Search results for: image narrative
1379 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases
Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar
Abstract:
Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning
Procedia PDF Downloads 1191378 LuMee: A Centralized Smart Protector for School Children who are Using Online Education
Authors: Lumindu Dilumka, Ranaweera I. D., Sudusinghe S. P., Sanduni Kanchana A. M. K.
Abstract:
This study was motivated by the challenges experienced by parents and guardians in ensuring the safety of children in cyberspace. In the last two or three years, online education has become very popular all over the world due to the Covid 19 pandemic. Therefore, parents, guardians and teachers must ensure the safety of children in cyberspace. Children are more likely to go astray and there are plenty of online programs are waiting to get them on the wrong track and also, children who are engaging in the online education can be distracted at any moment. Therefore, parents should keep a close check on their children's online activity. Apart from that, due to the unawareness of children, they tempt to share their sensitive information, causing a chance of being a victim of phishing attacks from outsiders. These problems can be overcome through the proposed web-based system. We use feature extraction, web tracking and analysis mechanisms, image processing and name entity recognition to implement this web-based system.Keywords: online education, cyber bullying, social media, face recognition, web tracker, privacy data
Procedia PDF Downloads 891377 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator
Authors: Jaeyoung Lee
Abstract:
Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.Keywords: edge network, embedded network, MMA, matrix multiplication accelerator, semantic segmentation network
Procedia PDF Downloads 1291376 Fiber Orientation Measurements in Reinforced Thermoplastics
Authors: Ihsane Modhaffar
Abstract:
Fiber orientation is essential for the physical properties of composite materials. The theoretical parameters of a given reinforcement are usually known and widely used to predict the behavior of the material. In this work, we propose an image processing approach to estimate true principal directions and fiber orientation during injection molding processes of short fiber reinforced thermoplastics. Generally, a group of fibers are described in terms of probability distribution function or orientation tensor. Numerical techniques for the prediction of fiber orientation are also considered for concentrated situations. The flow was considered to be incompressible, and behave as Newtonian fluid containing suspensions of short-fibers. The governing equations, of this problem are: the continuity, the momentum and the energy. The obtained results were compared to available experimental findings. A good agreement between the numerical results and the experimental data was achieved.Keywords: injection, composites, short-fiber reinforced thermoplastics, fiber orientation, incompressible fluid, numerical simulation
Procedia PDF Downloads 5321375 Determination of Johnson-Cook Material and Failure Model Constants for High Tensile Strength Tendon Steel in Post-Tensioned Concrete Members
Authors: I. Gkolfinopoulos, N. Chijiwa
Abstract:
To evaluate the remaining capacity in concrete tensioned members, it is important to accurately estimate damage in precast concrete tendons. In this research Johnson-Cook model and damage parameters of high-strength steel material were calculated by static and dynamic uniaxial tensile tests. Replication of experimental results was achieved through finite element analysis for both single 8-noded three-dimensional element as well as the full-scale dob-bone shaped model and relevant model parameters are proposed. Finally, simulation results in terms of strain and deformation were verified using digital image correlation analysis.Keywords: DIC analysis, Johnson-Cook, quasi-static, dynamic, rupture, tendon
Procedia PDF Downloads 1471374 Foot Recognition Using Deep Learning for Knee Rehabilitation
Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia
Abstract:
The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network
Procedia PDF Downloads 1611373 Lovely, Lyrical, Lilting: Kubrick’s Translation of Lolita’s Voice
Authors: Taylor La Carriere
Abstract:
“What I had madly possessed was not she, but my own creation, another, fanciful Lolita perhaps, more real than Lolita; overlapping, encasing he and having no will, no consciousness indeed, no life of her own,” Vladimir Nabokov writes in his seminal work, Lolita. Throughout Nabokov’s novel, the eponymous character is rendered nonexistent through unreliable narrator Humbert Humbert’s impenetrable narrative, infused with lyrical rationalization. Instead, Lolita is “safely solipsised,” as Humbert muses, solidifying the potential for the erasure of Lolita’s agency and identity. In this literary work, Lolita’s voice is reduced to a nearly invisible presence, only seen through the eyes of her captor. However, in Stanley Kubrick’s film adaptation of Lolita (1962), the “nymphet,” as Nabokov coins, reemerges with a voice of her own, fueled by a lyric impulse, that displaces Humbert’s first-person narration. The lyric, as defined by Catherine Ing, is the voice of the invisible; it is also characterized by performance, the concentrated utterance of individual emotion, and the appearance of spontaneity. The novel’s lyricism is largely in the service of Humbert’s “seductive” voice, while the film reorients it more to Lolita’s subjectivity. Through a close analysis of Kubrick’s cinematic techniques, this paper examines the emergence and translation of Lolita’s voice in contrast with Humbert’s attempts to silence her in Nabokov’s Lolita, hypothesizing that Kubrick translates Lolita’s presence into a visual and aural voice with lyrical attributes, exemplified through the establishment of an altered power dynamic, Sue Lyon’s transformative performance as the titular character, Nelson Riddle and Bob Harris’ musical score, and the omission of Humbert’s first-person point-of-view. In doing so, the film reclaims Lolita’s agency by taking instances of Lolita’s voice in the novel as depicted in the last half of the work and expanding upon them in a way only cinematic depictions could allow. The results of this study suggest that Lolita’s voice in Kubrick’s adaptation functions without disrupting the lyricism present in Nabokov’s source text, materializing through the actions, expressions, and performance of Sue Lyon in the film. This voice, fueled by a lyric impulse of its own, refutes the silence bestowed upon the titular character and enables its ultimate reclamation upon the silver screen.Keywords: cinema, adaptation, Lolita, lyric voice
Procedia PDF Downloads 1931372 Flow Visualization and Mixing Enhancement in Y-Junction Microchannel with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure using High-Viscous Liquids
Authors: Ayalew Yimam Ali
Abstract:
The Y-shaped microchannel system is used to mix up low or high viscosities of different fluids, and the laminar flow with high-viscous water-glycerol fluids makes the mixing at the entrance Y-junction region a challenging issue. Acoustic streaming (AS) is time-average, a steady second-order flow phenomenon that could produce rolling motion in the microchannel by oscillating low-frequency range acoustic transducer by inducing acoustic wave in the flow field is the promising strategy to enhance diffusion mass transfer and mixing performance in laminar flow phenomena. In this study, the 3D trapezoidal Structure has been manufactured with advanced CNC machine cutting tools to produce the molds of trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm spine sharp-edge tip depth from PMMA glass (Polymethylmethacrylate) and the microchannel has been fabricated using PDMS (Polydimethylsiloxane) which could be grown-up longitudinally in Y-junction microchannel mixing region top surface to visualized 3D rolling steady acoustic streaming and mixing performance evaluation using high-viscous miscible fluids. The 3D acoustic streaming flow patterns and mixing enhancement were investigated using the micro-particle image velocimetry (μPIV) technique with different spine depth lengths, channel widths, high volume flow rates, oscillation frequencies, and amplitude. The velocity and vorticity flow fields show that a pair of 3D counter-rotating streaming vortices were created around the trapezoidal spine structure and observing high vorticity maps up to 8 times more than the case without acoustic streaming in Y-junction with the high-viscosity water-glycerol mixture fluids. The mixing experiments were performed by using fluorescent green dye solution with de-ionized water on one inlet side, de-ionized water-glycerol with different mass-weight percentage ratios on the other inlet side of the Y-channel and evaluated its performance with the degree of mixing at different amplitudes, flow rates, frequencies, and spine sharp-tip edge angles using the grayscale value of pixel intensity with MATLAB Software. The degree of mixing (M) characterized was found to significantly improved to 0.96.8% with acoustic streaming from 67.42% without acoustic streaming, in the case of 0.0986 μl/min flow rate, 12kHz frequency and 40V oscillation amplitude at y = 2.26 mm. The results suggested the creation of a new 3D steady streaming rolling motion with a high volume flow rate around the entrance junction mixing region, which promotes the mixing of two similar high-viscosity fluids inside the microchannel, which is unable to mix by the laminar flow with low viscous conditions.Keywords: nano fabrication, 3D acoustic streaming flow visualization, micro-particle image velocimetry, mixing enhancement
Procedia PDF Downloads 331371 Topological Quantum Diffeomorphisms in Field Theory and the Spectrum of the Space-Time
Authors: Francisco Bulnes
Abstract:
Through the Fukaya conjecture and the wrapped Floer cohomology, the correspondences between paths in a loop space and states of a wrapping space of states in a Hamiltonian space (the ramification of field in this case is the connection to the operator that goes from TM to T*M) are demonstrated where these last states are corresponding to bosonic extensions of a spectrum of the space-time or direct image of the functor Spec, on space-time. This establishes a distinguished diffeomorphism defined by the mapping from the corresponding loops space to wrapping category of the Floer cohomology complex which furthermore relates in certain proportion D-branes (certain D-modules) with strings. This also gives to place to certain conjecture that establishes equivalences between moduli spaces that can be consigned in a moduli identity taking as space-time the Hitchin moduli space on G, whose dual can be expressed by a factor of a bosonic moduli spaces.Keywords: Floer cohomology, Fukaya conjecture, Lagrangian submanifolds, quantum topological diffeomorphism
Procedia PDF Downloads 3091370 Automatic Battery Charging for Rotor Wings Type Unmanned Aerial Vehicle
Authors: Jeyeon Kim
Abstract:
This paper describes the development of the automatic battery charging device for the rotor wings type unmanned aerial vehicle (UAV) and the positioning method that can be accurately landed on the charging device when landing. The developed automatic battery charging device is considered by simple maintenance, durability, cost and error of the positioning when landing. In order to for the UAV accurately land on the charging device, two kinds of markers (a color marker and a light marker) installed on the charging device is detected by the camera mounted on the UAV. And then, the UAV is controlled so that the detected marker becomes the center of the image and is landed on the device. We conduct the performance evaluation of the proposal positioning method by the outdoor experiments at day and night, and show the effectiveness of the system.Keywords: unmanned aerial vehicle, automatic battery charging, positioning
Procedia PDF Downloads 3631369 Intellectual Property Rights Applicability in the Sport Industry
Authors: Poopak Dehshahri
Abstract:
The applicability of intellectual property rights in the sports industry from the present paper’s perspective includes athletic skills, which are comprised of two parts: athletic movements and athletic methods. Also, the applicability pertaining to the athletes᾽ personality, such as the Name, the Image, the Voice, the Signature and their Shirt Number, are deemed as related to the sports natural persons. Radio and TV broadcasting rights of the sports events, the signs and symbols of the athletic institutions including the sign and symbol, trademark (brand name), the name and the place of residence of the sports clubs, the Sports events and the special sports, special slogan of the sports clubs or sports competitions and the sports clothing design are Included under the athletic institutions᾽ applicability of intellectual property rights.Keywords: sport industry, intellectual property, sport skills, right to fame, radio and television broadcasting right, sport sign
Procedia PDF Downloads 671368 Examining Experiences of QTBIPOC Disabled Students in Canadian Post-Secondary Institutions
Authors: Manchari Paranthahan
Abstract:
Higher education has often presented barriers to many communities as a result of its colonial roots. While higher education was initially created for white cis-males, student populations have become more diverse in the past few decades. Despite this increase in diversity, barriers like rising costs and hostile education settings continue to make higher education hard to access for certain demographics. These barriers and limitations are compounded for students who are intersectionality marginalized, such as Queer and Trans Black, Indigenous and People of Colour (QTBIPOC) Disabled students. As of 2021-2022, only 57.5% of the Canadian population between the ages of 25 - 64 held a college or university credential, with only 32.9% holding a bachelor’s degree or higher. In that same time frame, only 0.64% of the students who successfully completed a higher education program identified as transgender or nonbinary. QTBIPOC Disabled students experience diverse forms of oppression while navigating education systems, often preventing them from completing their education successfully. This research project will investigate the complex experiences of intersectional marginalization of QTBIPOC Disabled students in Canadian post-secondary education systems. Through this investigation, this research seeks to reimagine more inclusive and accessible education systems in Canada and beyond. The social and academic experiences of QTBIPOC Disabled students in education systems are largely absent from scholarly literature, speaking to their continued marginalization and erasure from academic discourses. The lack of representation for this community in academia reinforces the idea that there is no space for marginalized bodies in further education, a discriminatory belief that this research project aims to investigate and reframe with this project. This research study will be informed by Critical Race theory, Queer Theory and Critical Disability Theories. Through a blend of critical narrative ethnography and ethnodrama for my methodological framing. Using these methodologies will speak to the intersecting factors that impact the experiences that QTBIPOC Disabled students have in education systems while offering space to analyze and create new systems of learning that benefits all students.Keywords: QTBIPOC, queer, disability, pedagogy
Procedia PDF Downloads 251367 Statistical Analysis of Natural Images after Applying ICA and ISA
Authors: Peyman Sheikholharam Mashhadi
Abstract:
Difficulties in analyzing real world images in classical image processing and machine vision framework have motivated researchers towards considering the biology-based vision. It is a common belief that mammalian visual cortex has been adapted to the statistics of the real world images through the evolution process. There are two well-known successful models of mammalian visual cortical cells: Independent Component Analysis (ICA) and Independent Subspace Analysis (ISA). In this paper, we statistically analyze the dependencies which remain in the components after applying these models to the natural images. Also, we investigate the response of feature detectors to gratings with various parameters in order to find optimal parameters of the feature detectors. Finally, the selectiveness of feature detectors to phase, in both models is considered.Keywords: statistics, independent component analysis, independent subspace analysis, phase, natural images
Procedia PDF Downloads 3391366 Understanding and Improving Neural Network Weight Initialization
Authors: Diego Aguirre, Olac Fuentes
Abstract:
In this paper, we present a taxonomy of weight initialization schemes used in deep learning. We survey the most representative techniques in each class and compare them in terms of overhead cost, convergence rate, and applicability. We also introduce a new weight initialization scheme. In this technique, we perform an initial feedforward pass through the network using an initialization mini-batch. Using statistics obtained from this pass, we initialize the weights of the network, so the following properties are met: 1) weight matrices are orthogonal; 2) ReLU layers produce a predetermined number of non-zero activations; 3) the output produced by each internal layer has a unit variance; 4) weights in the last layer are chosen to minimize the error in the initial mini-batch. We evaluate our method on three popular architectures, and a faster converge rates are achieved on the MNIST, CIFAR-10/100, and ImageNet datasets when compared to state-of-the-art initialization techniques.Keywords: deep learning, image classification, supervised learning, weight initialization
Procedia PDF Downloads 1351365 PIV Measurements of the Instantaneous Velocities for Single and Two-Phase Flows in an Annular Duct
Authors: Marlon M. Hernández Cely, Victor E. C. Baptistella, Oscar M. H. Rodríguez
Abstract:
Particle Image Velocimetry (PIV) is a well-established technique in the field of fluid flow measurement and provides instantaneous velocity fields over global domains. It has been applied to external and internal flows and in single and two-phase flows. Regarding internal flow, works about the application of PIV in annular ducts are scanty. An experimental work is presented, where flow of water is studied in an annular duct of inner diameter of 60 mm and outer diameter of 155 mm and 10.5-m length, with the goal of obtaining detailed velocity measurements. Depending on the flow rates of water, it can be laminar, transitional or turbulent. In this study, the water flow rate was kept at three different values for the annular duct, allowing the analysis of one laminar and two turbulent flows. Velocity fields and statistic quantities of the turbulent flow were calculated.Keywords: PIV, annular duct, laminar, turbulence, velocity profile
Procedia PDF Downloads 3511364 Automatic Landmark Selection Based on Feature Clustering for Visual Autonomous Unmanned Aerial Vehicle Navigation
Authors: Paulo Fernando Silva Filho, Elcio Hideiti Shiguemori
Abstract:
The selection of specific landmarks for an Unmanned Aerial Vehicles’ Visual Navigation systems based on Automatic Landmark Recognition has significant influence on the precision of the system’s estimated position. At the same time, manual selection of the landmarks does not guarantee a high recognition rate, which would also result on a poor precision. This work aims to develop an automatic landmark selection that will take the image of the flight area and identify the best landmarks to be recognized by the Visual Navigation Landmark Recognition System. The criterion to select a landmark is based on features detected by ORB or AKAZE and edges information on each possible landmark. Results have shown that disposition of possible landmarks is quite different from the human perception.Keywords: clustering, edges, feature points, landmark selection, X-means
Procedia PDF Downloads 2811363 Entrepreneurship Education Revised: Merging a Theory-Based and Action-Based Framework for Entrepreneurial Narratives' Impact as an Awareness-Raising Teaching Tool
Authors: Katharina Fellnhofer, Kaisu Puumalainen
Abstract:
Despite the current worldwide increasing interest in entrepreneurship education (EE), little attention has been paid to innovative web-based ways such as the narrative approach by telling individual stories of entrepreneurs via multimedia for demonstrating the impact on individuals towards entrepreneurship. In addition, this research discipline is faced with no consensus regarding its effective content of teaching materials and tools. Therefore, a qualitative hypothesis-generating research contribution is required to aim at drawing new insights from published works in the EE field of research to serve for future research related to multimedia entrepreneurial narratives. Based on this background, our effort will focus on finding support regarding following introductory statement: Multimedia success and failure stories of real entrepreneurs show potential to change perceptions towards entrepreneurship in a positive way. The proposed qualitative conceptual paper will introduce the underlying background for this research framework. Therefore, as a qualitative hypothesis-generating research contribution it aims at drawing new insights from published works in the EE field of research related to entrepreneurial narratives to serve for future research. With the means of the triangulation of multiple theories, we will utilize the foundation for multimedia-based entrepreneurial narratives applying a learning-through-multimedia-real-entrepreneurial-narratives pedagogical tool to facilitate entrepreneurship. Our effort will help to demystify how value-oriented entrepreneurs telling their stories multimedia can simultaneously enhance EE. Therefore, the paper will build new-fangled bridges between well-cited theoretical constructs to build a robust research framework. Overall, the intended contribution seeks to emphasize future research of currently under-researched issues in the EE sphere, which are considered to be essential not only to academia, as well as to business and society having future jobs-providing growth-oriented entrepreneurs in mind. The Authors would like to thank the Austrian Science Fund FWF: [J3740 – G27].Keywords: entrepreneurship education, entrepreneurial attitudes and perceptions, entrepreneurial intention, entrepreneurial narratives
Procedia PDF Downloads 2591362 The Impact of Artificial Intelligence on Autism Attitude and Skills
Authors: Sara Fayez Fawzy Mikhael
Abstract:
Inclusive education services for students with autism are still developing in Thailand. Although many more children with intellectual disabilities have been attending school since the Thai government enacted the Education for Persons with Disabilities Act in 2008, facilities for students with disabilities and their families are generally inadequate. This comprehensive study used the Attitudes and Preparedness for Teaching Students with Autism Scale (APTSAS) to examine the attitudes and preparedness of 110, elementary teachers in teaching students with autism in the general education setting. Descriptive statistical analyzes showed that the most important factor in the formation of a negative image of teachers with autism is student attitudes. Most teachers also stated that their pre-service training did not prepare them to meet the needs of children with special needs who cannot speak. The study is important and provides directions for improving non-formal teacher education in Thailand.Keywords: attitude, autism, teachers, thailandsports activates, movement skills, motor skills
Procedia PDF Downloads 641361 Algorithm for Recognizing Trees along Power Grid Using Multispectral Imagery
Authors: C. Hamamura, V. Gialluca
Abstract:
Much of the Eclectricity Distributors has about 70% of its electricity interruptions arising from cause "trees", alone or associated with wind and rain and with or without falling branch and / or trees. This contributes inexorably and significantly to outages, resulting in high costs as compensation in addition to the operation and maintenance costs. On the other hand, there is little data structure and solutions to better organize the trees pruning plan effectively, minimizing costs and environmentally friendly. This work describes the development of an algorithm to provide data of trees associated to power grid. The method is accomplished on several steps using satellite imagery and geographically vectorized grid. A sliding window like approach is performed to seek the area around the grid. The proposed method counted 764 trees on a patch of the grid, which was very close to the 738 trees counted manually. The trees data was used as a part of a larger project that implements a system to optimize tree pruning plan.Keywords: image pattern recognition, trees pruning, trees recognition, neural network
Procedia PDF Downloads 4991360 Establishment of Precision System for Underground Facilities Based on 3D Absolute Positioning Technology
Authors: Yonggu Jang, Jisong Ryu, Woosik Lee
Abstract:
The study aims to address the limitations of existing underground facility exploration equipment in terms of exploration depth range, relative depth measurement, data processing time, and human-centered ground penetrating radar image interpretation. The study proposed the use of 3D absolute positioning technology to develop a precision underground facility exploration system. The aim of this study is to establish a precise exploration system for underground facilities based on 3D absolute positioning technology, which can accurately survey up to a depth of 5m and measure the 3D absolute location of precise underground facilities. The study developed software and hardware technologies to build the precision exploration system. The software technologies developed include absolute positioning technology, ground surface location synchronization technology of GPR exploration equipment, GPR exploration image AI interpretation technology, and integrated underground space map-based composite data processing technology. The hardware systems developed include a vehicle-type exploration system and a cart-type exploration system. The data was collected using the developed exploration system, which employs 3D absolute positioning technology. The GPR exploration images were analyzed using AI technology, and the three-dimensional location information of the explored precise underground facilities was compared to the integrated underground space map. The study successfully developed a precision underground facility exploration system based on 3D absolute positioning technology. The developed exploration system can accurately survey up to a depth of 5m and measure the 3D absolute location of precise underground facilities. The system comprises software technologies that build a 3D precise DEM, synchronize the GPR sensor's ground surface 3D location coordinates, automatically analyze and detect underground facility information in GPR exploration images and improve accuracy through comparative analysis of the three-dimensional location information, and hardware systems, including a vehicle-type exploration system and a cart-type exploration system. The study's findings and technological advancements are essential for underground safety management in Korea. The proposed precision exploration system significantly contributes to establishing precise location information of underground facility information, which is crucial for underground safety management and improves the accuracy and efficiency of exploration. The study addressed the limitations of existing equipment in exploring underground facilities, proposed 3D absolute positioning technology-based precision exploration system, developed software and hardware systems for the exploration system, and contributed to underground safety management by providing precise location information. The developed precision underground facility exploration system based on 3D absolute positioning technology has the potential to provide accurate and efficient exploration of underground facilities up to a depth of 5m. The system's technological advancements contribute to the establishment of precise location information of underground facility information, which is essential for underground safety management in Korea.Keywords: 3D absolute positioning, AI interpretation of GPR exploration images, complex data processing, integrated underground space maps, precision exploration system for underground facilities
Procedia PDF Downloads 621359 Slöjd International: Translating and Tracking Nordic Curricula for Holistic Health, 1890s-1920s
Authors: Sasha Mullally
Abstract:
This paper investigates the transnational circulation of European Nordic ideas about and programs for manual education and training over the decades spanning the late 19th and early 20th centuries. Based on the unexamined but voluminous correspondence (English-language) of Otto Salomon, an internationally famous education reformer who popularized a form of manual training called "slöjd" (anglicized as "sloyd"), this paper examines it's circulation and translation across global cultures. Salomon, a multilingual promoter of new standardized program for manual training, based his curricula on traditional handcrqafts, particularly Swedish woodworking. He and his followers claimed that the integration of manual training and craft work provided primary and secondary educators with an opportunity to cultivate the mental, but also the physical, and tangentially, the spiritual, health of children. While historians have examined the networks who came together in person to train at his slöjd school for educators in western Sweden, no one has mapped the international community he cultivated over decades of letter writing. Additionally, while the circulation of his ideas in Britain and Germany, as well as the northeastern United States has been placed in a broader narrative of "western" education reform in the Progressive or late Victorian era, no one has examined the correspondence for evidence of the program's wider international appeal beyond Europe and North America. This paper fills this gap by examining the breadth of his reach through active correspondence with educators in Asia (Japan), South America (Brazil), and Africa (South Africa and Zimbabwe). As such, this research presents an opportunity to map the international communities of education reformers active at the turn of the last century, compare and contrast their understandings of and interpretations of "holistic" education, and reveal the ways manual formation was understood to be foundational to the healthy development of children.Keywords: history of education, history of medicine and psychiatry, child health, child formation, internationalism
Procedia PDF Downloads 1051358 Citizen Becoming: ‘In-between’ State and Tibetan Self-Fashioning (1946- 1986)
Authors: Noel Mariam George
Abstract:
This paper explores the history of Tibetan citizenship, one of the primary non-partition refugee communities, and their negotiation of 'in-betweenness' as a mode of political and legal belonging in India. While South Asian citizenship histories have primarily centered around the 1947 and 1971 Partitions, this paper uncovers an often-overlooked period, spanning the 1950s, 60s, and 70s, when Tibetans began to assert their claims within the Indian state. This paper challenges the conventional teleological narrative of partition by highlighting a distinct period when the Indian state negotiated boundaries of belonging for non-partition refugees differently. It explores how Tibetans occupied an 'in-between' status, existing as both foreigners and potential citizens, thereby complicating the traditional citizen-refugee binary. Moreover, it underscores that citizenship during this era was not solely determined by legal frameworks. Instead, it was a dynamic process shaped by historical contexts, practices, and relationships. Tibetans pursued citizen-like claims through legal battles, lobbying, protests, volunteering, and collective solidarity, revealing citizenship as an 'act' embedded in their daily lives. Tibetan liminality is characterized by their simultaneous maintenance of exile identity and pursuit of citizen-like claims in India. The cautious Indian state, reluctant to label Tibetans as either 'refugees' or 'citizens,' has contributed to this liminal status. This duality has intensified Tibetans' precarity but has also led to creative and transformative practices that have expanded the boundaries of democracy and citizenship in India. Beyond traditional narratives of Indian benevolence, this paper scrutinizes the geopolitical factors driving Indian support for Tibetans. Additionally, it challenges 'common-sensical' narratives by demonstrating how Tibetans strategically navigated Indian citizenship. Using archival sources from the British Library and the National Archives in London and Delhi along with digitized materials, the paper reveals citizenship as a multi-faceted historical process. It examines how Tibetans exercised agency within the Indian state despite their liminal status.Keywords: citizenship, borderlands, forced displacement, refugees in India
Procedia PDF Downloads 761357 Quantitative Analysis of Camera Setup for Optical Motion Capture Systems
Authors: J. T. Pitale, S. Ghassab, H. Ay, N. Berme
Abstract:
Biomechanics researchers commonly use marker-based optical motion capture (MoCap) systems to extract human body kinematic data. These systems use cameras to detect passive or active markers placed on the subject. The cameras use triangulation methods to form images of the markers, which typically require each marker to be visible by at least two cameras simultaneously. Cameras in a conventional optical MoCap system are mounted at a distance from the subject, typically on walls, ceiling as well as fixed or adjustable frame structures. To accommodate for space constraints and as portable force measurement systems are getting popular, there is a need for smaller and smaller capture volumes. When the efficacy of a MoCap system is investigated, it is important to consider the tradeoff amongst the camera distance from subject, pixel density, and the field of view (FOV). If cameras are mounted relatively close to a subject, the area corresponding to each pixel reduces, thus increasing the image resolution. However, the cross section of the capture volume also decreases, causing reduction of the visible area. Due to this reduction, additional cameras may be required in such applications. On the other hand, mounting cameras relatively far from the subject increases the visible area but reduces the image quality. The goal of this study was to develop a quantitative methodology to investigate marker occlusions and optimize camera placement for a given capture volume and subject postures using three-dimension computer-aided design (CAD) tools. We modeled a 4.9m x 3.7m x 2.4m (LxWxH) MoCap volume and designed a mounting structure for cameras using SOLIDWORKS (Dassault Systems, MA, USA). The FOV was used to generate the capture volume for each camera placed on the structure. A human body model with configurable posture was placed at the center of the capture volume on CAD environment. We studied three postures; initial contact, mid-stance, and early swing. The human body CAD model was adjusted for each posture based on the range of joint angles. Markers were attached to the model to enable a full body capture. The cameras were placed around the capture volume at a maximum distance of 2.7m from the subject. We used the Camera View feature in SOLIDWORKS to generate images of the subject as seen by each camera and the number of markers visible to each camera was tabulated. The approach presented in this study provides a quantitative method to investigate the efficacy and efficiency of a MoCap camera setup. This approach enables optimization of a camera setup through adjusting the position and orientation of cameras on the CAD environment and quantifying marker visibility. It is also possible to compare different camera setup options on the same quantitative basis. The flexibility of the CAD environment enables accurate representation of the capture volume, including any objects that may cause obstructions between the subject and the cameras. With this approach, it is possible to compare different camera placement options to each other, as well as optimize a given camera setup based on quantitative results.Keywords: motion capture, cameras, biomechanics, gait analysis
Procedia PDF Downloads 3101356 The Seeds of Limitlessness: Dambudzo Marechera's Utopian Thinking
Authors: Emily S. M. Chow
Abstract:
The word ‘utopia’ was coined by Thomas More in Utopia (1516). Its Greek roots ‘ou’ means ‘not’ and ‘topos’ means ‘place.’ In other words, it literally refers to ‘no-place.’ However, the possibility of having an alternative and better future society has always been appealing. In fact, at the core of every utopianism is the search for a future alternative state with the anticipation of a better life. Nonetheless, the practicalities of such ideas have never ceased to be questioned. At times, building a utopia presents itself as a divisive act. In addition to the violence that must be employed to sweep away the old regime in order to make space for the new, all utopias carry within them the potential for bringing catastrophic consequences to human life. After all, every utopia seeks to remodel the individual in a very particular way for the benefit of the masses. In this sense, utopian thinking has the potential both to create and destroy the future. While writing during a traumatic transitional period in Zimbabwe’s history, Dambudzo Marechera witnessed an age of upheavals in which different parties battled for power over Zimbabwe. Being aware of the fact that all institutionalized narratives, be they originated from the governance of the UK, Ian Smith’s white minority regime or Zimbabwe’s revolutionary parties, revealed themselves to be nothing more than fiction, Marechera realized the impossibility of determining reality absolutely. As such, this thesis concerns the writing of the Zimbabwean maverick, Dambudzo Marechera. It argues that Marechera writes a unique vision of utopia. In short, for Marechera utopia is not a static entity but a moment of perpetual change. He rethinks utopia in the sense that he phrases it as an event that ceaselessly contests institutionalized and naturalized narratives of a post-colonial self and its relationship to society. Marechera writes towards a vision of an alternative future of the country. Yet, it is a vision that does not constitute a fully rounded sense of utopia. Being cautious about the world and the operation of power upon the people, rather than imposing his own utopian ideals, Marechera chooses to instead peeling away the narrative constitution of the self in relation to society in order to turn towards a truly radical utopian thinking that empowers the individual.Keywords: African literature, Marechera, post-colonial literature, utopian studies
Procedia PDF Downloads 4131355 Clinicians’ Perspectives on Child Language Brokering
Authors: Carmen Pena-Díaz
Abstract:
Linguistic and cultural difficulties regarding the access and use of public services, as well as facilitating communication at all levels, are problems which have not yet been tackled by authorities in Spain. In fact, linguistic and cultural issues are often not recognised as an integral part of migratory movements or social integration. While professionals of interlinguistic and intercultural communication (translators, interpreters, mediators) know that language and culture are key components to achieve immigrant integration and consolidate a truly multilingual society, policymakers at local, national, or supranational levels do not always seem aware of the risks and costs of not providing interpreting and translation services, particularly those affecting the health of users. Regarding the services currently used to cover the communication-related needs between the non-Spanish speaking population and healthcare professionals, evidence proves that there are no effective provisions for communication problems at present in Spanish hospitals. An example that suggests the poor management of the situation in relation to the migrants’ access to public healthcare is the fact that relying on a family member (often a minor) in medical consultations is one of the main practices that affects communication. At present, most medical professionals will explain that in their consultations with migrants who do not speak Spanish, they ask them to bring along a family member or friend who speaks Spanish. In fact, an abundant body of literature describes situations in which family members, children, friends, or anyone who speaks or understands a language helps to break language barriers in hospitals, not only in Spain. It is not difficult to see the problems this may cause, from ethical issues to comprehension problems and misunderstandings. This paper will present the results of Narrative Inquiry from a sample of eight clinicians about their perceptions and experiences using child language brokers in their appointments with non-Spanish speaking families. The main aim is to collect information about child language brokering as recalled and perceived by clinicians who present CLB as a routine practice and express their concerns and worries about using children to convey negative news to their parents or family members.Keywords: child language brokering, community interpreting, healthcare, PSIT
Procedia PDF Downloads 791354 An Ensemble-based Method for Vehicle Color Recognition
Authors: Saeedeh Barzegar Khalilsaraei, Manoocheher Kelarestaghi, Farshad Eshghi
Abstract:
The vehicle color, as a prominent and stable feature, helps to identify a vehicle more accurately. As a result, vehicle color recognition is of great importance in intelligent transportation systems. Unlike conventional methods which use only a single Convolutional Neural Network (CNN) for feature extraction or classification, in this paper, four CNNs, with different architectures well-performing in different classes, are trained to extract various features from the input image. To take advantage of the distinct capability of each network, the multiple outputs are combined using a stack generalization algorithm as an ensemble technique. As a result, the final model performs better than each CNN individually in vehicle color identification. The evaluation results in terms of overall average accuracy and accuracy variance show the proposed method’s outperformance compared to the state-of-the-art rivals.Keywords: Vehicle Color Recognition, Ensemble Algorithm, Stack Generalization, Convolutional Neural Network
Procedia PDF Downloads 851353 Human Posture Estimation Based on Multiple Viewpoints
Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo
Abstract:
This study aimed to address the problem of improving the confidence of key points by fusing multi-view information, thereby estimating human posture more accurately. We first obtained multi-view image information and then used the MvP algorithm to fuse this multi-view information together to obtain a set of high-confidence human key points. We used these as the input for the Spatio-Temporal Graph Convolution (ST-GCN). ST-GCN is a deep learning model used for processing spatio-temporal data, which can effectively capture spatio-temporal relationships in video sequences. By using the MvP algorithm to fuse multi-view information and inputting it into the spatio-temporal graph convolution model, this study provides an effective method to improve the accuracy of human posture estimation and provides strong support for further research and application in related fields.Keywords: multi-view, pose estimation, ST-GCN, joint fusion
Procedia PDF Downloads 701352 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors
Authors: Ayyaz Hussain, Tariq Sadad
Abstract:
Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.Keywords: breast cancer, DCNN, KNN, mammography
Procedia PDF Downloads 1361351 Advancing Urban Sustainability through the Integration of Planning Evaluation Methodologies
Authors: Natalie Rosales
Abstract:
Based on an ethical vision which recognizes the vital role of human rights, shared values, social responsibility and justice, and environmental ethics, planning may be interpreted as a process aimed at reducing inequalities and overcoming marginality. Seen from this sustainability perspective, planning evaluation must utilize critical-evaluative and narrative receptive models which assist different stakeholders in their understanding of urban fabric while trigger reflexive processes that catalyze wider transformations. In this paper, this approach servers as a guide for the evaluation of Mexico´s urban planning systems, and postulates a framework to better integrate sustainability notions into planning evaluation. The paper is introduced by an overview of the current debate on evaluation in urban planning. The state of art presented includes: the different perspectives and paradigms of planning evaluation and their fundamentals and scope, which have focused on three main aspects; goal attainment (did planning instruments do what they were supposed to?); performance and effectiveness of planning (retrospective analysis of planning process and policy analysis assessment); and the effects of process-considering decision problems and contexts rather than the techniques and methods. As well as, methodological innovations and improvements in planning evaluation. This comprehensive literature review provides the background to support the authors’ proposal for a set of general principles to evaluate urban planning, grounded on a sustainability perspective. In the second part the description of the shortcomings of the approaches to evaluate urban planning in Mexico set the basis for highlighting the need of regulatory and instrumental– but also explorative- and collaborative approaches. As a response to the inability of these isolated methods to capture planning complexity and strengthen the usefulness of evaluation process to improve the coherence and internal consistency of the planning practice itself. In the third section the general proposal to evaluate planning is described in its main aspects. It presents an innovative methodology for establishing a more holistic and integrated assessment which considers the interdependence between values, levels, roles and methods, and incorporates different stakeholders in the evaluation process. By doing so, this piece of work sheds light on how to advance urban sustainability through the integration of evaluation methodologies into planning.Keywords: urban planning, evaluation methodologies, urban sustainability, innovative approaches
Procedia PDF Downloads 4761350 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System
Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii
Abstract:
Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression
Procedia PDF Downloads 158