Search results for: random copolymers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2146

Search results for: random copolymers

136 A Versatile Data Processing Package for Ground-Based Synthetic Aperture Radar Deformation Monitoring

Authors: Zheng Wang, Zhenhong Li, Jon Mills

Abstract:

Ground-based synthetic aperture radar (GBSAR) represents a powerful remote sensing tool for deformation monitoring towards various geohazards, e.g. landslides, mudflows, avalanches, infrastructure failures, and the subsidence of residential areas. Unlike spaceborne SAR with a fixed revisit period, GBSAR data can be acquired with an adjustable temporal resolution through either continuous or discontinuous operation. However, challenges arise from processing high temporal-resolution continuous GBSAR data, including the extreme cost of computational random-access-memory (RAM), the delay of displacement maps, and the loss of temporal evolution. Moreover, repositioning errors between discontinuous campaigns impede the accurate measurement of surface displacements. Therefore, a versatile package with two complete chains is developed in this study in order to process both continuous and discontinuous GBSAR data and address the aforementioned issues. The first chain is based on a small-baseline subset concept and it processes continuous GBSAR images unit by unit. Images within a window form a basic unit. By taking this strategy, the RAM requirement is reduced to only one unit of images and the chain can theoretically process an infinite number of images. The evolution of surface displacements can be detected as it keeps temporarily-coherent pixels which are present only in some certain units but not in the whole observation period. The chain supports real-time processing of the continuous data and the delay of creating displacement maps can be shortened without waiting for the entire dataset. The other chain aims to measure deformation between discontinuous campaigns. Temporal averaging is carried out on a stack of images in a single campaign in order to improve the signal-to-noise ratio of discontinuous data and minimise the loss of coherence. The temporal-averaged images are then processed by a particular interferometry procedure integrated with advanced interferometric SAR algorithms such as robust coherence estimation, non-local filtering, and selection of partially-coherent pixels. Experiments are conducted using both synthetic and real-world GBSAR data. Displacement time series at the level of a few sub-millimetres are achieved in several applications (e.g. a coastal cliff, a sand dune, a bridge, and a residential area), indicating the feasibility of the developed GBSAR data processing package for deformation monitoring of a wide range of scientific and practical applications.

Keywords: ground-based synthetic aperture radar, interferometry, small baseline subset algorithm, deformation monitoring

Procedia PDF Downloads 161
135 A Comparison of Three Different Modalities in Improving Oral Hygiene in Adult Orthodontic Patients: An Open-Label Randomized Controlled Trial

Authors: Umair Shoukat Ali, Rashna Hoshang Sukhia, Mubassar Fida

Abstract:

Introduction: The objective of the study was to compare outcomes in terms of Bleeding index (BI), Gingival Index (GI), and Orthodontic Plaque Index (OPI) with video graphics and plaque disclosing tablets (PDT) versus verbal instructions in adult orthodontic patients undergoing fixed appliance treatment (FAT). Materials and Methods: Adult orthodontic patients have recruited from outpatient orthodontic clinics who fulfilled the inclusion criteria and were randomly allocated to three groups i.e., video, PDT, and verbal groups. We included patients undergoing FAT for six months of both genders with all teeth bonded mesial to first molars having no co-morbid conditions such as rheumatic fever and diabetes mellitus. Subjects who had gingivitis as assessed by Bleeding Index (BI), Gingival Index (GI), and Orthodontic Plaque Index (OPI) were recruited. We excluded subjects having > 2 mm of clinical attachment loss, pregnant and lactating females, any history of periodontal therapy within the last six months, and any consumption of antibiotics or anti-inflammatory drugs within the last one month. Pre- and post-interventional measurements were taken at two intervals only for BI, GI, and OPI. The primary outcome of this trial was to evaluate the mean change in the BI, GI, and OPI in the three study groups. A computer-generated randomization list was used to allocate subjects to one of the three study groups using a random permuted block sampling of 6 and 9 to randomize the samples. No blinding of the investigator or the participants was performed. Results: A total of 99 subjects were assessed for eligibility, out of which 96 participants were randomized as three of the participants declined to be part of this trial. This resulted in an equal number of participants (32) that were analyzed in all three groups. The mean change in the oral hygiene indices score was assessed, and we found no statistically significant difference among the three interventional groups. Pre- and post-interventional results showed statistically significant improvement in the oral hygiene indices for the video and PDT groups. No statistically significant difference for age, gender, and education level on oral hygiene indices were found. Simple linear regression showed that the video group produced significantly higher mean OPI change as compared to other groups. No harm was observed during the trial. Conclusions: Visual aids performed better as compared to the verbal group. Gender, age, and education level had no statistically significant impact on the oral hygiene indices. Longer follow-ups will be required to see the long-term effects of these interventions. Trial Registration: NCT04386421 Funding: Aga Khan University and Hospital (URC 183022)

Keywords: oral hygiene, orthodontic treatment, adults, randomized clinical trial

Procedia PDF Downloads 118
134 Survival Analysis after a First Ischaemic Stroke Event: A Case-Control Study in the Adult Population of England.

Authors: Padma Chutoo, Elena Kulinskaya, Ilyas Bakbergenuly, Nicholas Steel, Dmitri Pchejetski

Abstract:

Stroke is associated with a significant risk of morbidity and mortality. There is scarcity of research on the long-term survival after first-ever ischaemic stroke (IS) events in England with regards to effects of different medical therapies and comorbidities. The objective of this study was to model the all-cause mortality after an IS diagnosis in the adult population of England. Using a retrospective case-control design, we extracted the electronic medical records of patients born prior to or in year 1960 in England with a first-ever ischaemic stroke diagnosis from January 1986 to January 2017 within the Health and Improvement Network (THIN) database. Participants with a history of ischaemic stroke were matched to 3 controls by sex and age at diagnosis and general practice. The primary outcome was the all-cause mortality. The hazards of the all-cause mortality were estimated using a Weibull-Cox survival model which included both scale and shape effects and a shared random effect of general practice. The model included sex, birth cohort, socio-economic status, comorbidities and medical therapies. 20,250 patients with a history of IS (cases) and 55,519 controls were followed up to 30 years. From 2008 to 2015, the one-year all-cause mortality for the IS patients declined with an absolute change of -0.5%. Preventive treatments to cases increased considerably over time. These included prescriptions of statins and antihypertensives. However, prescriptions for antiplatelet drugs decreased in the routine general practice since 2010. The survival model revealed a survival benefit of antiplatelet treatment to stroke survivors with hazard ratio (HR) of 0.92 (0.90 – 0.94). IS diagnosis had significant interactions with gender and age at entry and hypertension diagnosis. IS diagnosis was associated with high risk of all-cause mortality with HR= 3.39 (3.05-3.72) for cases compared to controls. Hypertension was associated with poor survival with HR = 4.79 (4.49 - 5.09) for hypertensive cases relative to non-hypertensive controls, though the detrimental effect of hypertension has not reached significance for hypertensive controls, HR = 1.19(0.82-1.56). This study of English primary care data showed that between 2008 and 2015, the rates of prescriptions of stroke preventive treatments increased, and a short-term all-cause mortality after IS stroke declined. However, stroke resulted in poor long-term survival. Hypertension, a modifiable risk factor, was found to be associated with poor survival outcomes in IS patients. Antiplatelet drugs were found to be protective to survival. Better efforts are required to reduce the burden of stroke through health service development and primary prevention.

Keywords: general practice, hazard ratio, health improvement network (THIN), ischaemic stroke, multiple imputation, Weibull-Cox model.

Procedia PDF Downloads 186
133 Exploring the Gap between Coverage, Access, Utilization of Long Lasting Insecticidal Nets (LLINs) among the People of Malaria Endemic Districts in Bangladesh

Authors: Fouzia Khanam, Tridib Chowdhury, Belal Hossain, Sajedur Rahman, Mahfuzar Rahman

Abstract:

Introduction: Over the last decades, the world has achieved a noticeable success in preventing malaria. Nevertheless, malaria, a vector-borne infectious disease, remains a major public health burden globally as well as in Bangladesh. To achieve the goal of eliminating malaria, BRAC, a leading organization of Bangladesh in collaboration with government, is distributing free LLIN to the 13 endemic districts of the country. The study was conducted with the aim of assessing the gap between coverage, access, and utilization of LLIN among the people of the 13 malaria endemic districts of Bangladesh. Methods: This baseline study employed a community cross-sectional design triangulated with qualitative methods to measure households’ ownership, access and use of 13 endemic districts. A multistage cluster random sampling was employed for the quantitative part and for qualitative part a purposive sampling strategy was done. Thus present analysis included 2640 households encompassing a total of 14475 populations. Data were collected using a pre-tested structured questionnaire through one on one face-to-face interview with respondents. All analyses were performed using STATA (Version 13.0). For the qualitative part participant observation, in-depth interview, focus group discussion, key informant interview and informal interview was done to gather the contextual data. Findings: According to our study, 99.8% of households possessed at least one-bed net in both study areas. 77.4% households possessed at least two LLIN and 43.2% households had access to LLIN for all the members. So the gap between coverage and access is 34%. 91.8% people in the 13 districts and 95.1% in Chittagong Hill Tracts areas reported having had slept under a bed net the night before interviewed. And despite the relatively low access, in 77.8% of households, all the members were used the LLIN the previous night. This higher utilization compared to access might be due to the increased awareness among the community people regarding LLIN uses. However, among those people with sufficient access to LLIN, 6% of them still did not use the LLIN which reflects the behavioral failure that needs to be addressed. The major reasons for not using LLIN, identified by both qualitative and quantitative findings, were insufficient access, sleeping or living outside the home, migration, perceived low efficacy of LLIN, fear of physical side effects or feeling uncomfortable. Conclusion: Given that LLIN access and use was a bit short of the targets, it conveys important messages to the malaria control program. Targeting specific population segments and groups for achieving expected LLIN coverage is very crucial. And also, addressing behavior failure by well-designed behavioral change interventions is mandatory.

Keywords: long lasting insecticide net, malaria, malaria control programme, World Health Organisation

Procedia PDF Downloads 187
132 Rural Entrepreneurship as a Response to Climate Change and Resource Conservation

Authors: Omar Romero-Hernandez, Federico Castillo, Armando Sanchez, Sergio Romero, Andrea Romero, Michael Mitchell

Abstract:

Environmental policies for resource conservation in rural areas include subsidies on services and social programs to cover living expenses. Government's expectation is that rural communities who benefit from social programs, such as payment for ecosystem services, are provided with an incentive to conserve natural resources and preserve natural sinks for greenhouse gases. At the same time, global climate change has affected the lives of people worldwide. The capability to adapt to global warming depends on the available resources and the standard of living, putting rural communities at a disadvantage. This paper explores whether rural entrepreneurship can represent a solution to resource conservation and global warming adaptation in rural communities. The research focuses on a sample of two coffee communities in Oaxaca, Mexico. Researchers used geospatial information contained in aerial photographs of the geographical areas of interest. Households were identified in the photos via the roofs of households and georeferenced via coordinates. From the household population, a random selection of roofs was performed and received a visit. A total of 112 surveys were completed, including questions of socio-demographics, perception to climate change and adaptation activities. The population includes two groups of study: entrepreneurs and non-entrepreneurs. Data was sorted, filtered, and validated. Analysis includes descriptive statistics for exploratory purposes and a multi-regression analysis. Outcomes from the surveys indicate that coffee farmers, who demonstrate entrepreneurship skills and hire employees, are more eager to adapt to climate change despite the extreme adverse socioeconomic conditions of the region. We show that farmers with entrepreneurial tendencies are more creative in using innovative farm practices such as the planting of shade trees, the use of live fencing, instead of wires, and watershed protection techniques, among others. This result counters the notion that small farmers are at the mercy of climate change and have no possibility of being able to adapt to a changing climate. The study also points to roadblocks that farmers face when coping with climate change. Among those roadblocks are a lack of extension services, access to credit, and reliable internet, all of which reduces access to vital information needed in today’s constantly changing world. Results indicate that, under some circumstances, funding and supporting entrepreneurship programs may provide more benefit than traditional social programs.

Keywords: entrepreneurship, global warming, rural communities, climate change adaptation

Procedia PDF Downloads 239
131 Knowledge Management and Administrative Effectiveness of Non-teaching Staff in Federal Universities in the South-West, Nigeria

Authors: Nathaniel Oladimeji Dixon, Adekemi Dorcas Fadun

Abstract:

Educational managers have observed a downward trend in the administrative effectiveness of non-teaching staff in federal universities in South-west Nigeria. This is evident in the low-quality service delivery of administrators and unaccomplished institutional goals and missions of higher education. Scholars have thus indicated the need for the deployment and adoption of a practice that encourages information collection and sharing among stakeholders with a view to improving service delivery and outcomes. This study examined the extent to which knowledge management correlated with the administrative effectiveness of non-teaching staff in federal universities in South-west Nigeria. The study adopted the survey design. Three federal universities (the University of Ibadan, Federal University of Agriculture, Abeokuta, and Obafemi Awolowo University) were purposively selected because administrative ineffectiveness was more pronounced among non-teaching staff in government-owned universities, and these federal universities were long established. The proportional and stratified random sampling was adopted to select 1156 non-teaching staff across the three universities along the three existing layers of the non-teaching staff: secretarial (senior=311; junior=224), non-secretarial (senior=147; junior=241) and technicians (senior=130; junior=103). Knowledge Management Practices Questionnaire with four sub-scales: knowledge creation (α=0.72), knowledge utilization (α=0.76), knowledge sharing (α=0.79) and knowledge transfer (α=0.83); and Administrative Effectiveness Questionnaire with four sub-scales: communication (α=0.84), decision implementation (α=0.75), service delivery (α=0.81) and interpersonal relationship (α=0.78) were used for data collection. Data were analyzed using descriptive statistics, Pearson product-moment correlation and multiple regression at 0.05 level of significance, while qualitative data were content analyzed. About 59.8% of the non-teaching staff exhibited a low level of knowledge management. The indices of administrative effectiveness of non-teaching staff were rated as follows: service delivery (82.0%), communication (78.0%), decision implementation (71.0%) and interpersonal relationship (68.0%). Knowledge management had significant relationships with the indices of administrative effectiveness: service delivery (r=0.82), communication (r=0.81), decision implementation (r=0.80) and interpersonal relationship (r=0.47). Knowledge management had a significant joint prediction on administrative effectiveness (F (4;1151)= 0.79, R=0.86), accounting for 73.0% of its variance. Knowledge sharing (β=0.38), knowledge transfer (β=0.26), knowledge utilization (β=0.22), and knowledge creation (β=0.06) had relatively significant contributions to administrative effectiveness. Lack of team spirit and withdrawal syndrome is the major perceived constraints to knowledge management practices among the non-teaching staff. Knowledge management positively influenced the administrative effectiveness of the non-teaching staff in federal universities in South-west Nigeria. There is a need to ensure that the non-teaching staff imbibe team spirit and embrace teamwork with a view to eliminating their withdrawal syndromes. Besides, knowledge management practices should be deployed into the administrative procedures of the university system.

Keywords: knowledge management, administrative effectiveness of non-teaching staff, federal universities in the south-west of nigeria., knowledge creation, knowledge utilization, effective communication, decision implementation

Procedia PDF Downloads 102
130 The Impact of Physical Exercise on Gestational Diabetes and Maternal Weight Management: A Meta-Analysis

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Physiological changes during pregnancy, such as alterations in the circulatory, respiratory, and musculoskeletal systems, can negatively impact daily physical activity. This reduced activity is often associated with an increased risk of adverse maternal health outcomes, particularly gestational diabetes mellitus (GDM) and excessive weight gain. This meta-analysis aims to evaluate the effectiveness of structured physical exercise interventions during pregnancy in reducing the risk of GDM and managing maternal weight gain. A comprehensive search was conducted across six major databases: PubMed, Cochrane Library, EMBASE, Web of Science, ScienceDirect, and ClinicalTrials.gov, covering the period from database inception until 2023. Randomized controlled trials (RCTs) that explored the effects of physical exercise programs on pregnant women with low physical activity levels were included. The search was performed using EndNote and results were managed using RevMan (Review Manager) for meta-analysis. RCTs involving healthy pregnant women with low levels of physical activity or sedentary lifestyles were selected. These RCTs must have incorporated structured exercise programs during pregnancy and reported on outcomes related to GDM and maternal weight gain. From an initial pool of 5,112 articles, 65 RCTs (involving 11,400 pregnant women) met the inclusion criteria. Data extraction was performed, followed by a quality assessment of the selected studies using the Cochrane Risk of Bias tool. The meta-analysis was conducted using RevMan software, where pooled relative risks (RR) and weighted mean differences (WMD) were calculated using a random-effects model to address heterogeneity across studies. Sensitivity analyses, subgroup analyses (based on factors such as exercise intensity, duration, and pregnancy stage), and publication bias assessments were also conducted. Structured physical exercise during pregnancy led to a significant reduction in the risk of developing GDM (RR = 0.68; P < 0.001), particularly when the exercise program was performed throughout the pregnancy (RR = 0.62; P = 0.035). In addition, maternal weight gain was significantly reduced (WMD = −1.18 kg; 95% CI −1.54 to −0.85; P < 0.001). There were no significant adverse effects reported for either the mother or the neonate, confirming that exercise interventions are safe for both. This meta-analysis highlights the positive impact of regular moderate physical activity during pregnancy in reducing the risk of GDM and managing maternal weight gain. These findings suggest that physical exercise should be encouraged as a routine part of prenatal care. However, more research is required to refine exercise recommendations and determine the most effective interventions based on individual risk factors and pregnancy stages.

Keywords: gestational diabetes, maternal weight management, meta-analysis, randomized controlled trials

Procedia PDF Downloads 10
129 Fast and Non-Invasive Patient-Specific Optimization of Left Ventricle Assist Device Implantation

Authors: Huidan Yu, Anurag Deb, Rou Chen, I-Wen Wang

Abstract:

The use of left ventricle assist devices (LVADs) in patients with heart failure has been a proven and effective therapy for patients with severe end-stage heart failure. Due to the limited availability of suitable donor hearts, LVADs will probably become the alternative solution for patient with heart failure in the near future. While the LVAD is being continuously improved toward enhanced performance, increased device durability, reduced size, a better understanding of implantation management becomes critical in order to achieve better long-term blood supplies and less post-surgical complications such as thrombi generation. Important issues related to the LVAD implantation include the location of outflow grafting (OG), the angle of the OG, the combination between LVAD and native heart pumping, uniform or pulsatile flow at OG, etc. We have hypothesized that an optimal implantation of LVAD is patient specific. To test this hypothesis, we employ a novel in-house computational modeling technique, named InVascular, to conduct a systematic evaluation of cardiac output at aortic arch together with other pertinent hemodynamic quantities for each patient under various implantation scenarios aiming to get an optimal implantation strategy. InVacular is a powerful computational modeling technique that integrates unified mesoscale modeling for both image segmentation and fluid dynamics with the cutting-edge GPU parallel computing. It first segments the aortic artery from patient’s CT image, then seamlessly feeds extracted morphology, together with the velocity wave from Echo Ultrasound image of the same patient, to the computation model to quantify 4-D (time+space) velocity and pressure fields. Using one NVIDIA Tesla K40 GPU card, InVascular completes a computation from CT image to 4-D hemodynamics within 30 minutes. Thus it has the great potential to conduct massive numerical simulation and analysis. The systematic evaluation for one patient includes three OG anastomosis (ascending aorta, descending thoracic aorta, and subclavian artery), three combinations of LVAD and native heart pumping (1:1, 1:2, and 1:3), three angles of OG anastomosis (inclined upward, perpendicular, and inclined downward), and two LVAD inflow conditions (uniform and pulsatile). The optimal LVAD implantation is suggested through a comprehensive analysis of the cardiac output and related hemodynamics from the simulations over the fifty-four scenarios. To confirm the hypothesis, 5 random patient cases will be evaluated.

Keywords: graphic processing unit (GPU) parallel computing, left ventricle assist device (LVAD), lumped-parameter model, patient-specific computational hemodynamics

Procedia PDF Downloads 133
128 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning

Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi

Abstract:

Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.

Keywords: agriculture, computer vision, data science, geospatial technology

Procedia PDF Downloads 137
127 Laparoscopic Resection Shows Comparable Outcomes to Open Thoracotomy for Thoracoabdominal Neuroblastomas: A Meta-Analysis and Systematic Review

Authors: Peter J. Fusco, Dave M. Mathew, Chris Mathew, Kenneth H. Levy, Kathryn S. Varghese, Stephanie Salazar-Restrepo, Serena M. Mathew, Sofia Khaja, Eamon Vega, Mia Polizzi, Alyssa Mullane, Adham Ahmed

Abstract:

Background: Laparoscopic (LS) removal of neuroblastomas in children has been reported to offer favorable outcomes compared to the conventional open thoracotomy (OT) procedure. Critical perioperative measures such as blood loss, operative time, length of stay, and time to postoperative chemotherapy have all supported laparoscopic use rather than its more invasive counterpart. Herein, a pairwise meta-analysis was performed comparing perioperative outcomes between LS and OT in thoracoabdominal neuroblastoma cases. Methods: A comprehensive literature search was performed on PubMed, Ovid EMBASE, and Scopus databases to identify studies comparing the outcomes of pediatric patients with thoracoabdominal neuroblastomas undergoing resection via OT or LS. After deduplication, 4,227 studies were identified and subjected to initial title screening with exclusion and inclusion criteria to ensure relevance. When studies contained overlapping cohorts, only the larger series were included. Primary outcomes include estimated blood loss (EBL), hospital length of stay (LOS), and mortality, while secondary outcomes were tumor recurrence, post-operative complications, and operation length. The “meta” and “metafor” packages were used in R, version 4.0.2, to pool risk ratios (RR) or standardized mean differences (SMD) in addition to their 95% confidence intervals in the random effects model via the Mantel-Haenszel method. Heterogeneity between studies was assessed using the I² test, while publication bias was assessed via funnel plot. Results: The pooled analysis included 209 patients from 5 studies (141 OT, 68 LS). Of the included studies, 2 originated from the United States, 1 from Toronto, 1 from China, and 1was from a Japanese center. Mean age between study cohorts ranged from 2.4 to 5.3 years old, with female patients occupying between 30.8% to 50% of the study populations. No statistically significant difference was found between the two groups for LOS (SMD -1.02; p=0.083), mortality (RR 0.30; p=0.251), recurrence(RR 0.31; p=0.162), post-operative complications (RR 0.73; p=0.732), or operation length (SMD -0.07; p=0.648). Of note, LS appeared to be protective in the analysis for EBL, although it did not reach statistical significance (SMD -0.4174; p= 0.051). Conclusion: Despite promising literature assessing LS removal of pediatric neuroblastomas, results showed it was non-superior to OT for any explored perioperative outcomes. Given the limited comparative data on the subject, it is evident that randomized trials are necessary to further the efficacy of the conclusions reached.

Keywords: laparoscopy, neuroblastoma, thoracoabdominal, thoracotomy

Procedia PDF Downloads 131
126 Investigating Learners’ Online Learning Experiences in a Blended-Learning School Environment

Authors: Abraham Ampong

Abstract:

BACKGROUND AND SIGNIFICANCE OF THE STUDY: The development of information technology and its influence today is inevitable in the world of education. The development of information technology and communication (ICT) has an impact on the use of teaching aids such as computers and the Internet, for example, E-learning. E-learning is a learning process attained through electronic means. But learning is not merely technology because learning is essentially more about the process of interaction between teacher, student, and source study. The main purpose of the study is to investigate learners’ online learning experiences in a blended learning approach, evaluate how learners’ experience of an online learning environment affects the blended learning approach and examine the future of online learning in a blended learning environment. Blended learning pedagogies have been recognized as a path to improve teacher’s instructional strategies for teaching using technology. Blended learning is perceived to have many advantages for teachers and students, including any-time learning, anywhere access, self-paced learning, inquiry-led learning and collaborative learning; this helps institutions to create desired instructional skills such as critical thinking in the process of learning. Blended learning as an approach to learning has gained momentum because of its widespread integration into educational organizations. METHODOLOGY: Based on the research objectives and questions of the study, the study will make use of the qualitative research approach. The rationale behind the selection of this research approach is that participants are able to make sense of their situations and appreciate their construction of knowledge and understanding because the methods focus on how people understand and interpret their experiences. A case study research design is adopted to explore the situation under investigation. The target population for the study will consist of selected students from selected universities. A simple random sampling technique will be used to select the targeted population. The data collection instrument that will be adopted for this study will be questions that will serve as an interview guide. An interview guide is a set of questions that an interviewer asks when interviewing respondents. Responses from the in-depth interview will be transcribed into word and analyzed under themes. Ethical issues to be catered for in this study include the right to privacy, voluntary participation, and no harm to participants, and confidentiality. INDICATORS OF THE MAJOR FINDINGS: It is suitable for the study to find out that online learning encourages timely feedback from teachers or that online learning tools are okay to use without issues. Most of the communication with the teacher can be done through emails and text messages. It is again suitable for sampled respondents to prefer online learning because there are few or no distractions. Learners can have access to technology to do other activities to support their learning”. There are, again, enough and enhanced learning materials available online. CONCLUSION: Unlike the previous research works focusing on the strengths and weaknesses of blended learning, the present study aims at the respective roles of its two modalities, as well as their interdependencies.

Keywords: online learning, blended learning, technologies, teaching methods

Procedia PDF Downloads 86
125 Prolactin and Its Abnormalities: Its Implications on the Male Reproductive Tract and Male Factor Infertility

Authors: Rizvi Hasan

Abstract:

Male factor infertility due to abnormalities in prolactin levels is encountered in a significant proportion. This was a case-control study carried out to determine the effects of prolactin abnormalities in normal males with infertility, recruiting 297 male infertile patients with informed written consent. All underwent a Basic Seminal Fluid Analysis (BSA) and endocrine profiles of FSH, LH, testosterone and prolactin (PRL) hormones using the random access chemiluminescent immunoassay method (normal range 2.5-17ng/ml). Age, weight, and height matched voluntary controls were recruited for comparison. None of the cases had anatomical, medical or surgical disorders related to infertility. Among the controls; mean age 33.2yrs ± 5.2, BMI 21.04 ± 1.39kgm-2, BSA 34×106, a number of children fathered 2±1, PRL 6.78 ± 2.92ng/ml. Of the 297 patients, 28 were hyperprolactinaemic while one was hypoprolactinaemic. All the hyperprolactinaemic patients had oligoasthenospermia, abnormal morphology and decreased viability. The serum testosterone levels were markedly lowered in 26 (92.86%) of the hyperprolactinaemic subjects. In the other 2 hyperprolactinaemic subjects and the single hypoprolactinaemic subject, the serum testosterone levels were normal. FSH and LH were normal in all patients. The 29 male patients with abnormalities in their serum PRL profiles were followed up for 12 months. The 28 patients suffering from hyperprolactinaemia were treated with oral bromocriptine in a dose of 2.5 mg twice daily. The hypoprolactinaemic patient defaulted treatment. From the follow-up, it was evident that 19 (67.86%) of the treated patients responded after 3 months of therapy while 4 (14.29%) showed improvement after approximately 6 months of bromocriptine therapy. One patient responded after 1 year of therapy while 2 patients showed improvements although not up to normal levels within the same period. Response to treatment was assessed by improvement in their BSA parameters. Prolactin abnormalities affect the male reproductive system and semen parameters necessitating further studies to ascertain the exact role of prolactin on the male reproductive tract. A parallel study was carried out incorporating 200 male white rats that were grouped and subjected to variations in their serum PRL levels. At the end of 100 days of treatment, these rats were subjected to morphological studies of their male reproductive tracts.Varying morphological changes depending on the levels of PRL changes induced were evident. Notable changes were arrest of spermatogenesis at the spermatid stage, a reduced testicular cellularity, a reduction in microvilli of the pseudostratified epithelial lining of the epididymis, while measurement of the tubular diameter showed a 30% reduction compared to normal tissue. There were no changes in the vas deferens, seminal vesicles, and the prostate. It is evident that both hyperprolactinaemia and hypoprolactinaemia have a direct effect on the morphology and function of the male reproductive tract. The morphological studies carried out on the groups of rats who were subjected to variations in their PRL levels could be the basis for infertility in male human beings.

Keywords: male factor infertility, morphological studies, prolactin, seminal fluid analysis

Procedia PDF Downloads 345
124 Effect of Nigella Sativa Seeds and Ajwa Date on Blood Glucose Level in Saudi Patients with Type 2 Diabetes Mellitus

Authors: Reham Algheshairy, Khaled Tayeb, Christopher Smith, Rebecca Gregg, Haruna Musa

Abstract:

Background: Diabetes is a medical condition that refers to the pancreas’ inability to secrete sufficient insulin levels, a hormone responsible for controlling glucose levels in the body. Any surplus glucose in the blood stream is excreted through the urinary system. Insulin resistance in blood cells can also cause this condition despite the fact that the pancreas is producing the required amount of insulin A number of researchers claim that the prevalence of diabetes in Saudi Arabia has reached epidemic proportions, although one study did observe one positive in the rise in the awareness of diabetes, possibly indicative of Saudi Arabia’s improving healthcare system. While a number of factors can cause diabetes, the ever-increasing incidence of the disease in Saudi Arabia has been blamed primarily on low levels of physical activity and high levels of obesity. Objectives: The project has two aims. The first aim of the project is to investigate the regulatory effects of consumption of Nigella seeds and Ajwah dates on blood glucose levels in diabetic patients with type 2 diabetes. The second aim of the project is to investigate whether these dietary factors may have potentially beneficial effects in controlling the complications that associated with type 2 diabetes. Methods: This use a random-cross intervention trail of 75 Saudi male and female with type 2 diabetes in Al-Noor hospital in Makkah ( KSA) aged between 18 and 70 years were divided into 3 groups. Group 1 will consume 2g of Nigella Sativa seeds daily along with a modified diet for 12 weeks, group 2 will be given Ajwah dates daily with a modified diet for 12 weeks and group 3 will follow a modified diet for 12 weeks. Anthropometric measurements were taken at baseline, along with bloods for HbA1c, fasting blood sugar and at the end of 12 weeks. Results: This study found significant decrease in blood level (FBG & 2PPBG) and HbA1c in the groups with diet and Nigella seeds) compared to Ajwa date. However, there is no significant change were found in HbA1c, FBG and 2hrpp regarding Ajwa group. Conclusion: This study illustrated a significant improvement in some markers of glycaemia following 2 g of Ns and diet for 12 weeks. The dose of 2g/day of consumed Nigella seeds was found to be more effective in controlling BGL and HbA1c than control and Ajwa groups. This suggests that Nigella seeds and following a diet may have a potential effect (a role in controlling outcomes for type 2 diabetes and controlling the disease). Further research is needed on a large scale to determine the optimum dose and duration of Nigella and Ajwa in order to achieve the desired results.

Keywords: type 2 diabetes, Nigella seeds, Ajwa dates, fasting blood glucose, control

Procedia PDF Downloads 295
123 Improved Food Security and Alleviation of Cyanide Intoxication through Commercialization and Utilization of Cassava Starch by Tanzania Industries

Authors: Mariam Mtunguja, Henry Laswai, Yasinta Muzanilla, Joseph Ndunguru

Abstract:

Starchy tuberous roots of cassava provide food for people but also find application in various industries. Recently there has been the focus of concentrated research efforts to fully exploit its potential as a sustainable multipurpose crop. High starch yield is the important trait for commercial cassava production for the starch industries. Furthermore, cyanide present in cassava root poses a health challenge in the use of cassava for food. Farming communities where cassava is a staple food, prefer bitter (high cyanogenic) varieties as protection from predators and thieves. As a result, food insecure farmers prefer growing bitter cassava. This has led to cyanide intoxication to this farming communities. Cassava farmers can benefit from marketing cassava to starch producers thereby improving their income and food security. This will decrease dependency on cassava as staple food as a result of increased income and be able to afford other food sources. To achieve this, adequate information is required on the right cassava cultivars and appropriate harvesting period so as to maximize cassava production and profitability. This study aimed at identifying suitable cassava cultivars and optimum time of harvest to maximize starch production. Six commonly grown cultivars were identified and planted in a complete random block design and further analysis was done to assess variation in physicochemical characteristics, starch yield and cyanogenic potentials across three environments. The analysis showed that there is a difference in physicochemical characteristics between landraces (p ≤ 0.05), and can be targeted to different industrial applications. Among landraces, dry matter (30-39%), amylose (11-19%), starch (74-80%) and reducing sugars content (1-3%) varied when expressed on a dry weight basis (p ≤ 0.05); however, only one of the six genotypes differed in crystallinity and mean starch granule particle size, while glucan chain distribution and granule morphology were the same. In contrast, the starch functionality features measured: swelling power, solubility, syneresis, and digestibility differed (p ≤ 0.05). This was supported by Partial least square discriminant analysis (PLS-DA), which highlighted the divergence among the cassavas based on starch functionality, permitting suggestions for the targeted uses of these starches in diverse industries. The study also illustrated genotypic difference in starch yield and cyanogenic potential. Among landraces, Kiroba showed potential for maximum starch yield (12.8 t ha-1) followed by Msenene (12.3 t ha-1) and third was Kilusungu (10.2 t ha-1). The cyanide content of cassava landraces was between 15 and 800 ppm across all trial sites. GGE biplot analysis further confirmed that Kiroba was a superior cultivar in terms of starch yield. Kilusungu had the highest cyanide content and average starch yield, therefore it can also be suitable for use in starch production.

Keywords: cyanogen, cassava starch, food security, starch yield

Procedia PDF Downloads 220
122 Inpatient Glycemic Management Strategies and Their Association with Clinical Outcomes in Hospitalized SARS-CoV-2 Patients

Authors: Thao Nguyen, Maximiliano Hyon, Sany Rajagukguk, Anna Melkonyan

Abstract:

Introduction: Type 2 Diabetes is a well-established risk factor for severe SARS-CoV-2 infection. Uncontrolled hyperglycemia in patients with established or newly diagnosed diabetes is associated with poor outcomes, including increased mortality and hospital length of stay. Objectives: Our study aims to compare three different glycemic management strategies and their association with clinical outcomes in patients hospitalized for moderate to severe SARS-CoV-2 infection. Identifying optimal glycemic management strategies will improve the quality of patient care and improve their outcomes. Method: This is a retrospective observational study on patients hospitalized at Adventist Health White Memorial with severe SARS-CoV-2 infection from 11/1/2020 to 02/28/2021. The following inclusion criteria were used: positive SARS-CoV-2 PCR test, age >18 yrs old, diabetes or random glucose >200 mg/dL on admission, oxygen requirement >4L/min, and treatment with glucocorticoids. Our exclusion criteria included: ICU admission within 24 hours, discharge within five days, death within five days, and pregnancy. The patients were divided into three glycemic management groups: Group 1, managed solely by the Primary Team, Group 2, by Pharmacy; and Group 3, by Endocrinologist. Primary outcomes were average glucose on Day 5, change in glucose between Days 3 and 5, and average insulin dose on Day 5 among groups. Secondary outcomes would be upgraded to ICU, inpatient mortality, and hospital length of stay. For statistics, we used IBM® SPSS, version 28, 2022. Results: Most studied patients were Hispanic, older than 60, and obese (BMI >30). It was the first CV-19 surge with the Delta variant in an unvaccinated population. Mortality was markedly high (> 40%) with longer LOS (> 13 days) and a high ICU transfer rate (18%). Most patients had markedly elevated inflammatory markers (CRP, Ferritin, and D-Dimer). These, in combination with glucocorticoids, resulted in severe hyperglycemia that was difficult to control. Average glucose on Day 5 was not significantly different between groups primary vs. pharmacy vs. endocrine (220.5 ± 63.4 vs. 240.9 ± 71.1 vs. 208.6 ± 61.7 ; P = 0.105). Change in glucose from days 3 to 5 was not significantly different between groups but trended towards favoring the endocrinologist group (-26.6±73.6 vs. 3.8±69.5 vs. -32.2±84.1; P= 0.052). TDD insulin was not significantly different between groups but trended towards higher TDD for the endocrinologist group (34.6 ± 26.1 vs. 35.2 ± 26.4 vs. 50.5 ± 50.9; P=0.054). The endocrinologist group used significantly more preprandial insulin compared to other groups (91.7% vs. 39.1% vs. 65.9% ; P < 0.001). The pharmacy used more basal insulin than other groups (95.1% vs. 79.5% vs. 79.2; P = 0.047). There were no differences among groups in the clinical outcomes: LOS, ICU upgrade, or mortality. Multivariate regression analysis controlled for age, sex, BMI, HbA1c level, renal function, liver function, CRP, d-dimer, and ferritin showed no difference in outcomes among groups. Conclusion: Given high-risk factors in our population, despite efforts from the glycemic management teams, it’s unsurprising no differences in clinical outcomes in mortality and length of stay.

Keywords: glycemic management, strategies, hospitalized, SARS-CoV-2, outcomes

Procedia PDF Downloads 448
121 Identifying Biomarker Response Patterns to Vitamin D Supplementation in Type 2 Diabetes Using K-means Clustering: A Meta-Analytic Approach to Glycemic and Lipid Profile Modulation

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Background and Aims: This meta-analysis aimed to evaluate the effect of vitamin D supplementation on key metabolic and cardiovascular parameters, such as glycated hemoglobin (HbA1C), fasting blood sugar (FBS), low-density lipoprotein (LDL), high-density lipoprotein (HDL), systolic blood pressure (SBP), and total vitamin D levels in patients with Type 2 diabetes mellitus (T2DM). Methods: A systematic search was performed across databases, including PubMed, Scopus, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov, from January 1990 to January 2024. A total of 4,177 relevant studies were initially identified. Using an unsupervised K-means clustering algorithm, publications were grouped based on common text features. Maximum entropy classification was then applied to filter studies that matched a pre-identified training set of 139 potentially relevant articles. These selected studies were manually screened for relevance. A parallel manual selection of all initially searched studies was conducted for validation. The final inclusion of studies was based on full-text evaluation, quality assessment, and meta-regression models using random effects. Sensitivity analysis and publication bias assessments were also performed to ensure robustness. Results: The unsupervised K-means clustering algorithm grouped the patients based on their responses to vitamin D supplementation, using key biomarkers such as HbA1C, FBS, LDL, HDL, SBP, and total vitamin D levels. Two primary clusters emerged: one representing patients who experienced significant improvements in these markers and another showing minimal or no change. Patients in the cluster associated with significant improvement exhibited lower HbA1C, FBS, and LDL levels after vitamin D supplementation, while HDL and total vitamin D levels increased. The analysis showed that vitamin D supplementation was particularly effective in reducing HbA1C, FBS, and LDL within this cluster. Furthermore, BMI, weight gain, and disease duration were identified as factors that influenced cluster assignment, with patients having lower BMI and shorter disease duration being more likely to belong to the improvement cluster. Conclusion: The findings of this machine learning-assisted meta-analysis confirm that vitamin D supplementation can significantly improve glycemic control and reduce the risk of cardiovascular complications in T2DM patients. The use of automated screening techniques streamlined the process, ensuring the comprehensive evaluation of a large body of evidence while maintaining the validity of traditional manual review processes.

Keywords: HbA1C, T2DM, SBP, FBS

Procedia PDF Downloads 10
120 Problem Solving in Mathematics Education: A Case Study of Nigerian Secondary School Mathematics Teachers’ Conceptions in Relation to Classroom Instruction

Authors: Carol Okigbo

Abstract:

Mathematical problem solving has long been accorded an important place in mathematics curricula at every education level in both advanced and emerging economies. Its classroom approaches have varied, such as teaching for problem-solving, teaching about problem-solving, and teaching mathematics through problem-solving. It requires engaging in tasks for which the solution methods are not eminent, making sense of problems and persevering in solving them by exhibiting processes, strategies, appropriate attitude, and adequate exposure. Teachers play important roles in helping students acquire competency in problem-solving; thus, they are expected to be good problem-solvers and have proper conceptions of problem-solving. Studies show that teachers’ conceptions influence their decisions about what to teach and how to teach. Therefore, how teachers view their roles in teaching problem-solving will depend on their pedagogical conceptions of problem-solving. If teaching problem-solving is a major component of secondary school mathematics instruction, as recommended by researchers and mathematics educators, then it is necessary to establish teachers’ conceptions, what they do, and how they approach problem-solving. This study is designed to determine secondary school teachers’ conceptions regarding mathematical problem solving, its current situation, how teachers’ conceptions relate to their demographics, as well as the interaction patterns in the mathematics classroom. There have been many studies of mathematics problem solving, some of which addressed teachers’ conceptions using single-method approaches, thereby presenting only limited views of this important phenomenon. To address the problem more holistically, this study adopted an integrated mixed methods approach which involved a quantitative survey, qualitative analysis of open-ended responses, and ethnographic observations of teachers in class. Data for the analysis came from a random sample of 327 secondary school mathematics teachers in two Nigerian states - Anambra State and Enugu State who completed a 45-item questionnaire. Ten of the items elicited demographic information, 11 items were open-ended questions, and 25 items were Likert-type questions. Of the 327 teachers who responded to the questionnaires, 37 were randomly selected and observed in their classes. Data analysis using ANOVA, t-tests, chi-square tests, and open coding showed that the teachers had different conceptions about problem-solving, which fall into three main themes: practice on exercises and word application problems, a process of solving mathematical problems, and a way of teaching mathematics. Teachers reported that no period is set aside for problem-solving; typically, teachers solve problems on the board, teach problem-solving strategies, and allow students time to struggle with problems on their own. The result shows a significant difference between male and female teachers’ conception of problems solving, a significant relationship among teachers’ conceptions and academic qualifications, and teachers who have spent ten years or more teaching mathematics were significantly different from the group with seven to nine years of experience in terms of their conceptions of problem-solving.

Keywords: conceptions, education, mathematics, problem solving, teacher

Procedia PDF Downloads 76
119 A Quantitative Analysis of Rural to Urban Migration in Morocco

Authors: Donald Wright

Abstract:

The ultimate goal of this study is to reinvigorate the philosophical underpinnings the study of urbanization with scientific data with the goal of circumventing what seems an inevitable future clash between rural and urban populations. To that end urban infrastructure must be sustainable economically, politically and ecologically over the course of several generations as cities continue to grow with the incorporation of climate refugees. Our research will provide data concerning the projected increase in population over the coming two decades in Morocco, and the population will shift from rural areas to urban centers during that period of time. As a result, urban infrastructure will need to be adapted, developed or built to fit the demand of future internal migrations from rural to urban centers in Morocco. This paper will also examine how past experiences of internally displaced people give insight into the challenges faced by future migrants and, beyond the gathering of data, how people react to internal migration. This study employs four different sets of research tools. First, a large part of this study is archival, which involves compiling the relevant literature on the topic and its complex history. This step also includes gathering data bout migrations in Morocco from public data sources. Once the datasets are collected, the next part of the project involves populating the attribute fields and preprocessing the data to make it understandable and usable by machine learning algorithms. In tandem with the mathematical interpretation of data and projected migrations, this study benefits from a theoretical understanding of the critical apparatus existing around urban development of the 20th and 21st centuries that give us insight into past infrastructure development and the rationale behind it. Once the data is ready to be analyzed, different machine learning algorithms will be experimented (k-clustering, support vector regression, random forest analysis) and the results compared for visualization of the data. The final computational part of this study involves analyzing the data and determining what we can learn from it. This paper helps us to understand future trends of population movements within and between regions of North Africa, which will have an impact on various sectors such as urban development, food distribution and water purification, not to mention the creation of public policy in the countries of this region. One of the strengths of this project is the multi-pronged and cross-disciplinary methodology to the research question, which enables an interchange of knowledge and experiences to facilitate innovative solutions to this complex problem. Multiple and diverse intersecting viewpoints allow an exchange of methodological models that provide fresh and informed interpretations of otherwise objective data.

Keywords: climate change, machine learning, migration, Morocco, urban development

Procedia PDF Downloads 150
118 Transition Dynamic Analysis of the Urban Disparity in Iran “Case Study: Iran Provinces Center”

Authors: Marzieh Ahmadi, Ruhullah Alikhan Gorgani

Abstract:

The usual methods of measuring regional inequalities can not reflect the internal changes of the country in terms of their displacement in different development groups, and the indicators of inequalities are not effective in demonstrating the dynamics of the distribution of inequality. For this purpose, this paper examines the dynamics of the urban inertial transport in the country during the period of 2006-2016 using the CIRD multidimensional index and stochastic kernel density method. it firstly selects 25 indicators in five dimensions including macroeconomic conditions, science and innovation, environmental sustainability, human capital and public facilities, and two-stage Principal Component Analysis methodology are developed to create a composite index of inequality. Then, in the second stage, using a nonparametric analytical approach to internal distribution dynamics and a stochastic kernel density method, the convergence hypothesis of the CIRD index of the Iranian provinces center is tested, and then, based on the ergodic density, long-run equilibrium is shown. Also, at this stage, for the purpose of adopting accurate regional policies, the distribution dynamics and process of convergence or divergence of the Iranian provinces for each of the five. According to the results of the first Stage, in 2006 & 2016, the highest level of development is related to Tehran and zahedan is at the lowest level of development. The results show that the central cities of the country are at the highest level of development due to the effects of Tehran's knowledge spillover and the country's lower cities are at the lowest level of development. The main reason for this may be the lack of access to markets in the border provinces. Based on the results of the second stage, which examines the dynamics of regional inequality transmission in the country during 2006-2016, the first year (2006) is not multifaceted and according to the kernel density graph, the CIRD index of about 70% of the cities. The value is between -1.1 and -0.1. The rest of the sequence on the right is distributed at a level higher than -0.1. In the kernel distribution, a convergence process is observed and the graph points to a single peak. Tends to be a small peak at about 3 but the main peak at about-0.6. According to the chart in the final year (2016), the multidimensional pattern remains and there is no mobility in the lower level groups, but at the higher level, the CIRD index accounts for about 45% of the provinces at about -0.4 Take it. That this year clearly faces the twin density pattern, which indicates that the cities tend to be closely related to each other in terms of development, so that the cities are low in terms of development. Also, according to the distribution dynamics results, the provinces of Iran follow the single-density density pattern in 2006 and the double-peak density pattern in 2016 at low and moderate inequality index levels and also in the development index. The country diverges during the years 2006 to 2016.

Keywords: Urban Disparity, CIRD Index, Convergence, Distribution Dynamics, Random Kernel Density

Procedia PDF Downloads 124
117 Chemical vs Visual Perception in Food Choice Ability of Octopus vulgaris (Cuvier, 1797)

Authors: Al Sayed Al Soudy, Valeria Maselli, Gianluca Polese, Anna Di Cosmo

Abstract:

Cephalopods are considered as a model organism with a rich behavioral repertoire. Sophisticated behaviors were widely studied and described in different species such as Octopus vulgaris, who has evolved the largest and more complex nervous system among invertebrates. In O. vulgaris, cognitive abilities in problem-solving tasks and learning abilities are associated with long-term memory and spatial memory, mediated by highly developed sensory organs. They are equipped with sophisticated eyes, able to discriminate colors even with a single photoreceptor type, vestibular system, ‘lateral line analogue’, primitive ‘hearing’ system and olfactory organs. They can recognize chemical cues either through direct contact with odors sources using suckers or by distance through the olfactory organs. Cephalopods are able to detect widespread waterborne molecules by the olfactory organs. However, many volatile odorant molecules are insoluble or have a very low solubility in water, and must be perceived by direct contact. O. vulgaris, equipped with many chemosensory neurons located in their suckers, exhibits a peculiar behavior that can be provocatively described as 'smell by touch'. The aim of this study is to establish the priority given to chemical vs. visual perception in food choice. Materials and methods: Three different types of food (anchovies, clams, and mussels) were used, and all sessions were recorded with a digital camera. During the acclimatization period, Octopuses were exposed to the three types of food to test their natural food preferences. Later, to verify if food preference is maintained, food was provided in transparent screw-jars with pierced lids to allow both visual and chemical recognition of the food inside. Subsequently, we tested alternatively octopuses with food in sealed transparent screw-jars and food in blind screw-jars with pierced lids. As a control, we used blind sealed jars with the same lid color to verify a random choice among food types. Results and discussion: During the acclimatization period, O. vulgaris shows a higher preference for anchovies (60%) followed by clams (30%), then mussels (10%). After acclimatization, using the transparent and pierced screw jars octopus’s food choices resulted in 50-50 between anchovies and clams, avoiding mussels. Later, guided by just visual sense, with transparent but not pierced jars, their food preferences resulted in 100% anchovies. With pierced but not transparent jars their food preference resulted in 100% anchovies as first food choice, the clams as a second food choice result (33.3%). With no possibility to select food, neither by vision nor by chemoreception, the results were 20% anchovies, 20% clams, and 60% mussels. We conclude that O. vulgaris uses both chemical and visual senses in an integrative way in food choice, but if we exclude one of them, it appears clear that its food preference relies on chemical sense more than on visual perception.

Keywords: food choice, Octopus vulgaris, olfaction, sensory organs, visual sense

Procedia PDF Downloads 220
116 Community Resilience in Response to the Population Growth in Al-Thahabiah Neighborhood

Authors: Layla Mujahed

Abstract:

Amman, the capital of Jordan, is the main political, economic, social and cultural center of Jordan and beyond. The city faces multitude demographic challenges related to the unstable political situation in the surrounded countries. It has regional and local migrants who left their homes to find better life in the capital. This resulted with random and unequaled population distribution. Some districts have high population and pressure on the infrastructure and services more than other districts.Government works to resolve this challenge in compliance with 100 Cities Resilience Framework (CRF). Amman participated in this framework as a member in December 2014 to work in achieving the four goals: health and welfare, infrastructure and utilities, economy and education as well as administration and government.  Previous research studies lack in studying Amman resilient work in neighborhood scale and the population growth as resilient challenge. For that, this study focuses on Al-Thahabiah neighborhood in Shafa Badran district in Amman. This paper studies the reasons and drivers behind this population growth during the selected period in this area then provide strategies to improve the resilient work in neighborhood scale. The methodology comprises of primary and secondary data. The primary data consist of interviews with chief officer in the executive part in Great Amman Municipality and resilient officer. The secondary data consist of papers, journals, newspaper, articles and book’s reading. The other part of data consists of maps and statistical data which describe the infrastructural and social situation in the neighborhood and district level during the studying period. Based upon those data, more detailed information will be found, e.g., the centralizing position of population and the provided infrastructure for them. This will help to provide these services and infrastructure to other neighborhoods and enhance population distribution. This study develops an analytical framework to assess urban demographical time series in accordance with the criteria of CRF to make accurate detailed projections on the requirements for the future development in the neighborhood scale and organize the human requirements for affordable quality housing, employment, transportation, health and education in this neighborhood to improve the social relations between its inhabitants and the community. This study highlights on the localization of resilient work in neighborhood scale and spread the resilient knowledge related to the shortage of its research in Jordan. Studying the resilient work from population growth challenge perspective helps improve the facilities provide to the inhabitants and improve their quality of life.

Keywords: city resilience framework, demography, population growth, stakeholders, urban resilience

Procedia PDF Downloads 179
115 Knowledge Creation Environment in the Iranian Universities: A Case Study

Authors: Mahdi Shaghaghi, Amir Ghaebi, Fariba Ahmadi

Abstract:

Purpose: The main purpose of the present research is to analyze the knowledge creation environment at a Iranian University (Alzahra University) as a typical University in Iran, using a combination of the i-System and Ba models. This study is necessary for understanding the determinants of knowledge creation at Alzahra University as a typical University in Iran. Methodology: To carry out the present research, which is an applied study in terms of purpose, a descriptive survey method was used. In this study, a combination of the i-System and Ba models has been used to analyze the knowledge creation environment at Alzahra University. i-System consists of 5 constructs including intervention (input), intelligence (process), involvement (process), imagination (process), and integration (output). The Ba environment has three pillars, namely the infrastructure, the agent, and the information. The integration of these two models resulted in 11 constructs which were as follows: intervention (input), infrastructure-intelligence, agent-intelligence, information-intelligence (process); infrastructure-involvement, agent-involvement, information-involvement (process); infrastructure-imagination, agent-imagination, information-imagination (process); and integration (output). These 11 constructs were incorporated into a 52-statement questionnaire and the validity and reliability of the questionnaire were examined and confirmed. The statistical population included the faculty members of Alzahra University (344 people). A total of 181 participants were selected through the stratified random sampling technique. The descriptive statistics, binomial test, regression analysis, and structural equation modeling (SEM) methods were also utilized to analyze the data. Findings: The research findings indicated that among the 11 research constructs, the levels of intervention, information-intelligence, infrastructure-involvement, and agent-imagination constructs were average and not acceptable. The levels of infrastructure-intelligence and information-imagination constructs ranged from average to low. The levels of agent-intelligence and information-involvement constructs were also completely average. The level of infrastructure-imagination construct was average to high and thus was considered acceptable. The levels of agent-involvement and integration constructs were above average and were in a highly acceptable condition. Furthermore, the regression analysis results indicated that only two constructs, viz. the information-imagination and agent-involvement constructs, positively and significantly correlate with the integration construct. The results of the structural equation modeling also revealed that the intervention, intelligence, and involvement constructs are related to the integration construct with the complete mediation of imagination. Discussion and conclusion: The present research suggests that knowledge creation at Alzahra University relatively complies with the combination of the i-System and Ba models. Unlike this model, the intervention, intelligence, and involvement constructs are not directly related to the integration construct and this seems to have three implications: 1) the information sources are not frequently used to assess and identify the research biases; 2) problem finding is probably of less concern at the end of studies and at the time of assessment and validation; 3) the involvement of others has a smaller role in the summarization, assessment, and validation of the research.

Keywords: i-System, Ba model , knowledge creation , knowledge management, knowledge creation environment, Iranian Universities

Procedia PDF Downloads 101
114 Predicting OpenStreetMap Coverage by Means of Remote Sensing: The Case of Haiti

Authors: Ran Goldblatt, Nicholas Jones, Jennifer Mannix, Brad Bottoms

Abstract:

Accurate, complete, and up-to-date geospatial information is the foundation of successful disaster management. When the 2010 Haiti Earthquake struck, accurate and timely information on the distribution of critical infrastructure was essential for the disaster response community for effective search and rescue operations. Existing geospatial datasets such as Google Maps did not have comprehensive coverage of these features. In the days following the earthquake, many organizations released high-resolution satellite imagery, catalyzing a worldwide effort to map Haiti and support the recovery operations. Of these organizations, OpenStreetMap (OSM), a collaborative project to create a free editable map of the world, used the imagery to support volunteers to digitize roads, buildings, and other features, creating the most detailed map of Haiti in existence in just a few weeks. However, large portions of the island are still not fully covered by OSM. There is an increasing need for a tool to automatically identify which areas in Haiti, as well as in other countries vulnerable to disasters, that are not fully mapped. The objective of this project is to leverage different types of remote sensing measurements, together with machine learning approaches, in order to identify geographical areas where OSM coverage of building footprints is incomplete. Several remote sensing measures and derived products were assessed as potential predictors of OSM building footprints coverage, including: intensity of light emitted at night (based on VIIRS measurements), spectral indices derived from Sentinel-2 satellite (normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), soil-adjusted vegetation index (SAVI), urban index (UI)), surface texture (based on Sentinel-1 SAR measurements)), elevation and slope. Additional remote sensing derived products, such as Hansen Global Forest Change, DLR`s Global Urban Footprint (GUF), and World Settlement Footprint (WSF), were also evaluated as predictors, as well as OSM street and road network (including junctions). Using a supervised classification with a random forest classifier resulted in the prediction of 89% of the variation of OSM building footprint area in a given cell. These predictions allowed for the identification of cells that are predicted to be covered but are actually not mapped yet. With these results, this methodology could be adapted to any location to assist with preparing for future disastrous events and assure that essential geospatial information is available to support the response and recovery efforts during and following major disasters.

Keywords: disaster management, Haiti, machine learning, OpenStreetMap, remote sensing

Procedia PDF Downloads 125
113 Socio-Cultural Factors Influencing Adherence to Anti-Retroviral Therapy among HIV Patients in a University Teaching Hospital in South-Western Nigeria

Authors: Okunola Oluseye Ademola

Abstract:

The study investigated various socio-cultural factors influencing adherence to antiretroviral drugs among people living with HIV in a University Teaching Hospital in South-western Nigeria. The objectives are to examine the perception of people living with HIV/AIDS (PLWHA) of antiretroviral therapy (ART) in Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, investigate the influence of socio-cultural factors on adherence of PLWHA to treatment regimen in the study area and assess the prevalence of adherence to ART among PLWHA in the study area. It was a cross-sectional where both qualitative and quantitative research methods were adopted. The participants were HIV diagnosed patients attending clinic at the Obafemi Awolowo University Teaching Hospitals Complex in Ile-Ife between the ages of 18 and 60 years. Also three healthcare delivery personnel working in the clinic were interviewed. Out of the 3007 patients receiving treatment, using Fischer’s formula of sampling technique, 336 patients living with HIV/AIDS were selected for the study. These participants had been on antiretroviral drugs for more than six months prior to the study and were selected using simple random sampling technique. Two focus group discussion sessions comprising of 10 male and 10 female living with HIV and currently on ART were conducted. These groups were purposively selected based on their being on ART for more than one year. Also in-depth interviews were conducted among three purposively selected healthcare givers (an experienced nurse, a doctor and a pharmacist) who are working in this clinic. All the participants were interviewed at the clinic on the various clinic days. Data were collected using a structured questionnaire, an interview guide and tape-recorder. The quantitative data were analysed using descriptive and inferential statistics. Content analysis was employed to analyse responses from IDI and FGD sessions. The findings from the study revealed a very positive perception to ART among PLWHA which was about 86.3% while the level of adherence to ART was 89.0% among the respondents. There was a very strong relationship between social and family supports and the degree of adherence to ART in the PLWHA. Nutrition, polygamy, difficulty in financing transportation fare to the clinic, unemployment, drug hawkers, religion, excuse duty from work and waking up very early were highlighted as socio-cultural barriers to adherence to ART. Fear of death, strong family support, religion belief, not seeking alternative treatment, absence of rituals and perceived improved health status were identified as very strong facilitators to adherence. The study concluded that to achieve a very optimal outcome in the management of HIV among PLWHA, various social and cultural contexts should be taken into consideration as this study was able to ascertain the influence of various socio-cultural factors militating and facilitating adherence to ART.

Keywords: ART, HIV, PLWHA, socio-cultural

Procedia PDF Downloads 278
112 Evaluation of Housing Quality in the Urban Fringes of Ibadan, Nigeria

Authors: Amao Funmilayo Lanrewaju

Abstract:

The study examined the socio-economic characteristics of the residents in selected urban fringes of Ibadan; identified and examined the housing and neighbourhood characteristics and evaluated housing quality in the study area. It analysed the relationship between the socio-economic characteristics of the residents, housing and neighbourhood characteristics as well as housing quality in the study area. This was with a view to providing information that would enhance the housing quality in urban fringes of Ibadan. Primary and secondary data were used for the study. A survey of eleven purposively selected communities from Oluyole and Egbeda local government areas in the urban fringes was conducted through a questionnaire administration and expert rating by five independent assessors (Qualified Architects) using penalty scoring within similar time-frames. The study employed a random sampling method to select a sample size of 480 houses representing 5% of the sampling frame of 9600 houses. Respondent in the first house was selected randomly and subsequently every 20th house in the streets involved was systematically selected for questionnaire administration, usually a household-head per building. The structured questionnaire elicited information on socio-economic characteristics of the residents, housing and neighbourhood characteristics, factors affecting housing quality and housing quality in the study area. Secondary data obtained for the study included the land-use plan of Ibadan from previous publications, housing demographics, population figures from relevant institutions and other published materials. The data collected were analysed using descriptive and inferential statistics such as frequency distribution, Cross tabulation, Correlation Analysis, Analysis of Variance (ANOVA) and Relative Importance Index (RII). The result of the survey revealed that respondents from the Yoruba ethnic group constituted the majority, comprising 439 (91.5%) of the 480 respondents from the two local government areas selected. It also revealed that the type of tenure status of majority of the respondents in the two local government areas was self-ownership (234, 48.8%), while 44.0% of the respondents acquired their houses through personal savings. Cross tabulation indicated that majority (67.1%, 322 out of 480) of the respondents were low-income earners. The study showed that both housing and neighbourhood services were not adequately provided across neighbourhoods in the study area. Correlation analysis indicated a significant relationship between respondents’ socio–economic status and their general housing quality (r=0.46; p-value of 0.01< 0.05). The ANOVA indicated that the relationship between socio-economic characteristics of the residents, housing and neighbourhood characteristics in the study area was significant (F=18.289, p=0.00; the coefficient of determination R2= 0.192). The findings from the study however revealed that there was no significant difference in the results obtained from users based evaluation and expert rating. The study concluded that housing quality in the urban fringes of Ibadan is generally poor and the socio-economic status of the residents significantly influenced the housing quality.

Keywords: housing quality, urban fringes, economic status, poverty

Procedia PDF Downloads 440
111 Diverted Use of Contraceptives in Madagascar

Authors: Josiane Yaguibou, Ngoy Kishimba, Issiaka V. Coulibaly, Sabrina Pestilli, Falinirina Razanalison, Hantanirina V. Andremanisa

Abstract:

Background In Madagascar modern contraceptive prevalence rate increased from 18% in 2003 to 43% in 2021. Anecdotal evidence suggests that increased use and frequent stock out in public health facilities of male condoms and medroxyprogesterone acetate (MPA) can be related to diverted use of these products. This study analyzed the use of contraceptives and mode of utilization (correct or diverted) at the community level in the period 2019-2023 in Madagascar. Methodology: The study included a literature review, a quantitative survey combined with a qualitative study. It was carried out in 10 regions out of the 23 of the country. Eight regions (Bongolava, Vakinakaratra, Italy, Hautre Matsiatra, Betsiboka, Diana, Sofia and Anosy) were selected based on a study that showed existence of medroxyprogesterone acetate in pigs (MPA). The remaining 2 regions were selected due to high mCPR (Atsimo Andrefana) and to ensure coverage of all geographical zones in the country (Alaotra Mangoro). Sample random method was used, and the sample size was identified at 300 individuals per region. Zonal distribution is based on the urbanization rate for the region. 6 focus group discussions were organized in 3 regions, equally distributed between rural and urban areas. Key findings: Overall, 67% of those surveyed or their partner are currently using contraception. Injectables (MPA) are the most popular choice (33%), followed by implants and male condoms, 12% and 9%, respectively. The majority of respondents use condoms to prevent unwanted pregnancy but also to prevent STDs. Still, 43% of respondents use condoms for other purposes, reaching 52% of respondents in urban areas and 71,2% in the age group 15-18. Diverted use includes hair growth (18.9%), as a toy (18.8%), cleaning the screen of electronic devices (10 %), cleaning shoes (3.1%) and for skincare (1.6%). Injectables are the preferred method of contraception both in rural areas (35%) and urban areas (21.2%). However, diverted use of injectables was confirmed by 4% of the respondents, ranging from 3 % in rural areas to 12% in urban. The diverted use of injectables in pig rearing was to avoid pregnancy and facilitate pig’s growth. Program Implications: The study confirmed the diverted use of some contraceptives. The misuse of male condoms is among the causes of stockouts of products in public health facilities, limiting their availability for pregnancy and STDs prevention. The misuse of injectables in pigs rearing needs to be further studied to learn the full extent of the misuse and eventual implications for meat consumption. The study highlights the importance of including messages on the correct use of products during sensibilization activities. In particular, messages need to address the anecdotal and false effects of male condoms, especially amongst young people. For misuse of injectables is critical to sensibilize farmers and veterinaries on possible negative effects for humans.

Keywords: diverted use, injectables, male condoms, sensibilization

Procedia PDF Downloads 62
110 Evaluation of the Effect of Learning Disabilities and Accommodations on the Prediction of the Exam Performance: Ordinal Decision-Tree Algorithm

Authors: G. Singer, M. Golan

Abstract:

Providing students with learning disabilities (LD) with extra time to grant them equal access to the exam is a necessary but insufficient condition to compensate for their LD; there should also be a clear indication that the additional time was actually used. For example, if students with LD use more time than students without LD and yet receive lower grades, this may indicate that a different accommodation is required. If they achieve higher grades but use the same amount of time, then the effectiveness of the accommodation has not been demonstrated. The main goal of this study is to evaluate the effect of including parameters related to LD and extended exam time, along with other commonly-used characteristics (e.g., student background and ability measures such as high-school grades), on the ability of ordinal decision-tree algorithms to predict exam performance. We use naturally-occurring data collected from hundreds of undergraduate engineering students. The sub-goals are i) to examine the improvement in prediction accuracy when the indicator of exam performance includes 'actual time used' in addition to the conventional indicator (exam grade) employed in most research; ii) to explore the effectiveness of extended exam time on exam performance for different courses and for LD students with different profiles (i.e., sets of characteristics). This is achieved by using the patterns (i.e., subgroups) generated by the algorithms to identify pairs of subgroups that differ in just one characteristic (e.g., course or type of LD) but have different outcomes in terms of exam performance (grade and time used). Since grade and time used to exhibit an ordering form, we propose a method based on ordinal decision-trees, which applies a weighted information-gain ratio (WIGR) measure for selecting the classifying attributes. Unlike other known ordinal algorithms, our method does not assume monotonicity in the data. The proposed WIGR is an extension of an information-theoretic measure, in the sense that it adjusts to the case of an ordinal target and takes into account the error severity between two different target classes. Specifically, we use ordinal C4.5, random-forest, and AdaBoost algorithms, as well as an ensemble technique composed of ordinal and non-ordinal classifiers. Firstly, we find that the inclusion of LD and extended exam-time parameters improves prediction of exam performance (compared to specifications of the algorithms that do not include these variables). Secondly, when the indicator of exam performance includes 'actual time used' together with grade (as opposed to grade only), the prediction accuracy improves. Thirdly, our subgroup analyses show clear differences in the effect of extended exam time on exam performance among different courses and different student profiles. From a methodological perspective, we find that the ordinal decision-tree based algorithms outperform their conventional, non-ordinal counterparts. Further, we demonstrate that the ensemble-based approach leverages the strengths of each type of classifier (ordinal and non-ordinal) and yields better performance than each classifier individually.

Keywords: actual exam time usage, ensemble learning, learning disabilities, ordinal classification, time extension

Procedia PDF Downloads 100
109 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 122
108 Exploratory Study on Mediating Role of Commitment-to-Change in Relations between Employee Voice, Employee Involvement and Organizational Change Readiness

Authors: Rohini Sharma, Chandan Kumar Sahoo, Rama Krishna Gupta Potnuru

Abstract:

Strong competitive forces and requirements to achieve efficiency are forcing the organizations to realize the necessity and inevitability of change. What's more, the trend does not appear to be abating. Researchers have estimated that about two thirds of change project fails. Empirical evidences further shows that organizations invest significantly in the planned change but people side is accounted for in a token or instrumental way, which is identified as one of the important reason, why change endeavours fail. However, whatever be the reason for change, organizational change readiness must be gauged prior to the institutionalization of organizational change. Hence, in this study the influence of employee voice and employee involvement on organizational change readiness via commitment-to-change is examined, as it is an area yet to be extensively studied. Also, though a recent study has investigated the interrelationship between leadership, organizational change readiness and commitment to change, our study further examined these constructs in relation with employee voice and employee involvement that plays a consequential role for organizational change readiness. Further, integrated conceptual model weaving varied concepts relating to organizational readiness with focus on commitment to change as mediator was found to be an area, which required more theorizing and empirical validation, and this study rooted in an Indian public sector organization is a step in this direction. Data for the study were collected through a survey among employees of Rourkela Steel Plant (RSP), a unit of Steel Authority of India Limited (SAIL); the first integrated Steel Plant in the public sector in India, for which stratified random sampling method was adopted. The schedule was distributed to around 700 employees, out of which 516 complete responses were obtained. The pre-validated scales were used for the study. All the variables in the study were measured on a five-point Likert scale ranging from “strongly disagree (1)” to “strongly agree (5)”. Structural equation modeling (SEM) using AMOS 22 was used to examine the hypothesized model, which offers a simultaneous test of an entire system of variables in a model. The study results shows that inter-relationship between employee voice and commitment-to-change, employee involvement and commitment-to-change and commitment-to-change and organizational change readiness were significant. To test the mediation hypotheses, Baron and Kenny’s technique was used. Examination of direct and mediated effect of mediators confirmed that commitment-to-change partially mediated the relation between employee involvement and organizational change readiness. Furthermore, study results also affirmed that commitment-to-change does not mediate the relation between employee involvement and organizational change readiness. The empirical exploration therefore establishes that it is important to harness employee’s valuable suggestions regarding change for building organizational change readiness. Regarding employee involvement, it was found that sharing information and involving people in decision-making, leads to a creation of participative climate, which educes employee commitment during change and commitment-to-change further, fosters organizational change readiness.

Keywords: commitment-to-change, change management, employee voice, employee involvement, organizational change readiness

Procedia PDF Downloads 327
107 Impact of Chess Intervention on Cognitive Functioning of Children

Authors: Ebenezer Joseph

Abstract:

Chess is a useful tool to enhance general and specific cognitive functioning in children. The present study aims to assess the impact of chess on cognitive in children and to measure the differential impact of socio-demographic factors like age and gender of the child on the effectiveness of the chess intervention.This research study used an experimental design to study the impact of the Training in Chess on the intelligence of children. The Pre-test Post-test Control Group Design was utilized. The research design involved two groups of children: an experimental group and a control group. The experimental group consisted of children who participated in the one-year Chess Training Intervention, while the control group participated in extra-curricular activities in school. The main independent variable was training in chess. Other independent variables were gender and age of the child. The dependent variable was the cognitive functioning of the child (as measured by IQ, working memory index, processing speed index, perceptual reasoning index, verbal comprehension index, numerical reasoning, verbal reasoning, non-verbal reasoning, social intelligence, language, conceptual thinking, memory, visual motor and creativity). The sample consisted of 200 children studying in Government and Private schools. Random sampling was utilized. The sample included both boys and girls falling in the age range 6 to 16 years. The experimental group consisted of 100 children (50 from Government schools and 50 from Private schools) with an equal representation of boys and girls. The control group similarly consisted of 100 children. The dependent variables were assessed using Binet-Kamat Test of Intelligence, Wechsler Intelligence Scale for Children - IV (India) and Wallach Kogan Creativity Test. The training methodology comprised Winning Moves Chess Learning Program - Episodes 1–22, lectures with the demonstration board, on-the-board playing and training, chess exercise through workbooks (Chess school 1A, Chess school 2, and tactics) and working with chess software. Further students games were mapped using chess software and the brain patterns of the child were understood. They were taught the ideas behind chess openings and exposure to classical games were also given. The children participated in mock as well as regular tournaments. Preliminary analysis carried out using independent t tests with 50 children indicates that chess training has led to significant increases in the intelligent quotient. Children in the experimental group have shown significant increases in composite scores like working memory and perceptual reasoning. Chess training has significantly enhanced the total creativity scores, line drawing and pattern meaning subscale scores. Systematically learning chess as part of school activities appears to have a broad spectrum of positive outcomes.

Keywords: chess, intelligence, creativity, children

Procedia PDF Downloads 257