH and THEMIS) from the HorizonEurope programme that analyse the social threats by building cyber-social exercises in order to study human behaviour, traits, cognitive ability, personality, attitudes, interests, and other socio-technical profile characteristics. The research in these projects also include the development of measurements and scales (psychometrics) for human-related vulnerabilities that can be used in estimating more realistically the vulnerability severity, enhancing the CVSS4.0 measurement.Keywords: social threats, artificial Intelligence, mitigation, social experiment
Procedia PDF Downloads 6931072 Analyzing the Influence of Hydrometeorlogical Extremes, Geological Setting, and Social Demographic on Public Health
Authors: Irfan Ahmad Afip
Abstract:
This main research objective is to accurately identify the possibility for a Leptospirosis outbreak severity of a certain area based on its input features into a multivariate regression model. The research question is the possibility of an outbreak in a specific area being influenced by this feature, such as social demographics and hydrometeorological extremes. If the occurrence of an outbreak is being subjected to these features, then the epidemic severity for an area will be different depending on its environmental setting because the features will influence the possibility and severity of an outbreak. Specifically, this research objective was three-fold, namely: (a) to identify the relevant multivariate features and visualize the patterns data, (b) to develop a multivariate regression model based from the selected features and determine the possibility for Leptospirosis outbreak in an area, and (c) to compare the predictive ability of multivariate regression model and machine learning algorithms. Several secondary data features were collected locations in the state of Negeri Sembilan, Malaysia, based on the possibility it would be relevant to determine the outbreak severity in the area. The relevant features then will become an input in a multivariate regression model; a linear regression model is a simple and quick solution for creating prognostic capabilities. A multivariate regression model has proven more precise prognostic capabilities than univariate models. The expected outcome from this research is to establish a correlation between the features of social demographic and hydrometeorological with Leptospirosis bacteria; it will also become a contributor for understanding the underlying relationship between the pathogen and the ecosystem. The relationship established can be beneficial for the health department or urban planner to inspect and prepare for future outcomes in event detection and system health monitoring.Keywords: geographical information system, hydrometeorological, leptospirosis, multivariate regression
Procedia PDF Downloads 12131071 Rethinking the Public Sphere: Group Polarization on Social Media
Authors: Tianji Jiang
Abstract:
Habermas' definition of public sphere is a classical and well-regarded theory of the formation of public opinions, laying the foundation for many researches on public opinions and public media. In recent decades, public media have been changing rapidly as social media are gaining increasing importance. However, the occurrence of group polarization on social media, which is a hot issue today, is challenging Habermas' theory of the public sphere. This article reviews the public sphere theory and studies group polarization and social media. It proposes ideas on how to understand group polarization within the public sphere and comes up with some suggestions and ideas to reduce polarization on social media.Keywords: public sphere, social media, group polarization, echo chamber, public opinion
Procedia PDF Downloads 11531070 Sustaining the Social Memory in a Historic Neighborhood: The Case Study of Uch Dukkan Neighborhood in Ardabil City in Azerbaijani Region of Iran
Authors: Yousef Daneshvar Rouyandozagh, Ece. K. Açikgöz
Abstract:
Conservation of historical urban patterns in the traditional neighborhoods is a part of creating integrated urban environments that are socially more sustainable. Urbanization reflects on life conditions and social, physical, economical characteristics of the society. In this regard, historical zones and traditional regions are affected by dramatic interventions on these characteristics. This article focuses on the Uch Dukkan neighborhood located in Ardabil City in Azarbaijani region of Iran, which has been up to such interventions that leaded its transformation from the past to the present. After introducing a brief inventory of the main elements of the historical zone and the neighborhood; this study explores the changes and transformations in different periods; and their impacts on the quality of the environment and its social sustainability. The survey conducted in the neighborhood as part of this research study revealed that the Uch Dukkan neighborhood and the unique architectural heritage that it possesses have become more inactive physically and functionally in a decade. This condition requires an exploration and comparison of the present and the expected transformations of the meaning of social space from the most private unit to the urban scale. From this token, it is argued that an architectural point of view that is based on space order; use and meaning of space as a social and cultural image, should not be ignored. Based on the interplay between social sustainability, collective memory, and the urban environment, study aims to make the invisible portion of ignorance clear, that ends up with a weakness in defining the collective meaning of the neighborhood as a historic urban district. It reveals that the spatial possessions of the neighborhood are valuable not only for their historical and physical characteristics, but also for their social memory that is to be remembered and constructed further.Keywords: urban integrity, social sustainability, collective memory, social decay
Procedia PDF Downloads 29431069 Deep Learning Approach to Trademark Design Code Identification
Authors: Girish J. Showkatramani, Arthi M. Krishna, Sashi Nareddi, Naresh Nula, Aaron Pepe, Glen Brown, Greg Gabel, Chris Doninger
Abstract:
Trademark examination and approval is a complex process that involves analysis and review of the design components of the marks such as the visual representation as well as the textual data associated with marks such as marks' description. Currently, the process of identifying marks with similar visual representation is done manually in United States Patent and Trademark Office (USPTO) and takes a considerable amount of time. Moreover, the accuracy of these searches depends heavily on the experts determining the trademark design codes used to catalog the visual design codes in the mark. In this study, we explore several methods to automate trademark design code classification. Based on recent successes of convolutional neural networks in image classification, we have used several different convolutional neural networks such as Google’s Inception v3, Inception-ResNet-v2, and Xception net. The study also looks into other techniques to augment the results from CNNs such as using Open Source Computer Vision Library (OpenCV) to pre-process the images. This paper reports the results of the various models trained on year of annotated trademark images.Keywords: trademark design code, convolutional neural networks, trademark image classification, trademark image search, Inception-ResNet-v2
Procedia PDF Downloads 23531068 Luffa cylindrica as Alternative for Treatment of Waste in the Classroom
Authors: Obradith Caicedo, Paola Devia
Abstract:
Methylene blue (MB) and malachite green (MG) are substances commonly used in classrooms for academic purposes. Nevertheless, in most cases, there is no adequate disposal of this type of waste, their presence in the environment affects ecosystems due to the presence of color and the reduction of photosynthetic processes. In this work, we evaluated properties of fibers of Luffa cylindrica in removal from dyes of aqueous solutions through an adsorption process. The point of zero charge, acid and basic sites was also investigated. The best conditions of the adsorption process were determined under a discontinuous system, evaluating an interval of the variables 2 3 : pH value, particle size of the adsorbent and contact time. The temperature (18ºC), agitation (220 rpm) and adsorbent dosage (10g/L) were constant. Measurements were made using UV- Visible spectrophotometry. The point of zero charge for Luffa cylindrica was 4,3. The number of acidic and basic sites was 2.441 meq/g and 1,009 meq/g respectively. These indicate a prevalence of acid groups. The maximum dye sorption was found to be at a pH of 5,5 (97,1 % for MB) and 5,0 (97,7% for MG) and particle size of the adsorbent 850 µm. The equilibrium uptake was attained within 60 min. With this study, it has been shown that Luffa cylindrica can be used as efficient adsorbent for the removal of methylene blue, and malachite green from aqueous solution in classrooms.Keywords: adsorption, dye removal, low-cost adsorbents, Luffa cylindrical
Procedia PDF Downloads 19531067 Modelling Vehicle Fuel Consumption Utilising Artificial Neural Networks
Authors: Aydin Azizi, Aburrahman Tanira
Abstract:
The main source of energy used in this modern age is fossil fuels. There is a myriad of problems that come with the use of fossil fuels, out of which the issues with the greatest impact are its scarcity and the cost it imposes on the planet. Fossil fuels are the only plausible option for many vital functions and processes; the most important of these is transportation. Thus, using this source of energy wisely and as efficiently as possible is a must. The aim of this work was to explore utilising mathematical modelling and artificial intelligence techniques to enhance fuel consumption in passenger cars by focusing on the speed at which cars are driven. An artificial neural network with an error less than 0.05 was developed to be applied practically as to predict the rate of fuel consumption in vehicles.Keywords: mathematical modeling, neural networks, fuel consumption, fossil fuel
Procedia PDF Downloads 40831066 Community Engagement: Experience from the SIREN Study in Sub-Saharan Africa
Authors: Arti Singh, Carolyn Jenkins, Oyedunni S. Arulogun, Mayowa O. Owolabi, Fred S. Sarfo, Bruce Ovbiagele, Enzinne Sylvia
Abstract:
Background: Stroke, the leading cause of adult-onset disability and the second leading cause of death, is a major public health concern particularly pertinent in Sub-Saharan Africa (SSA), where nearly 80% of all global stroke mortalities occur. The Stroke Investigative Research and Education Network (SIREN) seeks to comprehensively characterize the genomic, sociocultural, economic, and behavioral risk factors for stroke and to build effective teams for research to address and decrease the burden of stroke and other non communicable diseases in SSA. One of the first steps to address this goal was to effectively engage the communities that suffer the high burden of disease in SSA. This study describes how the SIREN project engaged six sites in Ghana and Nigeria over the past three years, describing the community engagement activities that have arisen since inception. Aim: The aim of community engagement (CE) within SIREN is to elucidate information about knowledge, attitudes, beliefs, and practices (KABP) about stroke and its risk factors from individuals of African ancestry in SSA, and to educate the community about stroke and ways to decrease disabilities and deaths from stroke using socioculturally appropriate messaging and messengers. Methods: Community Advisory Board (CABs), Focus Group Discussions (FGDs) and community outreach programs. Results: 27 FGDs with 168 participants including community heads, religious leaders, health professionals and individuals with stroke among others, were conducted, and over 60 CE outreaches have been conducted within the SIREN performance sites. Over 5,900 individuals have received education on cardiovascular risk factors and about 5,000 have been screened for cardiovascular risk factors during the outreaches. FGDs and outreach programs indicate that knowledge of stroke, as well as risk factors and follow-up evidence-based care is limited and often late. Other findings include: 1) Most recognize hypertension as a major risk factor for stroke. 2) About 50% report that stroke is hereditary and about 20% do not know organs affected by stroke. 3) More than 95% willing to participate in genetic testing research and about 85% willing to pay for testing and recommend the test to others. 4) Almost all indicated that genetic testing could help health providers better treat stroke and help scientists better understand the causes of stroke. The CABs provided stakeholder input into SIREN activities and facilitated collaborations among investigators, community members and stakeholders. Conclusion: The CE core within SIREN is a first-of-its kind public outreach engagement initiative to evaluate and address perceptions about stroke and genomics by patients, caregivers, and local leaders in SSA and has implications as a model for assessment in other high-stroke risk populations. SIREN’s CE program uses best practices to build capacity for community-engaged research, accelerate integration of research findings into practice and strengthen dynamic community-academic partnerships within our communities. CE has had several major successes over the past three years including our multi-site collaboration examining the KABP about stroke (symptoms, risk factors, burden) and genetic testing across SSA.Keywords: community advisory board, community engagement, focus groups, outreach, SSA, stroke
Procedia PDF Downloads 43531065 Role of Community Forestry to Address Climate Change in Nepal
Authors: Laxmi Prasad Bhattarai
Abstract:
Climate change is regarded as one of the most fundamental threats to sustainable livelihood and global development. There is a growing global concern in linking community-managed forests as potential climate change mitigation projects. This study was conducted to explore local people’s perception on climate change and the role of community forestry (CF) to combat climate change impacts. Two active community forest user groups (CFUGs) from Kaski and Syangja Districts in Nepal were selected as study sites, and various participatory tools were applied to collect primary data. Although most of the respondents were unaware about the words “Climate Change” in study sites, they were quite familiar with the irregularities in rainfall season and other weather extremities. 60% of the respondents had the idea that, due to increase in precipitation, there is a frequent occurrence of erosion, floods, and landslide. Around 85% of the people agreed that community forests help in stabilizing soil, reducing the natural hazards like erosion, landslide. Biogas as an alternative source of cooking energy, and changes in crops and their varieties are the common adaptation measures that local people start practicing in both CFUGs in Nepal.Keywords: community forestry, climate change, global warming, adaptation, Nepal
Procedia PDF Downloads 31031064 Visitor's Perception toward Boating in Silver River, Florida
Authors: Hoda Manafian, Stephen Holland
Abstract:
Silver Springs are one of Florida's first tourist attractions. They are one of the largest artesian spring formations in the world, producing nearly 550 million gallons of crystal-clear water daily that is one of the most popular sites for water-based leisure activities. As part of managing the use of a state park, the state is interested in establishing a baseline count of number of boating users to compare this to the quality of the natural resources and environment in the park. Understanding the status of the environmental resources and also the human recreational experience is the main objective of the project. Two main goals of current study are 1) to identify the distribution of different types of watercrafts (kayak, canoe, motor boat, Jet Ski, paddleboard and pontoon). 2) To document the level of real crowdedness in the river during different seasons, months, and hours of each day based on the reliable information gained from camera versus self-reported method by tourists themselves in the past studies (the innovative achievement of this study). In line with these objectives, on-site surveys and also boat counting using a time-lapse camera at the Riverside launch was done during 12 months of 2015. 700 on-site surveys were conducted at three watercraft boat ramp sites (Rays Wayside, Riverside launch area, Ft. King Waterway) of recreational users. We used Virtualdub and ImageJ software for counting boats for meeting the first and second goals, since this two software can report even the hour of presence of watercraft in the water in addition to the number of users and the type of watercraft. The most crowded hours were between 9-11AM from February to May and kayak was the most popular watercraft. The findings of this research can make a good foundation for better management in this state park in future.Keywords: eco-tourism, Florida state, visitors' perception, water-based recreation
Procedia PDF Downloads 25031063 Urban Security and Social Sustainability in Cities of Developing Countries
Authors: Taimaz Larimian, Negin Sadeghi
Abstract:
Very little is known about the impacts of urban security on the level of social sustainability within the cities of developing countries. Urban security is still struggling to find its position in the social sustainability agenda, despite the significant role of safety and security on different aspects of peoples’ lives. This paper argues that urban safety and security should be better integrated within the social sustainability framework. With this aim, this study investigates the hypothesized relationship between social sustainability and Crime Prevention through Environmental Design (CPTED) approach at the neighborhood scale. This study proposes a model of key influential dimensions of CPTED analyzed into localized factors and sub-factors. These factors are then prioritized using pairwise comparison logic and fuzzy group Analytic Hierarchy Process (AHP) method in order to determine the relative importance of each factor on achieving social sustainability. The proposed model then investigates social sustainability in six case study neighborhoods of Isfahan city based on residents’ perceptions of safety within their neighborhood. Mixed method of data collection is used by using a self-administered questionnaire to explore the residents’ perceptions of social sustainability in their area of residency followed by an on-site observation to measure the CPTED construct. In all, 150 respondents from selected neighborhoods were involved in this research. The model indicates that CPTED approach has a significant direct influence on increasing social sustainability in neighborhood scale. According to the findings, among different dimensions of CPTED, ‘activity support’ and ‘image/ management’ have the most influence on people’s feeling of safety within studied areas. This model represents a useful designing tool in achieving urban safety and security during the development of more socially sustainable and user-friendly urban areas.Keywords: crime prevention through environmental design (CPTED), developing countries, fuzzy analytic hierarchy process (FAHP), social sustainability
Procedia PDF Downloads 31131062 Prospectivity Mapping of Orogenic Lode Gold Deposits Using Fuzzy Models: A Case Study of Saqqez Area, Northwestern Iran
Authors: Fanous Mohammadi, Majid H. Tangestani, Mohammad H. Tayebi
Abstract:
This research aims to evaluate and compare Geographical Information Systems (GIS)-based fuzzy models for producing orogenic gold prospectivity maps in the Saqqez area, NW of Iran. Gold occurrences are hosted in sericite schist and mafic to felsic meta-volcanic rocks in this area and are associated with hydrothermal alterations that extend over ductile to brittle shear zones. The predictor maps, which represent the Pre-(Source/Trigger/Pathway), syn-(deposition/physical/chemical traps) and post-mineralization (preservation/distribution of indicator minerals) subsystems for gold mineralization, were generated using empirical understandings of the specifications of known orogenic gold deposits and gold mineral systems and were then pre-processed and integrated to produce mineral prospectivity maps. Five fuzzy logic operators, including AND, OR, Fuzzy Algebraic Product (FAP), Fuzzy Algebraic Sum (FAS), and GAMMA, were applied to the predictor maps in order to find the most efficient prediction model. Prediction-Area (P-A) plots and field observations were used to assess and evaluate the accuracy of prediction models. Mineral prospectivity maps generated by AND, OR, FAP, and FAS operators were inaccurate and, therefore, unable to pinpoint the exact location of discovered gold occurrences. The GAMMA operator, on the other hand, produced acceptable results and identified potentially economic target sites. The P-A plot revealed that 68 percent of known orogenic gold deposits are found in high and very high potential regions. The GAMMA operator was shown to be useful in predicting and defining cost-effective target sites for orogenic gold deposits, as well as optimizing mineral deposit exploitation.Keywords: mineral prospectivity mapping, fuzzy logic, GIS, orogenic gold deposit, Saqqez, Iran
Procedia PDF Downloads 13031061 Data and Biological Sharing Platforms in Community Health Programs: Partnership with Rural Clinical School, University of New South Wales and Public Health Foundation of India
Authors: Vivian Isaac, A. T. Joteeshwaran, Craig McLachlan
Abstract:
The University of New South Wales (UNSW) Rural Clinical School has a strategic collaborative focus on chronic disease and public health. Our objectives are to understand rural environmental and biological interactions in vulnerable community populations. The UNSW Rural Clinical School translational model is a spoke and hub network. This spoke and hub model connects rural data and biological specimens with city based collaborative public health research networks. Similar spoke and hub models are prevalent across research centers in India. The Australia-India Council grant was awarded so we could establish sustainable public health and community research collaborations. As part of the collaborative network we are developing strategies around data and biological sharing platforms between Indian Institute of Public Health, Public Health Foundation of India (PHFI), Hyderabad and Rural Clinical School UNSW. The key objective is to understand how research collaborations are conducted in India and also how data can shared and tracked with external collaborators such as ourselves. A framework to improve data sharing for research collaborations, including DNA was proposed as a project outcome. The complexities of sharing biological data has been investigated via a visit to India. A flagship sustainable project between Rural Clinical School UNSW and PHFI would illustrate a model of data sharing platforms.Keywords: data sharing, collaboration, public health research, chronic disease
Procedia PDF Downloads 45531060 A Bi-Objective Model to Optimize the Total Time and Idle Probability for Facility Location Problem Behaving as M/M/1/K Queues
Authors: Amirhossein Chambari
Abstract:
This article proposes a bi-objective model for the facility location problem subject to congestion (overcrowding). Motivated by implementations to locate servers in internet mirror sites, communication networks, one-server-systems, so on. This model consider for situations in which immobile (or fixed) service facilities are congested (or queued) by stochastic demand to behave as M/M/1/K queues. We consider for this problem two simultaneous perspectives; (1) Customers (desire to limit times of accessing and waiting for service) and (2) Service provider (desire to limit average facility idle-time). A bi-objective model is setup for facility location problem with two objective functions; (1) Minimizing sum of expected total traveling and waiting time (customers) and (2) Minimizing the average facility idle-time percentage (service provider). The proposed model belongs to the class of mixed-integer nonlinear programming models and the class of NP-hard problems. In addition, to solve the model, controlled elitist non-dominated sorting genetic algorithms (Controlled NSGA-II) and controlled elitist non-dominated ranking genetic algorithms (NRGA-I) are proposed. Furthermore, the two proposed metaheuristics algorithms are evaluated by establishing standard multiobjective metrics. Finally, the results are analyzed and some conclusions are given.Keywords: bi-objective, facility location, queueing, controlled NSGA-II, NRGA-I
Procedia PDF Downloads 58731059 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils
Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente
Abstract:
Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.Keywords: artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L., Schinus terebinthifolius Raddi
Procedia PDF Downloads 54831058 Biotechnological Methods for the Grouting of the Tunneling Space
Authors: V. Ivanov, J. Chu, V. Stabnikov
Abstract:
Different biotechnological methods for the production of construction materials and for the performance of construction processes in situ are developing within a new scientific discipline of Construction Biotechnology. The aim of this research was to develop and test new biotechnologies and biotechnological grouts for the minimization of the hydraulic conductivity of the fractured rocks and porous soil. This problem is essential to minimize flow rate of groundwater into the construction sites, the tunneling space before and after excavation, inside levies, as well as to stop water seepage from the aquaculture ponds, agricultural channels, radioactive waste or toxic chemicals storage sites, from the landfills or from the soil-polluted sites. The conventional fine or ultrafine cement grouts or chemical grouts have such restrictions as high cost, viscosity, sometime toxicity but the biogrouts, which are based on microbial or enzymatic activities and some not expensive inorganic reagents, could be more suitable in many cases because of lower cost and low or zero toxicity. Due to these advantages, development of biotechnologies for biogrouting is going exponentially. However, most popular at present biogrout, which is based on activity of urease- producing bacteria initiating crystallization of calcium carbonate from calcium salt has such disadvantages as production of toxic ammonium/ammonia and development of high pH. Therefore, the aim of our studies was development and testing of new biogrouts that are environmentally friendly and have low cost suitable for large scale geotechnical, construction, and environmental applications. New microbial biotechnologies have been studied and tested in the sand columns, fissured rock samples, in 1 m3 tank with sand, and in the pack of stone sheets that were the models of the porous soil and fractured rocks. Several biotechnological methods showed positive results: 1) biogrouting using sequential desaturation of sand by injection of denitrifying bacteria and medium following with biocementation using urease-producing bacteria, urea and calcium salt decreased hydraulic conductivity of sand to 2×10-7 ms-1 after 17 days of treatment and consumed almost three times less reagents than conventional calcium-and urea-based biogrouting; 2) biogrouting using slime-producing bacteria decreased hydraulic conductivity of sand to 1x10-6 ms-1 after 15 days of treatment; 3) biogrouting of the rocks with the width of the fissures 65×10-6 m using calcium bicarbonate solution, that was produced from CaCO3 and CO2 under 30 bars pressure, decreased hydraulic conductivity of the fissured rocks to 2×10-7 ms-1 after 5 days of treatment. These bioclogging technologies could have a lot of advantages over conventional construction materials and processes and can be used in geotechnical engineering, agriculture and aquaculture, and for the environmental protection.Keywords: biocementation, bioclogging, biogrouting, fractured rocks, porous soil, tunneling space
Procedia PDF Downloads 21231057 The Effect of Stigma on Attitudes towards Seeking Help from Social Workers
Authors: Hend Al-Ma'seb, Anwar Alkhurinej
Abstract:
In the field of social work, social workers understand that it is very difficult for individuals to ask for help from therapists. Therefore, it is important to study the variables associated with seeking professional help. A total of 478 undergraduate students from Kuwait University participated voluntarily in the study. The findings for this study showed that the participants of the study have a slightly high degree of public stigma, low self–stigma, and positive attitude toward seeking professional help. In addition, the findings of the study reveal that there are significant relationships between gender, taking social work classes, thinking about receiving counseling and having social problems and participants' attitude towards seeking professional help. Furthermore, the findings of the study showed that there were significant relationships between gender, and thinking about receiving counseling, and self-stigma. The findings of the current study have implications for the field of social work in Kuwait that would help to improve the knowledge in this area.Keywords: attitude towards help, social work, social workers, stigma
Procedia PDF Downloads 213