Search results for: interactive user navigation
1255 Implementing Zero-Trust Security with Passwordless Authentication Gateways for Privacy-Oriented Organizations Using Keycloak
Authors: Andrei Bogdan Stanescu, Laura Diaconescu
Abstract:
With the increasing concerns about data breaches and privacy violations, organizations seek robust security measures to protect sensitive information. This research paper highlights the importance of implementing the Zero-Trust Security methodology using Passwordless Authentication Gateways that leverage Keycloak, an open-source Identity and Access Management (IAM) software, as a solution to address the security challenges these organizations face. The paper presents the successful implementation and deployment of such a solution in a mid-size, privacy-oriented organization. The implementation resulted in significant security improvements, reducing the risk of unauthorized access and potential data breaches. Moreover, user feedback indicated enhanced convenience and streamlined authentication experiences. The results of this study bring solid contributions in the field of cybersecurity and provide practical insights for organizations aiming to strengthen their security practices.Keywords: identity and access management, passwordless authentication, privacy, zero-trust security
Procedia PDF Downloads 911254 Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault
Authors: Lakshmi Prayaga, Chandra Prayaga. Aaron Wade, Gopi Shankar Mallu, Harsha Satya Pola
Abstract:
Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN.Keywords: synthetic data generation, generative adversarial networks, conditional tabular GAN, Gaussian copula
Procedia PDF Downloads 821253 Networking Approach for Historic Urban Landscape: Case Study of the Porcelain Capital of China
Abstract:
This article presents a “networking approach” as an alternative to the “layering model” in the issue of the historic urban landscape [HUL], based on research conducted in the historic city of Jingdezhen, the center of the porcelain industry in China. This study points out that the existing HUL concept, which can be traced back to the fundamental conceptual divisions set forth by western science, tends to analyze the various elements of urban heritage (composed of hybrid natural-cultural elements) by layers and ignore the nuanced connections and interweaving structure of various elements. Instead, the networking analysis approach can respond to the challenges of complex heritage networks and to the difficulties that are often faced when modern schemes of looking and thinking of landscape in the Eurocentric heritage model encounters local knowledge of Chinese settlement. The fieldwork in this paper examines the local language regarding place names and everyday uses of urban spaces, thereby highlighting heritage systems grounded in local life and indigenous knowledge. In the context of Chinese “Fengshui”, this paper demonstrates the local knowledge of nature and local intelligence of settlement location and design. This paper suggests that industrial elements (kilns, molding rooms, piers, etc.) and spiritual elements (temples for ceramic saints or water gods) are located in their intimate natural networks. Furthermore, the functional, spiritual, and natural elements are perceived as a whole and evolve as an interactive system. This paper proposes a local and cognitive approach in heritage, which was initially developed in European Landscape Convention and historic landscape characterization projects, and yet seeks a more tentative and nuanced model based on urban ethnography in a Chinese city.Keywords: Chinese city, historic urban landscape, heritage conservation, network
Procedia PDF Downloads 1401252 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.Keywords: Cyanex 272, emulsion liquid membrane, MWCNT nanofluid, response surface methology, Samarium
Procedia PDF Downloads 4241251 Experimental Studies of Sigma Thin-Walled Beams Strengthen by CFRP Tapes
Authors: Katarzyna Rzeszut, Ilona Szewczak
Abstract:
The review of selected methods of strengthening of steel structures with carbon fiber reinforced polymer (CFRP) tapes and the analysis of influence of composite materials on the steel thin-walled elements are performed in this paper. The study is also focused to the problem of applying fast and effective strengthening methods of the steel structures made of thin-walled profiles. It is worth noting that the issue of strengthening the thin-walled structures is a very complex, due to inability to perform welded joints in this type of elements and the limited ability to applying mechanical fasteners. Moreover, structures made of thin-walled cross-section demonstrate a high sensitivity to imperfections and tendency to interactive buckling, which may substantially contribute to the reduction of critical load capacity. Due to the lack of commonly used and recognized modern methods of strengthening of thin-walled steel structures, authors performed the experimental studies of thin-walled sigma profiles strengthened with CFRP tapes. The paper presents the experimental stand and the preliminary results of laboratory test concerning the analysis of the effectiveness of the strengthening steel beams made of thin-walled sigma profiles with CFRP tapes. The study includes six beams made of the cold-rolled sigma profiles with height of 140 mm, wall thickness of 2.5 mm, and a length of 3 m, subjected to the uniformly distributed load. Four beams have been strengthened with carbon fiber tape Sika CarboDur S, while the other two were tested without strengthening to obtain reference results. Based on the obtained results, the evaluation of the accuracy of applied composite materials for strengthening of thin-walled structures was performed.Keywords: CFRP tapes, sigma profiles, steel thin-walled structures, strengthening
Procedia PDF Downloads 3031250 Installing Cloud Computing Model for E-Businesses in Small Organizations
Authors: Khader Titi
Abstract:
Information technology developments have changed the way how businesses are working. Organizations are required to become visible online and stay connected to take advantages of costs reduction and improved operation of existing resources. The approval and the application areas of the cloud computing has significantly increased since it was presented by Google in 2007. Internet Cloud computing has attracted the IT enterprise attention especially the e-business enterprise. At this time, there is a great issue of environmental costs during the enterprises apply the e- business, but with the coming of cloud computing, most of the problem will be solved. Organizations around the world are facing with the continued budget challenges and increasing in the size of their computational data so, they need to find a way to deliver their services to clients as economically as possible without negotiating the achievement of anticipated outcomes. E- business companies need to provide better services to satisfy their clients. In this research, the researcher proposed a paradigm that use and deploy cloud computing technology environment to be used for e-business in small enterprises. Cloud computing might be a suitable model for implementing e-business and e-commerce architecture to improve efficiency and user satisfaction.Keywords: E-commerce, cloud computing, B2C, SaaS
Procedia PDF Downloads 3171249 Enhancing Rural Agricultural Value Chains through Electric Mobility Services in Ethiopia
Authors: Clemens Pizzinini, Philipp Rosner, David Ziegler, Markus Lienkamp
Abstract:
Transportation is a constitutional part of most supply and value chains in modern economies. Smallholder farmers in rural Ethiopia face severe challenges along their supply and value chains. In particular, suitable, affordable, and available transport services are in high demand. To develop a context-specific technical solutions, a problem-to-solution methodology based on the interaction with technology is developed. With this approach, we fill the gap between proven transportation assessment frameworks and general user-centered techniques. Central to our approach is an electric test vehicle that is implemented in rural supply and value chains for research, development, and testing. Based on our objective and the derived methodological requirements, a set of existing methods is selected. Local partners are integrated into an organizational framework that executes major parts of this research endeavour in the Arsi Zone, Oromia Region, Ethiopia.Keywords: agricultural value chain, participatory methods, agile methods, sub-Saharan Africa, Ethiopia, electric vehicle, transport service
Procedia PDF Downloads 731248 Deep Learning-Based Channel Estimation for RIS-Assisted Unmanned Aerial Vehicle-Enabled Wireless Communication System
Authors: Getaneh Berie Tarekegn
Abstract:
Wireless communication via unmanned aerial vehicles (UAVs) has drawn a great deal of attention due to its flexibility in establishing line-of-sight (LoS) communications. However, in complex urban and dynamic environments, the movement of UAVs can be blocked by trees and high-rise buildings that obstruct directional paths. With reconfigurable intelligent surfaces (RIS), this problem can be effectively addressed. To achieve this goal, accurate channel estimation in RIS-assisted UAV-enabled wireless communications is crucial. This paper proposes an accurate channel estimation model using long short-term memory (LSTM) for a multi-user RIS-assisted UAV-enabled wireless communication system. According to simulation results, LSTM can improve the channel estimation performance of RIS-assisted UAV-enabled wireless communication.Keywords: channel estimation, reconfigurable intelligent surfaces, long short-term memory, unmanned aerial vehicles
Procedia PDF Downloads 571247 The Impact of ChatGPT on the Healthcare Domain: Perspectives from Healthcare Majors
Authors: Su Yen Chen
Abstract:
ChatGPT has shown both strengths and limitations in clinical, educational, and research settings, raising important concerns about accuracy, transparency, and ethical use. Despite an improved understanding of user acceptance and satisfaction, there is still a gap in how general AI perceptions translate into practical applications within healthcare. This study focuses on examining the perceptions of ChatGPT's impact among 266 healthcare majors in Taiwan, exploring its implications for their career development, as well as its utility in clinical practice, medical education, and research. By employing a structured survey with precisely defined subscales, this research aims to probe the breadth of ChatGPT's applications within healthcare, assessing both the perceived benefits and the challenges it presents. Additionally, to further enhance the comprehensiveness of our methodology, we have incorporated qualitative data collection methods, which provide complementary insights to the quantitative findings. The findings from the survey reveal that perceptions and usage of ChatGPT among healthcare majors vary significantly, influenced by factors such as its perceived utility, risk, novelty, and trustworthiness. Graduate students and those who perceive ChatGPT as more beneficial and less risky are particularly inclined to use it more frequently. This increased usage is closely linked to significant impacts on personal career development. Furthermore, ChatGPT's perceived usefulness and novelty contribute to its broader impact within the healthcare domain, suggesting that both innovation and practical utility are key drivers of acceptance and perceived effectiveness in professional healthcare settings. Trust emerges as an important factor, especially in clinical settings where the stakes are high. The trust that healthcare professionals place in ChatGPT significantly affects its integration into clinical practice and influences outcomes in medical education and research. The reliability and practical value of ChatGPT are thus critical for its successful adoption in these areas. However, an interesting paradox arises with regard to the ease of use. While making ChatGPT more user-friendly is generally seen as beneficial, it also raises concerns among users who have lower levels of trust and perceive higher risks associated with its use. This complex interplay between ease of use and safety concerns necessitates a careful balance, highlighting the need for robust security measures and clear, transparent communication about how AI systems work and their limitations. The study suggests several strategic approaches to enhance the adoption and integration of AI in healthcare. These include targeted training programs for healthcare professionals to increase familiarity with AI technologies, reduce perceived risks, and build trust. Ensuring transparency and conducting rigorous testing are also vital to foster trust and reliability. Moreover, comprehensive policy frameworks are needed to guide the implementation of AI technologies, ensuring high standards of patient safety, privacy, and ethical use. These measures are crucial for fostering broader acceptance of AI in healthcare, as the study contributes to enriching the discourse on AI's role by detailing how various factors affect its adoption and impact.Keywords: ChatGPT, healthcare, survey study, IT adoption, behaviour, applcation, concerns
Procedia PDF Downloads 281246 Agile Software Development Implementation in Developing a Diet Tracker Mobile Application
Authors: Dwi Puspita Sari, Gulnur Baltabayeva, Nadia Salman, Maxut Toleuov, Vijay Kanabar
Abstract:
Technology era drives people to use mobile phone to support their daily life activities. Technology development has a rapid phase which pushes the IT company to adjust any technology changes in order to fulfill customer’s satisfaction. As a result of that, many companies in the USA emerged from systematics software development approach to agile software development approach in developing systems and applications to develop many mobile phone applications in a short phase to fulfill user’s needs. As a systematic approach is considered as time consuming, costly, and too risky, agile software development has become a more popular approach to use for developing software including mobile applications. This paper reflects a short-term project to develop a diet tracker mobile application using agile software development that focused on applying scrum framework in the development process.Keywords: agile software development, scrum, diet tracker, mobile application
Procedia PDF Downloads 2571245 Specified Human Motion Recognition and Unknown Hand-Held Object Tracking
Authors: Jinsiang Shaw, Pik-Hoe Chen
Abstract:
This paper aims to integrate human recognition, motion recognition, and object tracking technologies without requiring a pre-training database model for motion recognition or the unknown object itself. Furthermore, it can simultaneously track multiple users and multiple objects. Unlike other existing human motion recognition methods, our approach employs a rule-based condition method to determine if a user hand is approaching or departing an object. It uses a background subtraction method to separate the human and object from the background, and employs behavior features to effectively interpret human object-grabbing actions. With an object’s histogram characteristics, we are able to isolate and track it using back projection. Hence, a moving object trajectory can be recorded and the object itself can be located. This particular technique can be used in a camera surveillance system in a shopping area to perform real-time intelligent surveillance, thus preventing theft. Experimental results verify the validity of the developed surveillance algorithm with an accuracy of 83% for shoplifting detection.Keywords: Automatic Tracking, Back Projection, Motion Recognition, Shoplifting
Procedia PDF Downloads 3331244 Road Safety and Accident Prevention in Third World Countries: A Case Study of NH-7 in India
Authors: Siddegowda, Y. A. Sathish, G. Krishnegowda, T. M. Mohan Kumar
Abstract:
Road accidents are a human tragedy. They involve high human suffering and monetary costs in terms of untimely death, injuries and social problems. India had earned the dubious distinction of having more number of fatalities due to road accidents in the world. Road safety is emerging as a major social concern around the world especially in India because of infrastructure project works. A case study was taken on NH – 07 which connects to various major cities and industries. The study shows that major cases of fatalities are due to bus, trucks and high speed vehicles. The main causes of accidents are due to high density, non-restriction of speed, use of mobile phones, lack of board signs on road parking, visibility restriction, improper geometric design, road use characteristics, environmental aspects, social aspects etc. Data analysis and preventive measures are enlightened in this paper.Keywords: accidents, environmental aspects, fatalities, geometric design, road user characteristics
Procedia PDF Downloads 2551243 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-time
Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl
Abstract:
In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method Web-App auto-generated twin data structure replication. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi" has been developed. A special login form has been developed with a special instance of data validation; this verification process secures the web application from its early stages. The system has been tested and validated, up to 99% of SQLi attacks have been prevented.Keywords: SQL injection, attacks, web application, accuracy, database
Procedia PDF Downloads 1511242 Qualitative Study of Organizational Variables Affecting Nurses’ Resilience in Pandemic Condition
Authors: Zahra Soltani Shal
Abstract:
Introduction: The COVID-19 pandemic marks an extraordinary global public health crisis unseen in the last century, with its rapid spread worldwide and associated mortality burden. Healthcare resilience during a pandemic is crucial not only for continuous and safe patients care but also for control of any outbreak. Aim: The present study was conducted to discover the organizational variables effective in increasing resilience and continuing the work of nurses in critical and stressful pandemic conditions. Method: The study population is nurses working in hospitals for patients with coronavirus. Sampling was done purposefully and information was collected from 15 nurses through In-depth semi-structured interviews. The interview was conducted to analyze the data using the framework analysis method consisting of five steps and is classified in the table. Results: According to the findings through semi-structural interviews, among organizational variables, organizational commitment (Affective commitment, continuous commitment, normative commitment) has played a prominent role in nurses' resilience. Discussion: despite the non-withdrawal of nurses and their resilience, due to the negative quality of their working life, the mentioned variable has affected their level of performance and ability and leads to fatigue and physical and mental exhaustion. Implications for practice: By equipping hospitals and improving the facilities of nurses, their organizational commitment can be increased and lead to their resilience in critical situations. Supervisors and senior officials at the hospitals should be responsible for nurses' health and safety. A clear and codified program in critical situations and comprehensive management is effective in improving the quality of the work-life of nurses. Creating an empathetic and interactive environment can help promote nurses' mental health.Keywords: organizational commitment, quality of work life, nurses resilience, pandemic, coronavirus
Procedia PDF Downloads 1621241 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances
Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim
Abstract:
This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering
Procedia PDF Downloads 1861240 Gamification Using Stochastic Processes: Engage Children to Have Healthy Habits
Authors: Andre M. Carvalho, Pedro Sebastiao
Abstract:
This article is based on a dissertation that intends to analyze and make a model, intelligently, algorithms based on stochastic processes of a gamification application applied to marketing. Gamification is used in our daily lives to engage us to perform certain actions in order to achieve goals and gain rewards. This strategy is an increasingly adopted way to encourage and retain customers through game elements. The application of gamification aims to encourage children between 6 and 10 years of age to have healthy habits and the purpose of serving as a model for use in marketing. This application was developed in unity; we implemented intelligent algorithms based on stochastic processes, web services to respond to all requests of the application, a back-office website to manage the application and the database. The behavioral analysis of the use of game elements and stochastic processes in children’s motivation was done. The application of algorithms based on stochastic processes in-game elements is very important to promote cooperation and to ensure fair and friendly competition between users which consequently stimulates the user’s interest and their involvement in the application and organization.Keywords: engage, games, gamification, randomness, stochastic processes
Procedia PDF Downloads 3301239 Leveraging Digital Cyber Technology for Self-Care and Improved Management of DMPA-SC Clients
Authors: Oluwaseun Adeleke, Grace Amarachi Omenife, Jennifer Adebambo, Mopelola Raji, Anthony Nwala, Mogbonjubade Adesulure
Abstract:
Introduction: The incorporation of digital technology in healthcare systems is instrumental in transforming the delivery, management, and overall experience of healthcare and holds the potential to scale up access through over 200 million active mobile phones used in Nigeria. Digital tools enable increased access to care, stronger client engagement, progress in research and data-driven insights, and more effective promotion of self-care and do-it-yourself practices. The Delivering Innovation in Self-Care (DISC) project 2021 has played a pivotal role in granting women greater autonomy over their sexual and reproductive health (SRH) through a variety of approaches, including information and training to self-inject contraception (DMPA-SC). To optimize its outcomes, the project also leverages digital technology platforms like social media: Facebook, Instagram, and Meet Tina (Chatbot) via WhatsApp, Customer Relationship Management (CRM) applications Freshworks, and Viamo. Methodology: The project has been successful at optimizing in-person digital cyberspace interaction to sensitize individuals effectively about self-injection and provide linkages to SI services. This platform employs the Freshworks CRM software application, along with specially trained personnel known as Cyber IPC Agents and DHIS calling centers. Integration of Freshworks CRM software with social media allows a direct connection with clients to address emerging issues, schedule follow-ups, send reminders to improve compliance with self-injection schedules, enhance the overall user experience for self-injection (SI) clients, and generate comprehensive reports and analytics on client interactions. Interaction covers a range of topics, including – How to use SI, learning more about SI, side-effects and its management, accessing services, fertility, ovulation, other family planning methods, inquiries related to Sexual Reproductive Health as well as uses an address log to connect them with nearby facilities or online pharmaceuticals. Results: Between the months of March to September, a total of 5,403 engagements were recorded. Among these, 4,685 were satisfactorily resolved. Since the program's inception, digital advertising has created 233,633,075 impressions, reached 12,715,582 persons, and resulted in 3,394,048 clicks. Conclusion: Leveraging digital technology has proven to be an invaluable tool in client management and improving client experience. The use of Cyber technology has enabled the successful development and maintenance of client relationships, which have been effective at providing support, facilitating delivery and compliance with DMPA-SC self-injection services, and ensuring overall client satisfaction. Concurrently, providing qualitative data, including user experience feedback, has enabled the derivation of crucial insights that inform the decision-making process and guide in normalizing self-care behavior.Keywords: selfcare, DMPA-SC self-injection, digital technology, cyber technology, freshworks CRM software
Procedia PDF Downloads 671238 Factors Afecting the Academic Performance of In-Service Students in Science Educaction
Authors: Foster Chilufya
Abstract:
This study sought to determine factors that affect academic performance of mature age students in Science Education at University of Zambia. It was guided by Maslow’s Hierarchy of Needs. The theory provided relationship between achievement motivation and academic performance. A descriptive research design was used. Both Qualitative and Quantitative research methods were used to collect data from 88 respondents. Simple random and purposive sampling procedures were used to collect from the respondents. Concerning factors that motivate mature-age students to choose Science Education Programs, the following were cited: need for self-actualization, acquisition of new knowledge, encouragement from friends and family members, good performance at high school and diploma level, love for the sciences, prestige and desire to be promoted at places of work. As regards factors that affected the academic performance of mature-age students, both negative and positive factors were identified. These included: demographic factors such as age and gender, psychological characteristics such as motivation and preparedness to learn, self-set goals, self esteem, ability, confidence and persistence, student prior academic performance at high school and college level, social factors, institutional factors and the outcomes of the learning process. In order to address the factors that negatively affect academic performance of mature-age students, the following measures were identified: encouraging group discussions, encouraging interactive learning process, providing a conducive learning environment, reviewing Science Education curriculum and providing adequate learning materials. Based on these factors, it is recommended that, the School of Education introduces a program in Science Education specifically for students training to be teachers of science. Additionally, introduce majors in Physics Education, Biology Education, Chemistry Education and Mathematics Education relevant to what is taught in high schools.Keywords: academic, performance, in-service, science
Procedia PDF Downloads 3111237 Topic Modelling Using Latent Dirichlet Allocation and Latent Semantic Indexing on SA Telco Twitter Data
Authors: Phumelele Kubheka, Pius Owolawi, Gbolahan Aiyetoro
Abstract:
Twitter is one of the most popular social media platforms where users can share their opinions on different subjects. As of 2010, The Twitter platform generates more than 12 Terabytes of data daily, ~ 4.3 petabytes in a single year. For this reason, Twitter is a great source for big mining data. Many industries such as Telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model represented in Table 1. A higher topic coherence score indicates better performance of the model.Keywords: big data, latent Dirichlet allocation, latent semantic indexing, telco, topic modeling, twitter
Procedia PDF Downloads 1501236 Six Tropical Medicinal Plants Effects in the Treatment of Prostate Diseases in Forty Different Patients
Authors: T. Nalowa, L. Foncha, S. Eposi
Abstract:
Prostate enlargement, prostate cancer are major global health problems affecting many men as they advance in age. It is highly recommended to encourage older men to get Prostate Specific Antigen test screening frequently. Conventional treatments like radiation, chemotherapy are associated with many side effects. And this situation is a call for concern. Traditional medicine is affordable, easily prepared with little or no side effects and it contains many phytochemicals. The study aims to find the cure for prostate cancer and prostate enlargement by extracting products from plant tissues of specific herbs to determine anti-inflammatory, anti-cancer, and anti-hematuria properties. Descriptive statistical analysis was applied to describe the data process. The commonly used method of preparation was extraction. Overall, 40 patients were classified based on their medical conditions on their underlying user report. Rural communities in Fako are rich sources of plants with medicinal properties. The used plants consequently provide basic information and aid to investigate the cure of prostate cancer and prostate enlargement, with great significance.Keywords: cancer, enlargement, metastases, prostate
Procedia PDF Downloads 751235 Youth Intelligent Personal Decision Aid
Authors: Norfiza Ibrahim, Norshuhada Shiratuddin, Siti Mahfuzah Sarif
Abstract:
Decision-making system is used to facilitate people in making the right choice for their important daily activities. For the youth, proper guidance in making important decisions is needed. Their skills in decision-making aid decisions will indirectly affect their future. For that reason, this study focuses on the intelligent aspects in the development of intelligent decision support application. The aid apparently integrates Personality Traits (PT) and Multiple Intelligence (MI) data in development of a computerized personal decision aid for youth named as Youth Personal Decision Aid (Youth PDA). This study is concerned with the aid’s helpfulness based on the hybrid intelligent process. There are four main items involved which are reliability, decision making effort, confidence, as well as decision process awareness. Survey method was applied to the actual user of this system, namely the school and the Institute of Higher Education (IPT)’s students. An establish instrument was used to evaluate the study. The results of the analysis and findings in the assessment indicates a high mean value of the four dimensions in helping Youth PDA to be accepted as a useful tool for the youth in decision-making.Keywords: decision support, multiple intelligent, personality traits, youth personal decision aid
Procedia PDF Downloads 6321234 Investigation of Failure Mechanisms of Composite Laminates with Delamination and Repaired with Bolts
Authors: Shuxin Li, Peihao Song, Haixiao Hu, Dongfeng Cao
Abstract:
The interactive deformation and failure mechanisms, including local bucking/delamination propagation and global bucking, are investigated in this paper with numerical simulation and validation with experimental results. Three dimensional numerical models using ABAQUS brick elements combined with cohesive elements and contact elements are developed to simulate the deformation and failure characteristics of composite laminates with and without delamination under compressive loading. The zero-thickness cohesive elements are inserted on the possible path of delamination propagation, and the inter-laminate behavior is characterized by the mixed-mode traction-separation law. The numerical simulations identified the complex feature of interaction among local buckling and/or delamination propagation and final global bucking for composite laminates with delamination under compressive loading. Firstly there is an interaction between the local buckling and delamination propagation, i.e., local buckling induces delamination propagation, and then delamination growth further enhances the local buckling. Secondly, the interaction between the out-plan deformation caused by local buckling and the global bucking deformation results in final failure of the composite laminates. The simulation results are validated by the good agreement with the experimental results published in the literature. The numerical simulation validated with experimental results revealed that the degradation of the load capacity, in particular of the compressive strength of composite structures with delamination, is mainly attributed to the combined local buckling/delamination propagation effects. Consequently, a simple field-bolt repair approach that can hinder the local buckling and prevent delamination growth is explored. The analysis and simulation results demonstrated field-bolt repair could effectively restore compressive strength of composite laminates with delamination.Keywords: cohesive elements, composite laminates, delamination, local and global bucking, field-bolt repair
Procedia PDF Downloads 1201233 Rejuvenate: Face and Body Retouching Using Image Inpainting
Authors: Hossam Abdelrahman, Sama Rostom, Reem Yassein, Yara Mohamed, Salma Salah, Nour Awny
Abstract:
In today’s environment, people are becoming increasingly interested in their appearance. However, they are afraid of their unknown appearance after a plastic surgery or treatment. Accidents, burns and genetic problems such as bowing of body parts of people have a negative impact on their mental health with their appearance and this makes them feel uncomfortable and underestimated. The approach presents a revolutionary deep learning-based image inpainting method that analyses the various picture structures and corrects damaged images. In this study, A model is proposed based on the in-painting of medical images with Stable Diffusion Inpainting method. Reconstructing missing and damaged sections of an image is known as image inpainting is a key progress facilitated by deep neural networks. The system uses the input of the user of an image to indicate a problem, the system will then modify the image and output the fixed image, facilitating for the patient to see the final result.Keywords: generative adversarial network, large mask inpainting, stable diffusion inpainting, plastic surgery
Procedia PDF Downloads 741232 A Perspective on Education to Support Industry 4.0: An Exploratory Study in the UK
Authors: Sin Ying Tan, Mohammed Alloghani, A. J. Aljaaf, Abir Hussain, Jamila Mustafina
Abstract:
Industry 4.0 is a term frequently used to describe the new upcoming industry era. Higher education institutions aim to prepare students to fulfil the future industry needs. Advancement of digital technology has paved the way for the evolution of education and technology. Evolution of education has proven its conservative nature and a high level of resistance to changes and transformation. The gap between the industry's needs and competencies offered generally by education is revealing the increasing need to find new educational models to face the future. The aim of this study was to identify the main issues faced by both universities and students in preparing the future workforce. From December 2018 to April 2019, a regional qualitative study was undertaken in Liverpool, United Kingdom (UK). Interviews were conducted with employers, faculty members and undergraduate students, and the results were analyzed using the open coding method. Four main issues had been identified, which are the characteristics of the future workforce, student's readiness to work, expectations on different roles played at the tertiary education level and awareness of the latest trends. The finding of this paper concluded that the employers and academic practitioners agree that their expectations on each other’s roles are different and in order to face the rapidly changing technology era, students should not only have the right skills, but they should also have the right attitude in learning. Therefore, the authors address this issue by proposing a learning framework known as 'ASK SUMA' framework as a guideline to support the students, academicians and employers in meeting the needs of 'Industry 4.0'. Furthermore, this technology era requires the employers, academic practitioners and students to work together in order to face the upcoming challenges and fast-changing technologies. It is also suggested that an interactive system should be provided as a platform to support the three different parties to play their roles.Keywords: attitude, expectations, industry needs, knowledge, skills
Procedia PDF Downloads 1241231 A Review of Encryption Algorithms Used in Cloud Computing
Authors: Derick M. Rakgoale, Topside E. Mathonsi, Vusumuzi Malele
Abstract:
Cloud computing offers distributed online and on-demand computational services from anywhere in the world. Cloud computing services have grown immensely over the past years, especially in the past year due to the Coronavirus pandemic. Cloud computing has changed the working environment and introduced work from work phenomenon, which enabled the adoption of technologies to fulfill the new workings, including cloud services offerings. The increased cloud computing adoption has come with new challenges regarding data privacy and its integrity in the cloud environment. Previously advanced encryption algorithms failed to reduce the memory space required for cloud computing performance, thus increasing the computational cost. This paper reviews the existing encryption algorithms used in cloud computing. In the future, artificial neural networks (ANN) algorithm design will be presented as a security solution to ensure data integrity, confidentiality, privacy, and availability of user data in cloud computing. Moreover, MATLAB will be used to evaluate the proposed solution, and simulation results will be presented.Keywords: cloud computing, data integrity, confidentiality, privacy, availability
Procedia PDF Downloads 1321230 Marketing Mixed Factors Affecting on Commercial Transactions Expectations through Social Networks
Authors: Ladaporn Pithuk
Abstract:
This study aims to investigate the marketing mixed factors that affecting on expectations about commercial transactions through social networks. The research method will using quantitative research, data was collected by questionnaires to person have experience access to trading over the internet for 400 sample by purposive sampling method. Data was analyzed by descriptive statistic including percentage, mean, standard deviation and using quality function deployment for hypothesis testing. Finding the most significant interrelationship between marketing mixed factors and commercial transactions expectations through social networks are product and place the relationship of five ties product and place (location) is involved in almost all will make the site a model that meets the needs of the user visit. In terms of price, the promotion, privacy, personalization and providing a process technical. This will make operations more efficient, reduce confusion, duplication, delays in data transmission, including the creation of different elements in products and services.Keywords: commercial transactions expectations, marketing mixed factors, social networks, consumer behavior
Procedia PDF Downloads 2371229 Consumer Behavior Towards Online Shopping in Kuwait: A Quantitative Analysis
Authors: Mitra Arami
Abstract:
The main objective of this paper is to identify the factors that influence Kuwaiti consumers’ behavior towards online shopping. A survey was conducted among B2C e-commerce customers using a structured self-administered questionnaire. The findings of this study show that B2C e-commerce customer behavior in Kuwait is strongly influenced by customer entertainment but weakly influenced by customer trust. While the overall research project involves exploratory research using mixed methods, the focus of this paper is on a quantitative analysis of responses obtained from a survey of Kuwaiti customers, with the design of the questionnaire instrument being based on the findings of a qualitative analysis. The main findings of the analysis include a list of key factors that affect Kuwait online shoppers, and quantitative indications of the relative strengths of the various relationships. This study provides a basis for further research and more in depth studies to find the scope of online shopping in Kuwait especially, the influence of hedonic and utilitarian motivations on user engagement.Keywords: e-commerce, online shopping, customer behavior, quantitative analysis, Kuwait
Procedia PDF Downloads 3781228 R Software for Parameter Estimation of Spatio-Temporal Model
Authors: Budi Nurani Ruchjana, Atje Setiawan Abdullah, I. Gede Nyoman Mindra Jaya, Eddy Hermawan
Abstract:
In this paper, we propose the application package to estimate parameters of spatiotemporal model based on the multivariate time series analysis using the R open-source software. We build packages mainly to estimate the parameters of the Generalized Space Time Autoregressive (GSTAR) model. GSTAR is a combination of time series and spatial models that have parameters vary per location. We use the method of Ordinary Least Squares (OLS) and use the Mean Average Percentage Error (MAPE) to fit the model to spatiotemporal real phenomenon. For case study, we use oil production data from volcanic layer at Jatibarang Indonesia or climate data such as rainfall in Indonesia. Software R is very user-friendly and it is making calculation easier, processing the data is accurate and faster. Limitations R script for the estimation of model parameters spatiotemporal GSTAR built is still limited to a stationary time series model. Therefore, the R program under windows can be developed either for theoretical studies and application.Keywords: GSTAR Model, MAPE, OLS method, oil production, R software
Procedia PDF Downloads 2421227 Design and Implementation of Pseudorandom Number Generator Using Android Sensors
Authors: Mochamad Beta Auditama, Yusuf Kurniawan
Abstract:
A smartphone or tablet require a strong randomness to establish secure encrypted communication, encrypt files, etc. Therefore, random number generation is one of the main keys to provide secrecy. Android devices are equipped with hardware-based sensors, such as accelerometer, gyroscope, etc. Each of these sensors provides a stochastic process which has a potential to be used as an extra randomness source, in addition to /dev/random and /dev/urandom pseudorandom number generators. Android sensors can provide randomness automatically. To obtain randomness from Android sensors, each one of Android sensors shall be used to construct an entropy source. After all entropy sources are constructed, output from these entropy sources are combined to provide more entropy. Then, a deterministic process is used to produces a sequence of random bits from the combined output. All of these processes are done in accordance with NIST SP 800-22 and the series of NIST SP 800-90. The operation conditions are done 1) on Android user-space, and 2) the Android device is placed motionless on a desk.Keywords: Android hardware-based sensor, deterministic process, entropy source, random number generation/generators
Procedia PDF Downloads 3741226 Development the Potential of Parking Tax and Parking Retribution Revenues: Case Study in Bekasi City
Authors: Ivan Yudianto
Abstract:
The research objectives are to analyze the factors that impede the Parking Tax and Parking Retribution collection in Bekasi City Government, analyzing the factors that can increase local own revenue from the tax sector of parking tax and parking retribution, analyze monitoring the parking retribution collection by the Bekasi City Government, analyze strategies Bekasi City Government through the preparation of a roadmap and action plan to increase parking tax and parking retribution revenues. The approach used in this research is a qualitative approach. Qualitative research is used because the problem is not yet clear and the object to be studied will be holistic, complex, and dynamic, and the relationship will be interactive symptoms. Methods of data collection and technical analysis of the data was in-depth interviews, participant observation, documentary materials, literature, and triangulation, as well as new methods such as the methods of visual materials and internet browsing. The results showed that there are several factors that become an obstacle such as the parking taxpayer does not disclose the actual parking revenue, the parking taxpayer are late or do not pay Parking Tax, many parking locations controlled by illegal organizations, shortage of human resources in charge levy and supervise the parking tax and parking retribution collection in the Bekasi City Government, surveillance parking tax and parking retribution are not scheduled on a regular basis. Several strategic priorities in order to develop the potential of the Parking Tax and Parking Retribution in the Bekasi City Government, namely through increased controling and monitoring of the Parking Taxpayer, forming a team of auditors to audit the Parking Taxpayer, seek law enforcement persuasive and educative to reduce Parking Taxpayer wayward, providing strict sanctions against the Parking Taxpayer disobedient, revised regulations mayors about locations of parking in Bekasi City, rationalize revenues target of Parking Retribution, conducting takeover attempts parking location on the roadside of the individual or specific group, and drafting regional regulations on parking subscribe.Keywords: local own revenue, parking retribution, parking tax, parking taxpayer
Procedia PDF Downloads 326