Search results for: parameter intervals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2595

Search results for: parameter intervals

585 Foodborne Outbreak Calendar: Application of Time Series Analysis

Authors: Ryan B. Simpson, Margaret A. Waskow, Aishwarya Venkat, Elena N. Naumova

Abstract:

The Centers for Disease Control and Prevention (CDC) estimate that 31 known foodborne pathogens cause 9.4 million cases of these illnesses annually in US. Over 90% of these illnesses are associated with exposure to Campylobacter, Cryptosporidium, Cyclospora, Listeria, Salmonella, Shigella, Shiga-Toxin Producing E.Coli (STEC), Vibrio, and Yersinia. Contaminated products contain parasites typically causing an intestinal illness manifested by diarrhea, stomach cramping, nausea, weight loss, fatigue and may result in deaths in fragile populations. Since 1998, the National Outbreak Reporting System (NORS) has allowed for routine collection of suspected and laboratory-confirmed cases of food poisoning. While retrospective analyses have revealed common pathogen-specific seasonal patterns, little is known concerning the stability of those patterns over time and whether they can be used for preventative forecasting. The objective of this study is to construct a calendar of foodborne outbreaks of nine infections based on the peak timing of outbreak incidence in the US from 1996 to 2017. Reported cases were abstracted from FoodNet for Salmonella (135115), Campylobacter (121099), Shigella (48520), Cryptosporidium (21701), STEC (18022), Yersinia (3602), Vibrio (3000), Listeria (2543), and Cyclospora (758). Monthly counts were compiled for each agent, seasonal peak timing and peak intensity were estimated, and the stability of seasonal peaks and synchronization of infections was examined. Negative Binomial harmonic regression models with the delta-method were applied to derive confidence intervals for the peak timing for each year and overall study period estimates. Preliminary results indicate that five infections continue to lead as major causes of outbreaks, exhibiting steady upward trends with annual increases in cases ranging from 2.71% (95%CI: [2.38, 3.05]) in Campylobacter, 4.78% (95%CI: [4.14, 5.41]) in Salmonella, 7.09% (95%CI: [6.38, 7.82]) in E.Coli, 7.71% (95%CI: [6.94, 8.49]) in Cryptosporidium, and 8.67% (95%CI: [7.55, 9.80]) in Vibrio. Strong synchronization of summer outbreaks were observed, caused by Campylobacter, Vibrio, E.Coli and Salmonella, peaking at 7.57 ± 0.33, 7.84 ± 0.47, 7.85 ± 0.37, and 7.82 ± 0.14 calendar months, respectively, with the serial cross-correlation ranging 0.81-0.88 (p < 0.001). Over 21 years, Listeria and Cryptosporidium peaks (8.43 ± 0.77 and 8.52 ± 0.45 months, respectively) have a tendency to arrive 1-2 weeks earlier, while Vibrio peaks (7.8 ± 0.47) delay by 2-3 weeks. These findings will be incorporated in the forecast models to predict common paths of the spread, long-term trends, and the synchronization of outbreaks across etiological agents. The predictive modeling of foodborne outbreaks should consider long-term changes in seasonal timing, spatiotemporal trends, and sources of contamination.

Keywords: foodborne outbreak, national outbreak reporting system, predictive modeling, seasonality

Procedia PDF Downloads 108
584 Re-Evaluation of Field X Located in Northern Lake Albert Basin to Refine the Structural Interpretation

Authors: Calorine Twebaze, Jesca Balinga

Abstract:

Field X is located on the Eastern shores of L. Albert, Uganda, on the rift flank where the gross sedimentary fill is typically less than 2,000m. The field was discovered in 2006 and encountered about 20.4m of net pay across three (3) stratigraphic intervals within the discovery well. The field covers an area of 3 km2, with the structural configuration comprising a 3-way dip-closed hanging wall anticline that seals against the basement to the southeast along the bounding fault. Field X had been mapped on reprocessed 3D seismic data, which was originally acquired in 2007 and reprocessed in 2013. The seismic data quality is good across the field, and reprocessing work reduced the uncertainty in the location of the bounding fault and enhanced the lateral continuity of reservoir reflectors. The current study was a re-evaluation of Field X to refine fault interpretation and understand the structural uncertainties associated with the field. The seismic data, and three (3) wells datasets were used during the study. The evaluation followed standard workflows using Petrel software and structural attribute analysis. The process spanned from seismic- -well tie, structural interpretation, and structural uncertainty analysis. Analysis of three (3) well ties generated for the 3 wells provided a geophysical interpretation that was consistent with geological picks. The generated time-depth curves showed a general increase in velocity with burial depth. However, separation in curve trends observed below 1100m was mainly attributed to minimal lateral variation in velocity between the wells. In addition to Attribute analysis, three velocity modeling approaches were evaluated, including the Time-Depth Curve, Vo+ kZ, and Average Velocity Method. The generated models were calibrated at well locations using well tops to obtain the best velocity model for Field X. The Time-depth method resulted in more reliable depth surfaces with good structural coherence between the TWT and depth maps with minimal error at well locations of 2 to 5m. Both the NNE-SSW rift border fault and minor faults in the existing interpretation were reevaluated. However, the new interpretation delineated an E-W trending fault in the northern part of the field that had not been interpreted before. The fault was interpreted at all stratigraphic levels and thus propagates from the basement to the surface and is an active fault today. It was also noted that the entire field is less faulted with more faults in the deeper part of the field. The major structural uncertainties defined included 1) The time horizons due to reduced data quality, especially in the deeper parts of the structure, an error equal to one-third of the reflection time thickness was assumed, 2) Check shot analysis showed varying velocities within the wells thus varying depth values for each well, and 3) Very few average velocity points due to limited wells produced a pessimistic average Velocity model.

Keywords: 3D seismic data interpretation, structural uncertainties, attribute analysis, velocity modelling approaches

Procedia PDF Downloads 34
583 Differential Effects of Parity, Stress and Fluoxetine Treatment on Locomotor Activity and Swimming Behavior in Rats

Authors: Nur Hidayah Kaz Abdul Aziz, Norhalida Hashim, Zurina Hassan

Abstract:

Peripartum period is a time where women are vulnerable to depression, and stress may further increase the risk of its occurrence. Use of selective serotonin reuptake inhibitors (SSRI) in the treatment of postpartum depression is a common practice. Comparison of antidepressant treatment, however, is rarely studied between gestated and nulliparous animals exposed to stress. This study was aimed to investigate the effect of parity and stress, as well as fluoxetine (an SSRI) treatment after stress exposure on the behavior of rats. Gestating and nulliparous Sprague Dawley rats were either subjected to chronic stressors or left undisturbed throughout the gestation period. After parturition, all stressors were stopped and some of the stressed rats were treated with fluoxetine (10mg/kg). Hence, the final groups formed were: 1. Non-stressed nulliparous rats, 2. Non-stressed dams, 3. Stressed nulliparous rats, 4. Stressed dams, 5. Fluoxetine-treated stressed nulliparous rats, and 6. Fluoxetine-treated stressed dams. Rats were tested in open field test (OFT), novel object recognition test (NOR) and forced swim test (FST) after weaning of pups. Gestational stress significantly reduced the locomotor activity of rats in OFT (p<0.05), while fluoxetine significantly increased the activity in nulliparous rats (p<0.001) but not the dams. While no differences were observed in NOR, stress and parity inhibited the rats from performing swimming behavior in FST. However, climbing and immobile behaviors in FST were found to have no significant differences, although there is a tendency of effect of treatment for immobility parameter (p=0.06) where fluoxetine-treated stressed dams were being the least immobile. In conclusion, the effects of parity and stress, as well as fluoxetine treatment, depended on the type of behavioral test performed.

Keywords: stress, parity, SSRI, behavioral tests

Procedia PDF Downloads 156
582 Numerical and Sensitivity Analysis of Modeling the Newcastle Disease Dynamics

Authors: Nurudeen Oluwasola Lasisi

Abstract:

Newcastle disease is a highly contagious disease of birds caused by a para-myxo virus. In this paper, we presented Novel quarantine-adjusted incident and linear incident of Newcastle disease model equations. We considered the dynamics of transmission and control of Newcastle disease. The existence and uniqueness of the solutions were obtained. The existence of disease-free points was shown, and the model threshold parameter was examined using the next-generation operator method. The sensitivity analysis was carried out in order to identify the most sensitive parameters of the disease transmission. This revealed that as parameters β,ω, and ᴧ increase while keeping other parameters constant, the effective reproduction number R_ev increases. This implies that the parameters increase the endemicity of the infection of individuals. More so, when the parameters μ,ε,γ,δ_1, and α increase, while keeping other parameters constant, the effective reproduction number R_ev decreases. This implies the parameters decrease the endemicity of the infection as they have negative indices. Analytical results were numerically verified by the Differential Transformation Method (DTM) and quantitative views of the model equations were showcased. We established that as contact rate (β) increases, the effective reproduction number R_ev increases, as the effectiveness of drug usage increases, the R_ev decreases and as the quarantined individual decreases, the R_ev decreases. The results of the simulations showed that the infected individual increases when the susceptible person approaches zero, also the vaccination individual increases when the infected individual decreases and simultaneously increases the recovery individual.

Keywords: disease-free equilibrium, effective reproduction number, endemicity, Newcastle disease model, numerical, Sensitivity analysis

Procedia PDF Downloads 27
581 Buffer Allocation and Traffic Shaping Policies Implemented in Routers Based on a New Adaptive Intelligent Multi Agent Approach

Authors: M. Taheri Tehrani, H. Ajorloo

Abstract:

In this paper, an intelligent multi-agent framework is developed for each router in which agents have two vital functionalities, traffic shaping and buffer allocation and are positioned in the ports of the routers. With traffic shaping functionality agents shape the traffic forward by dynamic and real time allocation of the rate of generation of tokens in a Token Bucket algorithm and with buffer allocation functionality agents share their buffer capacity between each other based on their need and the conditions of the network. This dynamic and intelligent framework gives this opportunity to some ports to work better under burst and more busy conditions. These agents work intelligently based on Reinforcement Learning (RL) algorithm and will consider effective parameters in their decision process. As RL have limitation considering much parameter in its decision process due to the volume of calculations, we utilize our novel method which invokes Principle Component Analysis (PCA) on the RL and gives a high dimensional ability to this algorithm to consider as much as needed parameters in its decision process. This implementation when is compared to our previous work where traffic shaping was done without any sharing and dynamic allocation of buffer size for each port, the lower packet drop in the whole network specifically in the source routers can be seen. These methods are implemented in our previous proposed intelligent simulation environment to be able to compare better the performance metrics. The results obtained from this simulation environment show an efficient and dynamic utilization of resources in terms of bandwidth and buffer capacities pre allocated to each port.

Keywords: principal component analysis, reinforcement learning, buffer allocation, multi- agent systems

Procedia PDF Downloads 489
580 Apparent Temperature Distribution on Scaffoldings during Construction Works

Authors: I. Szer, J. Szer, K. Czarnocki, E. Błazik-Borowa

Abstract:

People on construction scaffoldings work in dynamically changing, often unfavourable climate. Additionally, this kind of work is performed on low stiffness structures at high altitude, which increases the risk of accidents. It is therefore desirable to define the parameters of the work environment that contribute to increasing the construction worker occupational safety level. The aim of this article is to present how changes in microclimate parameters on scaffolding can impact the development of dangerous situations and accidents. For this purpose, indicators based on the human thermal balance were used. However, use of this model under construction conditions is often burdened by significant errors or even impossible to implement due to the lack of precise data. Thus, in the target model, the modified parameter was used – apparent environmental temperature. Apparent temperature in the proposed Scaffold Use Risk Assessment Model has been a perceived outdoor temperature, caused by the combined effects of air temperature, radiative temperature, relative humidity and wind speed (wind chill index, heat index). In the paper, correlations between component factors and apparent temperature for facade scaffolding with a width of 24.5 m and a height of 42.3 m, located at south-west side of building are presented. The distribution of factors on the scaffolding has been used to evaluate fitting of the microclimate model. The results of the studies indicate that observed ranges of apparent temperature on the scaffolds frequently results in a worker’s inability to adapt. This leads to reduced concentration and increased fatigue, adversely affects health, and consequently increases the risk of dangerous situations and accidental injuries

Keywords: apparent temperature, health, safety work, scaffoldings

Procedia PDF Downloads 161
579 Fatigue Life Prediction under Variable Loading Based a Non-Linear Energy Model

Authors: Aid Abdelkrim

Abstract:

A method of fatigue damage accumulation based upon application of energy parameters of the fatigue process is proposed in the paper. Using this model is simple, it has no parameter to be determined, it requires only the knowledge of the curve W–N (W: strain energy density N: number of cycles at failure) determined from the experimental Wöhler curve. To examine the performance of nonlinear models proposed in the estimation of fatigue damage and fatigue life of components under random loading, a batch of specimens made of 6082 T 6 aluminium alloy has been studied and some of the results are reported in the present paper. The paper describes an algorithm and suggests a fatigue cumulative damage model, especially when random loading is considered. This work contains the results of uni-axial random load fatigue tests with different mean and amplitude values performed on 6082T6 aluminium alloy specimens. The proposed model has been formulated to take into account the damage evolution at different load levels and it allows the effect of the loading sequence to be included by means of a recurrence formula derived for multilevel loading, considering complex load sequences. It is concluded that a ‘damaged stress interaction damage rule’ proposed here allows a better fatigue damage prediction than the widely used Palmgren–Miner rule, and a formula derived in random fatigue could be used to predict the fatigue damage and fatigue lifetime very easily. The results obtained by the model are compared with the experimental results and those calculated by the most fatigue damage model used in fatigue (Miner’s model). The comparison shows that the proposed model, presents a good estimation of the experimental results. Moreover, the error is minimized in comparison to the Miner’s model.

Keywords: damage accumulation, energy model, damage indicator, variable loading, random loading

Procedia PDF Downloads 375
578 The Effect of Grading Characteristics on the Shear Strength and Mechanical Behavior of Granular Classes of Sands

Authors: Salah Brahim Belakhdar, Tari Mohammed Amin, Rafai Abderrahmen, Amalsi Bilal

Abstract:

Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic, and earthquake loading conditions. The proposed research investigated the effect of grading characteristics on the shear strength and mechanical behaviour of granular classes of sands mixed with salt in loose and dense states (Dr=15% and 90%). The laboratory investigation aimed at understanding the extent or degree at which shear strength of sand-silt mixture soil is affected by its gradation under static loading conditions. For the purpose of clarifying and evaluating the shear strength characteristics of sandy soils, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations. The soil samples were tested under different normal stresses (100, 200, and 300 kPa). The results from this laboratory investigation were used to develop insight into the shear strength response of sand and sand-silt mixtures under monotonic loading conditions. The analysis of the obtained data revealed that the grading characteristics (D10, D50, Cu, ESR, and MGSR) have a significant influence on the shear strength response. It was found that shear strength can be correlated to the grading characteristics for the sand-silt mixture. The effective size ratio (ESR) and mean grain size ratio (MGSR) appear as pertinent parameters to predict the shear strength response of the sand-silt mixtures for soil gradation under study.

Keywords: mechanical behavior, silty sand, friction angle, cohesion, fines content

Procedia PDF Downloads 356
577 Comparison of Various Policies under Different Maintenance Strategies on a Multi-Component System

Authors: Demet Ozgur-Unluakin, Busenur Turkali, Ayse Karacaorenli

Abstract:

Maintenance strategies can be classified into two types, which are reactive and proactive, with respect to the time of the failure and maintenance. If the maintenance activity is done after a breakdown, it is called reactive maintenance. On the other hand, proactive maintenance, which is further divided as preventive and predictive, focuses on maintaining components before a failure occurs to prevent expensive halts. Recently, the number of interacting components in a system has increased rapidly and therefore, the structure of the systems have become more complex. This situation has made it difficult to provide the right maintenance decisions. Herewith, determining effective decisions has played a significant role. In multi-component systems, many methodologies and strategies can be applied when a component or a system has already broken down or when it is desired to identify and avoid proactively defects that could lead to future failure. This study focuses on the comparison of various maintenance strategies on a multi-component dynamic system. Components in the system are hidden, although there exists partial observability to the decision maker and they deteriorate in time. Several predefined policies under corrective, preventive and predictive maintenance strategies are considered to minimize the total maintenance cost in a planning horizon. The policies are simulated via Dynamic Bayesian Networks on a multi-component system with different policy parameters and cost scenarios, and their performances are evaluated. Results show that when the difference between the corrective and proactive maintenance cost is low, none of the proactive maintenance policies is significantly better than the corrective maintenance. However, when the difference is increased, at least one policy parameter for each proactive maintenance strategy gives significantly lower cost than the corrective maintenance.

Keywords: decision making, dynamic Bayesian networks, maintenance, multi-component systems, reliability

Procedia PDF Downloads 108
576 Design Approach to Incorporate Unique Performance Characteristics of Special Concrete

Authors: Devendra Kumar Pandey, Debabrata Chakraborty

Abstract:

The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.

Keywords: high performance concrete, special concrete, structural design, structural lightweight concrete

Procedia PDF Downloads 291
575 Effect of Drag Coefficient Models concerning Global Air-Sea Momentum Flux in Broad Wind Range including Extreme Wind Speeds

Authors: Takeshi Takemoto, Naoya Suzuki, Naohisa Takagaki, Satoru Komori, Masako Terui, George Truscott

Abstract:

Drag coefficient is an important parameter in order to correctly estimate the air-sea momentum flux. However, The parameterization of the drag coefficient hasn’t been established due to the variation in the field data. Instead, a number of drag coefficient model formulae have been proposed, even though almost all these models haven’t discussed the extreme wind speed range. With regards to such models, it is unclear how the drag coefficient changes in the extreme wind speed range as the wind speed increased. In this study, we investigated the effect of the drag coefficient models concerning the air-sea momentum flux in the extreme wind range on a global scale, comparing two different drag coefficient models. Interestingly, one model didn’t discuss the extreme wind speed range while the other model considered it. We found that the difference of the models in the annual global air-sea momentum flux was small because the occurrence frequency of strong wind was approximately 1% with a wind speed of 20m/s or more. However, we also discovered that the difference of the models was shown in the middle latitude where the annual mean air-sea momentum flux was large and the occurrence frequency of strong wind was high. In addition, the estimated data showed that the difference of the models in the drag coefficient was large in the extreme wind speed range and that the largest difference became 23% with a wind speed of 35m/s or more. These results clearly show that the difference of the two models concerning the drag coefficient has a significant impact on the estimation of a regional air-sea momentum flux in an extreme wind speed range such as that seen in a tropical cyclone environment. Furthermore, we estimated each air-sea momentum flux using several kinds of drag coefficient models. We will also provide data from an observation tower and result from CFD (Computational Fluid Dynamics) concerning the influence of wind flow at and around the place.

Keywords: air-sea interaction, drag coefficient, air-sea momentum flux, CFD (Computational Fluid Dynamics)

Procedia PDF Downloads 353
574 Experimental Field for the Study of Soil-Atmosphere Interaction in Soft Soils

Authors: Andres Mejia-Ortiz, Catalina Lozada, German R. Santos, Rafael Angulo-Jaramillo, Bernardo Caicedo

Abstract:

The interaction between atmospheric variables and soil properties is a determining factor when evaluating the flow of water through the soil. This interaction situation directly determines the behavior of the soil and greatly influences the changes that occur in it. The atmospheric variations such as changes in the relative humidity, air temperature, wind velocity and precipitation, are the external variables that reflect a greater incidence in the changes that are generated in the subsoil, as a consequence of the water flow in descending and ascending conditions. These environmental variations have a major importance in the study of the soil because the conditions of humidity and temperature in the soil surface depend on them. In addition, these variations control the thickness of the unsaturated zone and the position of the water table with respect to the surface. However, understanding the relationship between the atmosphere and the soil is a somewhat complex aspect. This is mainly due to the difficulty involved in estimating the changes that occur in the soil from climate changes; since this is a coupled process where act processes of mass transfer and heat. In this research, an experimental field was implemented to study in-situ the interaction between the atmosphere and the soft soils of the city of Bogota, Colombia. The soil under study consists of a 60 cm layer composed of two silts of similar characteristics at the surface and a deep soft clay deposit located under the silky material. It should be noted that the vegetal layer and organic matter were removed to avoid the evapotranspiration phenomenon. Instrumentation was carried on in situ through a field disposal of many measuring devices such as soil moisture sensors, thermocouples, relative humidity sensors, wind velocity sensor, among others; which allow registering the variations of both the atmospheric variables and the properties of the soil. With the information collected through field monitoring, the water balances were made using the Hydrus-1D software to determine the flow conditions that developed in the soil during the study. Also, the moisture profile for different periods and time intervals was determined by the balance supplied by Hydrus 1D; this profile was validated by experimental measurements. As a boundary condition, the actual evaporation rate was included using the semi-empirical equations proposed by different authors. In this study, it was obtained for the rainy periods a descending flow that was governed by the infiltration capacity of the soil. On the other hand, during dry periods. An increase in the actual evaporation of the soil induces an upward flow of water, increasing suction due to the decrease in moisture content. Also, cracks were developed accelerating the evaporation process. This work concerns to the study of soil-atmosphere interaction through the experimental field and it is a very useful tool since it allows considering all the factors and parameters of the soil in its natural state and real values of the different environmental conditions.

Keywords: field monitoring, soil-atmosphere, soft soils, soil-water balance

Procedia PDF Downloads 119
573 Mathematical Modelling of Bacterial Growth in Products of Animal Origin in Storage and Transport: Effects of Temperature, Use of Bacteriocins and pH Level

Authors: Benjamin Castillo, Luis Pastenes, Fernando Cordova

Abstract:

The pathogen growth in animal source foods is a common problem in the food industry, causing monetary losses due to the spoiling of products or food intoxication outbreaks in the community. In this sense, the quality of the product is reflected by the population of deteriorating agents present in it, which are mainly bacteria. The factors which are likely associated with freshness in animal source foods are temperature and processing, storage, and transport times. However, the level of deterioration of products depends, in turn, on the characteristics of the bacterial population, causing the decomposition or spoiling, such as pH level and toxins. Knowing the growth dynamics of the agents that are involved in product contamination allows the monitoring for more efficient processing. This means better quality and reasonable costs, along with a better estimation of necessary time and temperature intervals for transport and storage in order to preserve product quality. The objective of this project is to design a secondary model that allows measuring the impact on temperature bacterial growth and the competition for pH adequacy and release of bacteriocins in order to describe such phenomenon and, thus, estimate food product half-life with the least possible risk of deterioration or spoiling. In order to achieve this objective, the authors propose an analysis of a three-dimensional ordinary differential which includes; logistic bacterial growth extended by the inhibitory action of bacteriocins including the effect of the medium pH; change in the medium pH levels through an adaptation of the Luedeking-Piret kinetic model; Bacteriocin concentration modeled similarly to pH levels. These three dimensions are being influenced by the temperature at all times. Then, this differential system is expanded, taking into consideration the variable temperature and the concentration of pulsed bacteriocins, which represent characteristics inherent of the modeling, such as transport and storage, as well as the incorporation of substances that inhibit bacterial growth. The main results lead to the fact that temperature changes in an early stage of transport increased the bacterial population significantly more than if it had increased during the final stage. On the other hand, the incorporation of bacteriocins, as in other investigations, proved to be efficient in the short and medium-term since, although the population of bacteria decreased, once the bacteriocins were depleted or degraded over time, the bacteria eventually returned to their regular growth rate. The efficacy of the bacteriocins at low temperatures decreased slightly, which equates with the fact that their natural degradation rate also decreased. In summary, the implementation of the mathematical model allowed the simulation of a set of possible bacteria present in animal based products, along with their properties, in various transport and storage situations, which led us to state that for inhibiting bacterial growth, the optimum is complementary low constant temperatures and the initial use of bacteriocins.

Keywords: bacterial growth, bacteriocins, mathematical modelling, temperature

Procedia PDF Downloads 115
572 A Practical Construction Technique to Enhance the Performance of Rock Bolts in Tunnels

Authors: Ojas Chaudhari, Ali Nejad Ghafar, Giedrius Zirgulis, Marjan Mousavi, Tommy Ellison, Sandra Pousette, Patrick Fontana

Abstract:

In Swedish tunnel construction, a critical issue that has been repeatedly acknowledged is corrosion and, consequently, failure of the rock bolts in rock support systems. The defective installation of rock bolts results in the formation of cavities in the cement mortar that is regularly used to fill the area under the dome plates. These voids allow for water-ingress to the rock bolt assembly, which results in corrosion of rock bolt components and eventually failure. In addition, the current installation technique consists of several manual steps with intense labor works that are usually done in uncomfortable and exhausting conditions, e.g., under the roof of the tunnels. Such intense tasks also lead to a considerable waste of materials and execution errors. Moreover, adequate quality control of the execution is hardly possible with the current technique. To overcome these issues, a non-shrinking/expansive cement-based mortar filled in the paper packaging has been developed in this study which properly fills the area under the dome plates without or with the least remaining cavities, ultimately that diminishes the potential of corrosion. This article summarizes the development process and the experimental evaluation of this technique for the installation of rock bolts. In the development process, the cementitious mortar was first developed using specific cement and shrinkage reducing/expansive additives. The mechanical and flow properties of the mortar were then evaluated using compressive strength, density, and slump flow measurement methods. In addition, isothermal calorimetry and shrinkage/expansion measurements were used to elucidate the hydration and durability attributes of the mortar. After obtaining the desired properties in both fresh and hardened conditions, the developed dry mortar was filled in specific permeable paper packaging and then submerged in water bath for specific intervals before the installation. The tests were enhanced progressively by optimizing different parameters such as shape and size of the packaging, characteristics of the paper used, immersion time in water and even some minor characteristics of the mortar. Finally, the developed prototype was tested in a lab-scale rock bolt assembly with various angles to analyze the efficiency of the method in real life scenario. The results showed that the new technique improves the performance of the rock bolts by reducing the material wastage, improving environmental performance, facilitating and accelerating the labor works, and finally enhancing the durability of the whole system. Accordingly, this approach provides an efficient alternative for the traditional way of tunnel bolt installation with considerable advantages for the Swedish tunneling industry.

Keywords: corrosion, durability, mortar, rock bolt

Procedia PDF Downloads 90
571 Impact of Unusual Dust Event on Regional Climate in India

Authors: Kanika Taneja, V. K. Soni, Kafeel Ahmad, Shamshad Ahmad

Abstract:

A severe dust storm generated from a western disturbance over north Pakistan and adjoining Afghanistan affected the north-west region of India between May 28 and 31, 2014, resulting in significant reductions in air quality and visibility. The air quality of the affected region degraded drastically. PM10 concentration peaked at a very high value of around 1018 μgm-3 during dust storm hours of May 30, 2014 at New Delhi. The present study depicts aerosol optical properties monitored during the dust days using ground based multi-wavelength Sky radiometer over the National Capital Region of India. High Aerosol Optical Depth (AOD) at 500 nm was observed as 1.356 ± 0.19 at New Delhi while Angstrom exponent (Alpha) dropped to 0.287 on May 30, 2014. The variation in the Single Scattering Albedo (SSA) and real n(λ) and imaginary k(λ) parts of the refractive index indicated that the dust event influences the optical state to be more absorbing. The single scattering albedo, refractive index, volume size distribution and asymmetry parameter (ASY) values suggested that dust aerosols were predominant over the anthropogenic aerosols in the urban environment of New Delhi. The large reduction in the radiative flux at the surface level caused significant cooling at the surface. Direct Aerosol Radiative Forcing (DARF) was calculated using a radiative transfer model during the dust period. A consistent increase in surface cooling was evident, ranging from -31 Wm-2 to -82 Wm-2 and an increase in heating of the atmosphere from 15 Wm-2 to 92 Wm-2 and -2 Wm-2 to 10 Wm-2 at top of the atmosphere.

Keywords: aerosol optical properties, dust storm, radiative transfer model, sky radiometer

Procedia PDF Downloads 359
570 Effects of Major and Minor Modes to Emotional Perceptions of 'Happy' and 'Sad' in Piano Music among Students Aged 9-17

Authors: Nurezlin Mohd Azib, Pan Kok Chang

Abstract:

This quantitative study investigates the effects of major and minor modes, and contributing musical parameter of tempo, to the emotional perceptions of ‘happy’ and ‘sad’ in piano music among subjects aged 9-17 years old. The study was conducted in two phases; survey-questionnaire, and listening activity. Subjects (N=31) were sampled from piano music students’ population in Bangi, Selangor. In the survey-questionnaire, subjects answered 20 questions on demographic characteristics, music listening and preference, and understanding of emotional perception in music. In the listening activity, subjects listened to 20 untitled piano music excerpts and rated the emotion perceived for each excerpt, whether ‘happy’ or ‘sad’. Results from survey-questionnaire show that most percentage of subjects are 11 years old, in Grade 1, of 3 years of learning piano, prefer classical music, always listen to music, prefer both major and minor modes’ music, and find it easy to understand emotion in music, as well as major and minor modes. Results from listening activity show that 60 % of major mode music are perceived as ‘major-happy’, while 60 % too, of minor mode music are perceived as ‘minor-sad’. However, Chi-square test of independence statistical analysis indicates that there are no association and significant relationship between modes (major and minor) and ‘happy’, as well as ‘sad’ perceptions (x2 (1, N = 20) = 0.80, p = 0.371), at the significance level of p ≤ 0.05. Contrastingly, there are association and significant relationship between tempo (fast and slow), and ‘happy’, as well as ‘sad’ perceptions (x2 (1, N = 20) = 9.899, p = 0.005). Therefore, it is concluded that tempo plays an important role in effects of major and minor mode to ‘happy’ and ‘sad’ emotional perceptions in piano music among subjects aged 9 to 17 in this study.

Keywords: effects, emotional perceptions, major and minor modes, piano music

Procedia PDF Downloads 196
569 Long Wavelength Coherent Pulse of Sound Propagating in Granular Media

Authors: Rohit Kumar Shrivastava, Amalia Thomas, Nathalie Vriend, Stefan Luding

Abstract:

A mechanical wave or vibration propagating through granular media exhibits a specific signature in time. A coherent pulse or wavefront arrives first with multiply scattered waves (coda) arriving later. The coherent pulse is micro-structure independent i.e. it depends only on the bulk properties of the disordered granular sample, the sound wave velocity of the granular sample and hence bulk and shear moduli. The coherent wavefront attenuates (decreases in amplitude) and broadens with distance from its source. The pulse attenuation and broadening effects are affected by disorder (polydispersity; contrast in size of the granules) and have often been attributed to dispersion and scattering. To study the effect of disorder and initial amplitude (non-linearity) of the pulse imparted to the system on the coherent wavefront, numerical simulations have been carried out on one-dimensional sets of particles (granular chains). The interaction force between the particles is given by a Hertzian contact model. The sizes of particles have been selected randomly from a Gaussian distribution, where the standard deviation of this distribution is the relevant parameter that quantifies the effect of disorder on the coherent wavefront. Since, the coherent wavefront is system configuration independent, ensemble averaging has been used for improving the signal quality of the coherent pulse and removing the multiply scattered waves. The results concerning the width of the coherent wavefront have been formulated in terms of scaling laws. An experimental set-up of photoelastic particles constituting a granular chain is proposed to validate the numerical results.

Keywords: discrete elements, Hertzian contact, polydispersity, weakly nonlinear, wave propagation

Procedia PDF Downloads 182
568 A Two Server Poisson Queue Operating under FCFS Discipline with an ‘m’ Policy

Authors: R. Sivasamy, G. Paulraj, S. Kalaimani, N.Thillaigovindan

Abstract:

For profitable businesses, queues are double-edged swords and hence the pain of long wait times in a queue often frustrates customers. This paper suggests a technical way of reducing the pain of lines through a Poisson M/M1, M2/2 queueing system operated by two heterogeneous servers with an objective of minimising the mean sojourn time of customers served under the queue discipline ‘First Come First Served with an ‘m’ policy, i.e. FCFS-m policy’. Arrivals to the system form a Poisson process of rate λ and are served by two exponential servers. The service times of successive customers at server ‘j’ are independent and identically distributed (i.i.d.) random variables and each of it is exponentially distributed with rate parameter μj (j=1, 2). The primary condition for implementing the queue discipline ‘FCFS-m policy’ on these service rates μj (j=1, 2) is that either (m+1) µ2 > µ1> m µ2 or (m+1) µ1 > µ2> m µ1 must be satisfied. Further waiting customers prefer the server-1 whenever it becomes available for service, and the server-2 should be installed if and only if the queue length exceeds the value ‘m’ as a threshold. Steady-state results on queue length and waiting time distributions have been obtained. A simple way of tracing the optimal service rate μ*2 of the server-2 is illustrated in a specific numerical exercise to equalize the average queue length cost with that of the service cost. Assuming that the server-1 has to dynamically adjust the service rates as μ1 during the system size is strictly less than T=(m+2) while μ2=0, and as μ1 +μ2 where μ2>0 if the system size is more than or equal to T, corresponding steady state results of M/M1+M2/1 queues have been deduced from those of M/M1,M2/2 queues. To conclude this investigation has a viable application, results of M/M1+M2/1 queues have been used in processing of those waiting messages into a single computer node and to measure the power consumption by the node.

Keywords: two heterogeneous servers, M/M1, M2/2 queue, service cost and queue length cost, M/M1+M2/1 queue

Procedia PDF Downloads 345
567 An Analytical Study on the Effect of Chronic Liver Disease Severity and Etiology on Lipid Profiles

Authors: Thinakar Mani Balusamy, Venkateswaran A. R., Bharat Narasimhan, Ratnakar Kini S., Kani Sheikh M., Prem Kumar K., Pugazhendi Thangavelu, Arun Murugan, Sibi Thooran Karmegam, Radhakrishnan N., Mohammed Noufal, Amit Soni

Abstract:

Background and Aims: The liver is integral to lipid metabolism, and a compromise in its function leads to perturbations in these pathways. In this study, we hope to determine the correlation between CLD severity and its effect on lipid parameters. We also look at the etiology-specific effects on lipid levels. Materials and Methods: This is a retrospective cross-sectional analysis of 250 patients with cirrhosis compared to 250 healthy age and sex-matched controls. Severity assessment of CLD using MELD and Child-Pugh scores was performed and etiological details collected. A questionnaire was used to obtain patient demographic details and lastly, a fasting lipid profile (Total, LDL, HDL cholesterol, Triglycerides and VLDL) was obtained. Results: All components of the lipid profile declined linearly with increasing severity of CLD as determined by MELD and Child-Pugh scores. Lipid levels were clearly lower in CLD patients as compared to healthy controls. Interestingly, preliminary analysis indicated that CLD of different etiologies had differential effects on Lipid profiles. This aspect is under further analysis. Conclusion: All components of the lipid profile were definitely lower in CLD patients as compared to controls and demonstrated an inverse correlation with increasing severity. The utilization of this parameter as a prognosticating aid requires further study. Additionally, preliminary analysis indicates that various CLD etiologies appear to have specific effects on the lipid profile – a finding under further analysis.

Keywords: CLD, cholesterol, HDL, LDL, lipid profile, triglycerides, VLDL

Procedia PDF Downloads 203
566 Breaking Stress Criterion that Changes Everything We Know About Materials Failure

Authors: Ali Nour El Hajj

Abstract:

Background: The perennial deficiencies of the failure models in the materials field have profoundly and significantly impacted all associated technical fields that depend on accurate failure predictions. Many preeminent and well-known scientists from an earlier era of groundbreaking discoveries attempted to solve the issue of material failure. However, a thorough understanding of material failure has been frustratingly elusive. Objective: The heart of this study is the presentation of a methodology that identifies a newly derived one-parameter criterion as the only general failure theory for noncompressible, homogeneous, and isotropic materials subjected to multiaxial states of stress and various boundary conditions, providing the solution to this longstanding problem. This theory is the counterpart and companion piece to the theory of elasticity and is in a formalism that is suitable for broad application. Methods: Utilizing advanced finite-element analysis, the maximum internal breaking stress corresponding to the maximum applied external force is identified as a unified and universal material failure criterion for determining the structural capacity of any system, regardless of its geometry or architecture. Results: A comparison between the proposed criterion and methodology against design codes reveals that current provisions may underestimate the structural capacity by 2.17 times or overestimate the capacity by 2.096 times. It also shows that existing standards may underestimate the structural capacity by 1.4 times or overestimate the capacity by 2.49 times. Conclusion: The proposed failure criterion and methodology will pave the way for a new era in designing unconventional structural systems composed of unconventional materials.

Keywords: failure criteria, strength theory, failure mechanics, materials mechanics, rock mechanics, concrete strength, finite-element analysis, mechanical engineering, aeronautical engineering, civil engineering

Procedia PDF Downloads 62
565 Application of Response Surface Methodology to Optimize the Factor Influencing the Wax Deposition of Malaysian Crude Oil

Authors: Basem Elarbe, Ibrahim Elganidi, Norida Ridzuan, Norhyati Abdullah

Abstract:

Wax deposition in production pipelines and transportation tubing from offshore to onshore is critical in the oil and gas industry due to low-temperature conditions. It may lead to a reduction in production, shut-in, plugging of pipelines and increased fluid viscosity. The most significant popular approach to solve this issue is by injection of a wax inhibitor into the channel. This research aims to determine the amount of wax deposition of Malaysian crude oil by estimating the effective parameters using (Design-Expert version 7.1.6) by response surface methodology (RSM) method. Important parameters affecting wax deposition such as cold finger temperature, inhibitor concentration and experimental duration were investigated. It can be concluded that SA-co-BA copolymer had a higher capability of reducing wax in different conditions where the minimum point of wax reduction was found at 300 rpm, 14℃, 1h, 1200 ppmThe amount of waxes collected for each parameter were 0.12g. RSM approach was applied using rotatable central composite design (CCD) to minimize the wax deposit amount. The regression model’s variance (ANOVA) results revealed that the R2 value of 0.9906, indicating that the model can be clarified 99.06% of the data variation, and just 0.94% of the total variation were not clarified by the model. Therefore, it indicated that the model is extremely significant, confirming a close agreement between the experimental and the predicted values. In addition, the result has shown that the amount of wax deposit decreased significantly with the increase of temperature and the concentration of poly (stearyl acrylate-co-behenyl acrylate) (SABA), which were set at 14°C and 1200 ppm, respectively. The amount of wax deposit was successfully reduced to the minimum value of 0.01 g after the optimization.

Keywords: wax deposition, SABA inhibitor, RSM, operation factors

Procedia PDF Downloads 262
564 Estimation Atmospheric parameters for Weather Study and Forecast over Equatorial Regions Using Ground-Based Global Position System

Authors: Asmamaw Yehun, Tsegaye Kassa, Addisu Hunegnaw, Martin Vermeer

Abstract:

There are various models to estimate the neutral atmospheric parameter values, such as in-suite and reanalysis datasets from numerical models. Accurate estimated values of the atmospheric parameters are useful for weather forecasting and, climate modeling and monitoring of climate change. Recently, Global Navigation Satellite System (GNSS) measurements have been applied for atmospheric sounding due to its robust data quality and wide horizontal and vertical coverage. The Global Positioning System (GPS) solutions that includes tropospheric parameters constitute a reliable set of data to be assimilated into climate models. The objective of this paper is, to estimate the neutral atmospheric parameters such as Wet Zenith Delay (WZD), Precipitable Water Vapour (PWV) and Total Zenith Delay (TZD) using six selected GPS stations in the equatorial regions, more precisely, the Ethiopian GPS stations from 2012 to 2015 observational data. Based on historic estimated GPS-derived values of PWV, we forecasted the PWV from 2015 to 2030. During data processing and analysis, we applied GAMIT-GLOBK software packages to estimate the atmospheric parameters. In the result, we found that the annual averaged minimum values of PWV are 9.72 mm for IISC and maximum 50.37 mm for BJCO stations. The annual averaged minimum values of WZD are 6 cm for IISC and maximum 31 cm for BDMT stations. In the long series of observations (from 2012 to 2015), we also found that there is a trend and cyclic patterns of WZD, PWV and TZD for all stations.

Keywords: atmosphere, GNSS, neutral atmosphere, precipitable water vapour

Procedia PDF Downloads 38
563 The Effect of Transparent Oil Wood Stain on the Colour Stability of Spruce Wood during Weathering

Authors: Eliska Oberhofnerova, Milos Panek, Stepan Hysek, Martin Lexa

Abstract:

Nowadays the use of wood, both indoors and outdoors, is constantly increasing. However wood is a natural organic material and in the exterior is subjected to a degradation process caused by abiotic factors (solar radiation, rain, moisture, wind, dust etc.). This process affects only surface layers of wood but neglecting some of the basic rules of wood protection leads to increased possibility of biological agents attack and thereby influences a function of the wood element. The process of wood degradation can be decreased by proper surface treatment, especially in the case of less naturally durable wood species, as spruce. Modern coating systems are subjected to many requirements such as colour stability, hydrophobicity, low volatile organic compound (VOC) content, long service life or easy maintenance. The aim of this study is to evaluate the colour stability of spruce wood (Picea abies), as the basic parameter indicating the coating durability, treated with two layers of transparent natural oil wood stain and exposed to outdoor conditions. The test specimens were exposed for 2 years to natural weathering and 2000 hours to artificial weathering in UV-chamber. The colour parameters were measured before and during exposure to weathering by the spectrophotometer according to CIELab colour space. The comparison between untreated and treated wood and both testing procedures was carried out. The results showed a significant effect of coating on the colour stability of wood, as expected. Nevertheless, increasing colour changes of wood observed during the exposure to weathering differed according to applied testing procedure - natural and artificial.

Keywords: colour stability, natural and artificial weathering, spruce wood, transparent coating

Procedia PDF Downloads 204
562 Numerical Calculation and Analysis of Fine Echo Characteristics of Underwater Hemispherical Cylindrical Shell

Authors: Hongjian Jia

Abstract:

A finite-length cylindrical shell with a spherical cap is a typical engineering approximation model of actual underwater targets. The research on the omni-directional acoustic scattering characteristics of this target model can provide a favorable basis for the detection and identification of actual underwater targets. The elastic resonance characteristics of the target are the results of the comprehensive effect of the target length, shell-thickness ratio and materials. Under the conditions of different materials and geometric dimensions, the coincidence resonance characteristics of the target have obvious differences. Aiming at this problem, this paper obtains the omni-directional acoustic scattering field of the underwater hemispherical cylindrical shell by numerical calculation and studies the influence of target geometric parameters (length, shell-thickness ratio) and material parameters on the coincidence resonance characteristics of the target in turn. The study found that the formant interval is not a stable value and changes with the incident angle. Among them, the formant interval is less affected by the target length and shell-thickness ratio and is significantly affected by the material properties, which is an effective feature for classifying and identifying targets of different materials. The quadratic polynomial is utilized to fully fit the change relationship between the formant interval and the angle. The results show that the three fitting coefficients of the stainless steel and aluminum targets are significantly different, which can be used as an effective feature parameter to characterize the target materials.

Keywords: hemispherical cylindrical shell;, fine echo characteristics;, geometric and material parameters;, formant interval

Procedia PDF Downloads 83
561 Effect of Citrulline on the Physical Performance of a Soccer-Specific Exercises in Adult Professional Soccer Players

Authors: Bezuglov Eduard, Ryland Morgans, Talibov Oleg, Kalinin Evgeny, Butovsky Mikhail, Savin Evgeny, Tzgoev Eduard, Artemii Lazarev, Bekzhan Pirmakhanov, Anthony C. Hackney

Abstract:

Currently, there is conflicting evidence regarding the efficacy of citrulline for physical performance and post-exercise recovery. Moreover, the vast majority of studies conducted used physically active volunteers from the general population and heterogeneous exercise protocols that are not specific to most sports. A single use of citrulline, regardless of the dose, will not have a significant effect on physical performance and post-exercise recovery in highly trained soccer players performing sport-specific exercises at maximum intensity. To evaluate the effectiveness of a single administration of citrulline at various doses in adult male professional soccer players performing sport-specific exercise at maximum intensity. A randomized, double-blind, placebo-controlled study analyzing eighteen soccer players from the top divisions of several European countries. The participants were randomized into three groups of six and performed a field-based soccer-specific test at 115% VO2max for 18-minutes. Comparative analysis of the cardiovascular system, physical activity, subjective perceived fatigue and post-exercise recovery was conducted. There were no statistically significant differences in more than one analyzed parameter. A single application of 3 to 6 grams of citrulline does not affect physical performance, subjective feeling of fatigue and post-exercise recovery in adult professional soccer players who have performed a sport-specific test. Currently, citrulline cannot be recommended for use as a supplement in adult professional soccer players

Keywords: citrulline, performance, recovery, soccer players

Procedia PDF Downloads 82
560 Drape Simulation by Commercial Software and Subjective Assessment of Virtual Drape

Authors: Evrim Buyukaslan, Simona Jevsnik, Fatma Kalaoglu

Abstract:

Simulation of fabrics is more difficult than any other simulation due to complex mechanics of fabrics. Most of the virtual garment simulation software use mass-spring model and incorporate fabric mechanics into simulation models. The accuracy and fidelity of these virtual garment simulation software is a question mark. Drape is a subjective phenomenon and evaluation of drape has been studied since 1950’s. On the other hand, fabric and garment simulation is relatively new. Understanding drape perception of subjects when looking at fabric simulations is critical as virtual try-on becomes more of an issue by enhanced online apparel sales. Projected future of online apparel retailing is that users may view their avatars and try-on the garment on their avatars in the virtual environment. It is a well-known fact that users will not be eager to accept this innovative technology unless it is realistic enough. Therefore, it is essential to understand what users see when they are displaying fabrics in a virtual environment. Are they able to distinguish the differences between various fabrics in virtual environment? The purpose of this study is to investigate human perception when looking at a virtual fabric and determine the most visually noticeable drape parameter. To this end, five different fabrics are mechanically tested, and their drape simulations are generated by commercial garment simulation software (Optitex®). The simulation images are processed by an image analysis software to calculate drape parameters namely; drape coefficient, node severity, and peak angles. A questionnaire is developed to evaluate drape properties subjectively in a virtual environment. Drape simulation images are shown to 27 subjects and asked to rank the samples according to their questioned drape property. The answers are compared to the calculated drape parameters. The results show that subjects are quite sensitive to drape coefficient changes while they are not very sensitive to changes in node dimensions and node distributions.

Keywords: drape simulation, drape evaluation, fabric mechanics, virtual fabric

Procedia PDF Downloads 320
559 Evaluation of Trabectedin Safety and Effectiveness at a Tertiary Cancer Center at Qatar: A Retrospective Analysis

Authors: Nabil Omar, Farah Jibril, Oraib Amjad

Abstract:

Purpose: Trabecatine is a is a potent marine-derived antineoplastic drug which binds to the minor groove of the DNA, bending DNA towards the major groove resulting in a changed conformation that interferes with several DNA transcription factors, repair pathways and cell proliferation. Trabectedin was approved by the European Medicines Agency (EMA; London, UK) for the treatment of adult patients with advanced stage soft tissue sarcomas in whom treatment with anthracyclines and ifosfamide has failed, or for those who are not candidates for these therapies. The recommended dosing regimen is 1.5 mg/m2 IV over 24 hours every 3 weeks. The purpose of this study was to comprehensively review available data on the safety and efficacy of trabectedin used as indicated for patients at a Tertiary Cancer Center at Qatar. Methods: A medication administration report generated in the electronic health record identified all patients who received trabectedin between November 1, 2015 and November 1, 2017. This retrospective chart review evaluated the indication of trabectedin use, compliance to administration protocol and the recommended monitoring parameters, number of patients improved on the drug and continued treatment, number of patients discontinued treatment due to side-effects and the reported side effects. Progress and discharged notes were utilized to report experienced side effects during trabectedin therapy. A total of 3 patients were reviewed. Results: Total of 2 out of 3 patients who received trabectedin were receiving it for non-FDA and non-EMA, approved indications; metastatic rhabdomyosarcoma and ovarian cancer stage IV with poor prognosis. And only one patient received it as indicated for leiomyosarcoma of left ureter with metastases to liver, lungs and bone. None of the patients has continued the therapy due to development of serious side effects. One patient had stopped the medication after one cycle due to disease progression and transient hepatic toxicity, the other one had disease progression and developed 12 % reduction in LVEF after 12 cycles of trabectedin, and the third patient deceased, had disease progression on trabectedin after the 10th cycle that was received through peripheral line which resulted in developing extravasation and left arm cellulitis requiring debridement. Regarding monitoring parameters, at baseline the three patients had ECHO, and Creatine Phosphokinase (CPK) but it was not monitored during treatment as recommended. Conclusion: Utilizing this medication as indicated with performing the appropriate monitoring parameters as recommended can benefit patients who are receiving it. It is important to reinforce the intravenous administration via central intravenous line, the re-assessment of left ventricular ejection fraction (LVEF) by echocardiogram or multigated acquisition (MUGA) scan at 2- to 3-month intervals thereafter until therapy is discontinued, and CPK and LFTs levels prior to each administration of trabectedin.

Keywords: trabectedin, drug-use evaluation, safety, effectiveness, adverse drug reaction, monitoring

Procedia PDF Downloads 116
558 Early Detection of Neuropathy in Leprosy-Comparing Clinical Tests with Nerve Conduction Study

Authors: Suchana Marahatta, Sabina Bhattarai, Bishnu Hari Paudel, Dilip Thakur

Abstract:

Background: Every year thousands of patients develop nerve damage and disabilities as a result of leprosy which can be prevented by early detection and treatment. So, early detection and treatment of nerve function impairment is of paramount importance in leprosy. Objectives: To assess the electrophysiological pattern of the peripheral nerves in leprosy patients and to compare it with clinical assessment tools. Materials and Methods: In this comparative cross-sectional study, 74 newly diagnosed leprosy patients without reaction were enrolled. They underwent thorough evaluation for peripheral nerve function impairment using clinical tests [i.e. nerve palpation (NP), monofilament (MF) testing, voluntary muscle testing (VMT)] and nerve conduction study (NCS). Clinical findings were compared with that of NCS using SPSS version 11.5. Results: NCS was impaired in 43.24% of leprosy patient at the baseline. Among them, sensory NCS was impaired in more patients (32.4%) in comparison to motor NCS (20.3%). NP, MF, and VMT were impaired in 58.1%, 25.7%, and 9.4% of the patients, respectively. Maximum concordance of monofilament testing and sensory NCS was found for sural nerve (14.7%). Likewise, the concordance of motor NP and motor NCS was the maximum for ulnar nerve (14.9%). When individual parameters of the NCS were considered, amplitude was found to be the most frequently affected parameter for both sensory and motor NCS. It was impaired in 100% of cases with abnormal NCS findings. Conclusion: Since there was no acceptable concordance between NCS findings and clinical findings, we should consider NCS whenever feasible for early detection of neuropathy in leprosy. The amplitude of both sensory nerve action potential (SNAP) and compound nerve action potential (CAMP) could be important determinants of the abnormal NCS if supported by further studies.

Keywords: leprosy, nerve function impairment, neuropathy, nerve conduction study

Procedia PDF Downloads 295
557 Investigation of Effective Parameters on Pullout Capacity in Soil Nailing with Special Attention to International Design Codes

Authors: R. Ziaie Moayed, M. Mortezaee

Abstract:

An important and influential factor in design and determining the safety factor in Soil Nailing is the ultimate pullout capacity, or, in other words, bond strength. This important parameter depends on several factors such as material and soil texture, method of implementation, excavation diameter, friction angle between the nail and the soil, grouting pressure, the nail depth (overburden pressure), the angle of drilling and the degree of saturation in soil. Federal Highway Administration (FHWA), a customary regulation in the design of nailing, is considered only the effect of the soil type (or rock) and the method of implementation in determining the bond strength, which results in non-economic design. The other regulations are each of a kind, some of the parameters affecting bond resistance are not taken into account. Therefore, in the present paper, at first the relationships and tables presented by several valid regulations are presented for estimating the ultimate pullout capacity, and then the effect of several important factors affecting on ultimate Pullout capacity are studied. Finally, it was determined, the effect of overburden pressure (in method of injection with pressure), soil dilatation and roughness of the drilling surface on pullout strength is incremental, and effect of degree of soil saturation on pullout strength to a certain degree of saturation is increasing and then decreasing. therefore it is better to get help from nail pullout-strength test results and numerical modeling to evaluate the effect of parameters such as overburden pressure, dilatation, and degree of soil saturation, and so on to reach an optimal and economical design.

Keywords: soil nailing, pullout capacity, federal highway administration (FHWA), grout

Procedia PDF Downloads 127
556 A Three-Dimensional TLM Simulation Method for Thermal Effect in PV-Solar Cells

Authors: R. Hocine, A. Boudjemai, A. Amrani, K. Belkacemi

Abstract:

Temperature rising is a negative factor in almost all systems. It could cause by self heating or ambient temperature. In solar photovoltaic cells this temperature rising affects on the behavior of cells. The ability of a PV module to withstand the effects of periodic hot-spot heating that occurs when cells are operated under reverse biased conditions is closely related to the properties of the cell semi-conductor material. In addition, the thermal effect also influences the estimation of the maximum power point (MPP) and electrical parameters for the PV modules, such as maximum output power, maximum conversion efficiency, internal efficiency, reliability, and lifetime. The cells junction temperature is a critical parameter that significantly affects the electrical characteristics of PV modules. For practical applications of PV modules, it is very important to accurately estimate the junction temperature of PV modules and analyze the thermal characteristics of the PV modules. Once the temperature variation is taken into account, we can then acquire a more accurate MPP for the PV modules, and the maximum utilization efficiency of the PV modules can also be further achieved. In this paper, the three-Dimensional Transmission Line Matrix (3D-TLM) method was used to map the surface temperature distribution of solar cells while in the reverse bias mode. It was observed that some cells exhibited an inhomogeneity of the surface temperature resulting in localized heating (hot-spot). This hot-spot heating causes irreversible destruction of the solar cell structure. Hot spots can have a deleterious impact on the total solar modules if individual solar cells are heated. So, the results show clearly that the solar cells are capable of self-generating considerable amounts of heat that should be dissipated very quickly to increase PV module's lifetime.

Keywords: thermal effect, conduction, heat dissipation, thermal conductivity, solar cell, PV module, nodes, 3D-TLM

Procedia PDF Downloads 370