Search results for: fuzzy differential equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3631

Search results for: fuzzy differential equations

1621 Machine Learning Techniques in Seismic Risk Assessment of Structures

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.

Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine

Procedia PDF Downloads 100
1620 Fuzzy Data, Random Drift, and a Theoretical Model for the Sequential Emergence of Religious Capacity in Genus Homo

Authors: Margaret Boone Rappaport, Christopher J. Corbally

Abstract:

The ancient ape ancestral population from which living great ape and human species evolved had demographic features affecting their evolution. The population was large, had great genetic variability, and natural selection was effective at honing adaptations. The emerging populations of chimpanzees and humans were affected more by founder effects and genetic drift because they were smaller. Natural selection did not disappear, but it was not as strong. Consequences of the 'population crash' and the human effective population size are introduced briefly. The history of the ancient apes is written in the genomes of living humans and great apes. The expansion of the brain began before the human line emerged. Coalescence times for some genes are very old – up to several million years, long before Homo sapiens. The mismatch between gene trees and species trees highlights the anthropoid speciation processes, and gives the human genome history a fuzzy, probabilistic quality. However, it suggests traits that might form a foundation for capacities emerging later. A theoretical model is presented in which the genomes of early ape populations provide the substructure for the emergence of religious capacity later on the human line. The model does not search for religion, but its foundations. It suggests a course by which an evolutionary line that began with prosimians eventually produced a human species with biologically based religious capacity. The model of the sequential emergence of religious capacity relies on cognitive science, neuroscience, paleoneurology, primate field studies, cognitive archaeology, genomics, and population genetics. And, it emphasizes five trait types: (1) Documented, positive selection of sensory capabilities on the human line may have favored survival, but also eventually enriched human religious experience. (2) The bonobo model suggests a possible down-regulation of aggression and increase in tolerance while feeding, as well as paedomorphism – but, in a human species that remains cognitively sharp (unlike the bonobo). The two species emerged from the same ancient ape population, so it is logical to search for shared traits. (3) An up-regulation of emotional sensitivity and compassion seems to have occurred on the human line. This finds support in modern genetic studies. (4) The authors’ published model of morality's emergence in Homo erectus encompasses a cognitively based, decision-making capacity that was hypothetically overtaken, in part, by religious capacity. Together, they produced a strong, variable, biocultural capability to support human sociability. (5) The full flowering of human religious capacity came with the parietal expansion and smaller face (klinorhynchy) found only in Homo sapiens. Details from paleoneurology suggest the stage was set for human theologies. Larger parietal lobes allowed humans to imagine inner spaces, processes, and beings, and, with the frontal lobe, led to the first theologies composed of structured and integrated theories of the relationships between humans and the supernatural. The model leads to the evolution of a small population of African hominins that was ready to emerge with religious capacity when the species Homo sapiens evolved two hundred thousand years ago. By 50-60,000 years ago, when human ancestors left Africa, they were fully enabled.

Keywords: genetic drift, genomics, parietal expansion, religious capacity

Procedia PDF Downloads 334
1619 Chaotic Motion of Single-Walled Carbon Nanotube Subject to Damping Effect

Authors: Tai-Ping Chang

Abstract:

In the present study, the effects on chaotic motion of single-walled carbon nanotube (SWCNT) due to the linear and nonlinear damping are investigated. By using the Hamilton’s principle, the nonlinear governing equation of the single-walled carbon nanotube embedded in a matrix is derived. The Galerkin’s method is adopted to simplify the integro-partial differential equation into a nonlinear dimensionless governing equation for the SWCNT, which turns out to be a forced Duffing equation. The variations of the Lyapunov exponents of the SWCNT with damping and harmonic forcing amplitudes are investigated. Based on the computations of the top Lyapunov exponent, it is concluded that the chaotic motion of the SWCNT occurs when the amplitude of the periodic excitation exceeds certain value, besides, the chaotic motion of the SWCNT occurs with small linear damping and tiny nonlinear damping.

Keywords: chaotic motion, damping, Lyapunov exponents, single-walled carbon nanotube

Procedia PDF Downloads 316
1618 Investigate and Solving Analytically at Vibrational structures (In Arched Beam to Bridges) by New Method “AGM”

Authors: M. R. Akbari, P. Soleimani, R. Khalili, Sara Akbari

Abstract:

Analyzing and modeling the vibrational behavior of arched bridges during the earthquake in order to decrease the exerted damages to the structure is a very hard task to do. This item has been done analytically in the present paper for the first time. Due to the importance of building arched bridges as a great structure in the human being civilization and its specifications such as transferring vertical loads to its arcs and the lack of bending moments and shearing forces, this case study is devoted to this special issue. Here, the nonlinear vibration of arched bridges has been modeled and simulated by an arched beam with harmonic vertical loads and its behavior has been investigated by analyzing a nonlinear partial differential equation governing the system. It is notable that the procedure has been done analytically by AGM (Akbari, Ganji Method). Furthermore, comparisons have been made between the obtained results by numerical Method (rkf-45) and AGM in order to assess the scientific validity.

Keywords: new method (AGM), arched beam bridges, angular frequency, harmonic loads

Procedia PDF Downloads 293
1617 Proecological Antioxidants for Stabilisation of Polymeric Composites

Authors: A. Masek, M. Zaborski

Abstract:

Electrochemical oxidation of dodecyl gallate (lauryl gallate), the main monomer flavanol found in green tea, was investigated on platinum electrodes using cyclic voltammetry (CV) and differential pulse (DPV) methods. The rate constant, electron transfer coefficient and diffusion coefficients were determined for dodecyl gallate electrochemical oxidation. The oxidation mechanism proceeds in sequential steps related to the hydroxyl groups in the aromatic ring of dodecyl gallate. Confirmed antioxidant activity of lauryl gallate verified its use in polymers as an environment-friendly stabiliser to improve the resistance to aging of the elastomeric materials. Based on the energy change of the deformation, cross-linking density and time of the oxygen induction with the TG method, we confirmed the high antioxidant activity of lauryl gallate in polymers. Moreover, the research on biodegradation confirmed the environment-friendly influence of the antioxidant by increasing the susceptibility of the elastomeric materials to disintegration by mildew mushrooms.

Keywords: polymers, flavonoids, stabilization, ageing

Procedia PDF Downloads 374
1616 Identifying the Factors affecting on the Success of Energy Usage Saving in Municipality of Tehran

Authors: Rojin Bana Derakhshan, Abbas Toloie

Abstract:

For the purpose of optimizing and developing energy efficiency in building, it is required to recognize key elements of success in optimization of energy consumption before performing any actions. Surveying Principal Components is one of the most valuable result of Linear Algebra because the simple and non-parametric methods are become confusing. So that energy management system implemented according to energy management system international standard ISO50001:2011 and all energy parameters in building to be measured through performing energy auditing. In this essay by simulating used of data mining, the key impressive elements on energy saving in buildings to be determined. This approach is based on data mining statistical techniques using feature selection method and fuzzy logic and convert data from massive to compressed type and used to increase the selected feature. On the other side, influence portion and amount of each energy consumption elements in energy dissipation in percent are recognized as separated norm while using obtained results from energy auditing and after measurement of all energy consuming parameters and identified variables. Accordingly, energy saving solution divided into 3 categories, low, medium and high expense solutions.

Keywords: energy saving, key elements of success, optimization of energy consumption, data mining

Procedia PDF Downloads 463
1615 Assessment of Vermiculite Concrete Containing Bio-Polymer Aggregate

Authors: Aliakbar Sayadi, Thomas R. Neitzert, G. Charles Clifton, Min Cheol Han

Abstract:

The present study aims to assess the performance of vermiculite concrete containing poly-lactic acid beads as an eco-friendly aggregate. Vermiculite aggregate was replaced by poly-lactic acid in percentages of 0%, 20%, 40%, 60% and 80%. Mechanical and thermal properties of concrete were investigated. Test results indicated that the inclusion of poly-lactic acid decreased the PH value of concrete and all the poly-lactic acid particles were dissolved due to the formation of sodium lactide and lactide oligomers when subjected to the high alkaline environment of concrete. In addition, an increase in thermal conductivity value of concrete was observed as the ratio of poly-lactic acid increased. Moreover, a set of equations was proposed to estimate the water-cement ratio, cement content and water absorption ratio of concrete.

Keywords: poly-lactic acid (PLA), vermiculite concrete, eco-friendly, mechanical properties

Procedia PDF Downloads 395
1614 The Development of GPS Buoy for Ocean Surface Monitoring: Initial Results

Authors: Anuar Mohd Salleh, Mohd Effendi Daud

Abstract:

This study presents a kinematic positioning approach which is use the GPS buoy for precise ocean surface monitoring. A GPS buoy data from two experiments have been processed using a precise, medium-range differential kinematic technique. In each case the data were collected for more than 24 hours at nearby coastal site at a high rate (1 Hz), along with measurements from neighboring tidal stations, to verify the estimated sea surface heights. Kinematic coordinates of GPS buoy were estimated using the epoch-wise pre-elimination and the backward substitution algorithm. Test results show the centimeter level accuracy in sea surface height determination can be successfully achieved using proposed technique. The centimeter level agreement between two methods also suggests the possibility of using this inexpensive and more flexible GPS buoy equipment to enhance (or even replace) the current use of tidal gauge stations.

Keywords: global positioning system, kinematic GPS, sea surface height, GPS buoy, tide gauge

Procedia PDF Downloads 537
1613 Pilomatrixoma of the Left Infra-Orbital Region in a 9 Year Old

Authors: Zainab Shaikh, Yusuf Miyanji

Abstract:

Pilomatrixoma is a benign neoplasm of the hair follicle matrix that is not commonly diagnosed in general practice. This is a case report of a 9-year-old boy who presented with a one-year history of a 19mm x 11 mm swelling in the left infra-orbital region. This was previously undiagnosed in Spain, where the patient resided at the time of initial presentation, due to the language barrier the patient’s family encountered. An ultrasound and magnetic resonance imaging gave useful information regarding surrounding structures for complete tumor excision and indicated that the risk of facial nerve palsy is low. The lesion was surgically excised and a definitive diagnosis was made after histopathology. Pilomatrixoma, although not rare in its occurrence, is rarely this large at the time of excision due to early presentation. This case highlights the importance of including pilomatrixoma in the differential diagnosis of dermal and subcutaneous lesions in the head and neck region, as it is often misdiagnosed due to the lack of awareness of its clinical presentation.

Keywords: pilomatrixoma, swelling, infra-orbital, facial swelling

Procedia PDF Downloads 136
1612 Determination of Genetic Markers, Microsatellites Type, Liked to Milk Production Traits in Goats

Authors: Mohamed Fawzy Elzarei, Yousef Mohammed Al-Dakheel, Ali Mohamed Alseaf

Abstract:

Modern molecular techniques, like single marker analysis for linked traits to these markers, can provide us with rapid and accurate genetic results. In the last two decades of the last century, the applications of molecular techniques were reached a faraway point in cattle, sheep, and pig. In goats, especially in our region, the application of molecular techniques is still far from other species. As reported by many researchers, microsatellites marker is one of the suitable markers for lie studies. The single marker linked to traits of interest is one technique allowed us to early select animals without the necessity for mapping the entire genome. Simplicity, applicability, and low cost of this technique gave this technique a wide range of applications in many areas of genetics and molecular biology. Also, this technique provides a useful approach for evaluating genetic differentiation, particularly in populations that are poorly known genetically. The expected breeding value (EBV) and yield deviation (YD) are considered as the most parameters used for studying the linkage between quantitative characteristics and molecular markers, since these values are raw data corrected for the non-genetic factors. A total of 17 microsatellites markers (from chromosomes 6, 14, 18, 20 and 23) were used in this study to search for areas that could be responsible for genetic variability for some milk traits and search of chromosomal regions that explain part of the phenotypic variance. Results of single-marker analyses were used to identify the linkage between microsatellite markers and variation in EBVs of these traits, Milk yield, Protein percentage, Fat percentage, Litter size and weight at birth, and litter size and weight at weaning. The estimates of the parameters from forward and backward solutions using stepwise regression procedure on milk yield trait, only two markers, OARCP9 and AGLA29, showed a highly significant effect (p≤0.01) in backward and forward solutions. The forward solution for different equations conducted that R2 of these equations were highly depending on only two partials regressions coefficient (βi,) for these markers. For the milk protein trait, four marker showed significant effect BMS2361, CSSM66 (p≤0.01), BMS2626, and OARCP9 (p≤0.05). By the other way, four markers (MCM147, BM1225, INRA006, andINRA133) showed highly significant effect (p≤0.01) in both backward and forward solutions in association with milk fat trait. For both litter size at birth and at weaning traits, only one marker (BM143(p≤0.01) and RJH1 (p≤0.05), respectively) showed a significant effect in backward and forward solutions. The estimates of the parameters from forward and backward solution using stepwise regression procedure on litter weight at birth (LWB) trait only one marker (MCM147) showed highly significant effect (p≤0.01) and two marker (ILSTS011, CSSM66) showed a significant effect (p≤0.05) in backward and forward solutions.

Keywords: microsatellites marker, estimated breeding value, stepwise regression, milk traits

Procedia PDF Downloads 84
1611 Demand and Supply Management for Electricity Markets: Econometric Analysis of Electricity Prices

Authors: Ioana Neamtu

Abstract:

This paper investigates the potential for demand-side management for the system price in the Nordic electricity market and the price effects of introducing wind-power into the system. The model proposed accounts for the micro-structure of the Nordic electricity market by modeling each hour individually, while still accounting for the relationship between the hours within a day. This flexibility allows us to explore the differences between peak and shoulder demand hours. Preliminary results show potential for demand response management, as indicated by the price elasticity of demand as well as a small but statistically significant decrease in price, given by the wind power penetration. Moreover, our study shows that these effects are stronger during day-time and peak hours,compared to night-time and shoulder hours.

Keywords: structural model, GMM estimation, system of equations, electricity market

Procedia PDF Downloads 429
1610 Performance Evaluation of Single Basin Solar Still

Authors: Prem Singh, Jagdeep Singh

Abstract:

In an attempt to investigate the performance of single basin solar still for climate conditions of Ludhiana a single basin solar still was designed, fabricated and tested. The energy balance equations for various parts of the still are solved by Gauss-Seidel iteration method. Computer model was made and experimentally validated. The validated computer model was used to estimate the annual distillation yield and performance ratio of the still for Ludhiana. The Theoretical and experimental distillation yield were 4318.79 ml and 3850 ml, respectively for the typical day. The predicted distillation yield was 12.5% higher than the experimental yield. The annual distillation yield per square meter aperture area and annual performance ratio for single basin solar still is 1095 liters and 0.43 liters, respectively. The payback period for micro-stepped solar still is 2.5 years.

Keywords: solar distillation, solar still, single basin, still

Procedia PDF Downloads 498
1609 Coupling Strategy for Multi-Scale Simulations in Micro-Channels

Authors: Dahia Chibouti, Benoit Trouette, Eric Chenier

Abstract:

With the development of micro-electro-mechanical systems (MEMS), understanding fluid flow and heat transfer at the micrometer scale is crucial. In the case where the flow characteristic length scale is narrowed to around ten times the mean free path of gas molecules, the classical fluid mechanics and energy equations are still valid in the bulk flow, but particular attention must be paid to the gas/solid interface boundary conditions. Indeed, in the vicinity of the wall, on a thickness of about the mean free path of the molecules, called the Knudsen layer, the gas molecules are no longer in local thermodynamic equilibrium. Therefore, macroscopic models based on the continuity of velocity, temperature and heat flux jump conditions must be applied at the fluid/solid interface to take this non-equilibrium into account. Although these macroscopic models are widely used, the assumptions on which they depend are not necessarily verified in realistic cases. In order to get rid of these assumptions, simulations at the molecular scale are carried out to study how molecule interaction with walls can change the fluid flow and heat transfers at the vicinity of the walls. The developed approach is based on a kind of heterogeneous multi-scale method: micro-domains overlap the continuous domain, and coupling is carried out through exchanges of information between both the molecular and the continuum approaches. In practice, molecular dynamics describes the fluid flow and heat transfers in micro-domains while the Navier-Stokes and energy equations are used at larger scales. In this framework, two kinds of micro-simulation are performed: i) in bulk, to obtain the thermo-physical properties (viscosity, conductivity, ...) as well as the equation of state of the fluid, ii) close to the walls to identify the relationships between the slip velocity and the shear stress or between the temperature jump and the normal temperature gradient. The coupling strategy relies on an implicit formulation of the quantities extracted from micro-domains. Indeed, using the results of the molecular simulations, a Bayesian regression is performed in order to build continuous laws giving both the behavior of the physical properties, the equation of state and the slip relationships, as well as their uncertainties. These latter allow to set up a learning strategy to optimize the number of micro simulations. In the present contribution, the first results regarding this coupling associated with the learning strategy are illustrated through parametric studies of convergence criteria, choice of basis functions and noise of input data. Anisothermic flows of a Lennard Jones fluid in micro-channels are finally presented.

Keywords: multi-scale, microfluidics, micro-channel, hybrid approach, coupling

Procedia PDF Downloads 163
1608 Numerical Analysis of 3D Electromagnetic Fields in Annular Induction Plasma

Authors: Abderazak Guettaf

Abstract:

The mathematical models of the physical phenomena interacting in inductive plasma were described by the physics equations of the continuous mediums. A 3D model based on magnetic potential vector and electric scalar potential (A, V) formulation is used. The finished volume method is applied to electromagnetic equation, to obtain the field distribution inside the plasma. The numerical results of the method developed on a basic model designed starting from a real three-dimensional model were exposed. From the mathematical model 3D spreading assumptions and boundary conditions, we evaluated the electric field in the load and we have developed a numerical code made under the MATLAB environment, all verifying the effectiveness and validity of this code.

Keywords: electric field, 3D magnetic potential vector and electric scalar potential (A, V) formulation, finished volumes, annular plasma

Procedia PDF Downloads 484
1607 Numerical Simulation of Rayleigh Benard Convection and Radiation Heat Transfer in Two-Dimensional Enclosure

Authors: Raoudha Chaabane, Faouzi Askri, Sassi Ben Nasrallah

Abstract:

A new numerical algorithm is developed to solve coupled convection-radiation heat transfer in a two dimensional enclosure. Radiative heat transfer in participating medium has been carried out using the control volume finite element method (CVFEM). The radiative transfer equations (RTE) are formulated for absorbing, emitting and scattering medium. The density, velocity and temperature fields are calculated using the two double population lattice Boltzmann equation (LBE). In order to test the efficiency of the developed method the Rayleigh Benard convection with and without radiative heat transfer is analyzed. The obtained results are validated against available works in literature and the proposed method is found to be efficient, accurate and numerically stable.

Keywords: participating media, LBM, CVFEM- radiation coupled with convection

Procedia PDF Downloads 399
1606 Simultaneous Determination of Some Phenolic Pesticides in Environmental and Biological Samples

Authors: Yasmeen F. Pervez, Etesh K. Janghel, Santosh Kumar Sar

Abstract:

Simple and sensitive analytical thermal gradient-thin layer chromatography technique has been developed for the simultaneous determination of phenolic pesticides like carbaryl, propoxur and carbofuran. It is based on the differential migration of colored derivatives formed by the reaction of hydrolysed phenolic compound with diazotized 3, 4 dimethyl aniline on a silica gel plate. Quantitative evaluation of hydrolyzed phenolic compound is made by visual comparison of intensities of color by spectrophotometry. The color system obeys Beer’s law in the following working range in ppm : carbaryl, 0.5-6.6; propoxur, 0.8-7.2; and carbofuran, 0.2-3.3 respectively. The Molar absorptivity, Sandell’s sensitivity, Correlation coefficient have been determined. The effects of analytical parameters on migration and analysis have been evaluated. The methods are highly reproducible and have been successfully applied to determination of phenolic pesticides in environmental and biological samples.

Keywords: phenolic pesticides (carbaryl, propoxur and carbofuran), 3.4 dimethyl aniline, environmental, biological samples

Procedia PDF Downloads 403
1605 Heat Transfer Enhancement by Turbulent Impinging Jet with Jet's Velocity Field Excitations Using OpenFOAM

Authors: Naseem Uddin

Abstract:

Impinging jets are used in variety of engineering and industrial applications. This paper is based on numerical simulations of heat transfer by turbulent impinging jet with velocity field excitations using different Reynolds Averaged Navier-Stokes Equations models. Also Detached Eddy Simulations are conducted to investigate the differences in the prediction capabilities of these two simulation approaches. In this paper the excited jet is simulated in non-commercial CFD code OpenFOAM with the goal to understand the influence of dynamics of impinging jet on heat transfer. The jet’s frequencies are altered keeping in view the preferred mode of the jet. The Reynolds number based on mean velocity and diameter is 23,000 and jet’s outlet-to-target wall distance is 2. It is found that heat transfer at the target wall can be influenced by judicious selection of amplitude and frequencies.

Keywords: excitation, impinging jet, natural frequency, turbulence models

Procedia PDF Downloads 268
1604 Useful Lifetime Prediction of Chevron Rubber Spring for Railway Vehicle

Authors: Chang Su Woo, Hyun Sung Park

Abstract:

Useful lifetime evaluation of chevron rubber spring was very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of chevron rubber spring. In this study, we performed characteristic analysis and useful lifetime prediction of chevron rubber spring. Rubber material coefficient was obtained by curve fittings of uni-axial tension, equi bi-axial tension and pure shear test. Computer simulation was executed to predict and evaluate the load capacity and stiffness for chevron rubber spring. In order to useful lifetime prediction of rubber material, we carried out the compression set with heat aging test in an oven at the temperature ranging from 50°C to 100°C during a period 180 days. By using the Arrhenius plot, several useful lifetime prediction equations for rubber material was proposed.

Keywords: chevron rubber spring, material coefficient, finite element analysis, useful lifetime prediction

Procedia PDF Downloads 562
1603 Modelling of Moisture Loss and Oil Uptake during Deep-Fat Frying of Plantain

Authors: James A. Adeyanju, John O. Olajide, Akinbode A. Adedeji

Abstract:

A predictive mathematical model based on the fundamental principles of mass transfer was developed to simulate the moisture content and oil content during Deep-Fat Frying (DFF) process of dodo. The resulting governing equation, that is, partial differential equation that describes rate of moisture loss and oil uptake was solved numerically using explicit Finite Difference Technique (FDT). Computer codes were written in MATLAB environment for the implementation of FDT at different frying conditions and moisture loss as well as oil uptake simulation during DFF of dodo. Plantain samples were sliced into 5 mm thickness and fried at different frying oil temperatures (150, 160 and 170 ⁰C) for periods varying from 2 to 4 min. The comparison between the predicted results and experimental data for the validation of the model showed reasonable agreement. The correlation coefficients between the predicted and experimental values of moisture and oil transfer models ranging from 0.912 to 0.947 and 0.895 to 0.957, respectively. The predicted results could be further used for the design, control and optimization of deep-fat frying process.

Keywords: frying, moisture loss, modelling, oil uptake

Procedia PDF Downloads 439
1602 A Formal Microlectic Framework for Biological Circularchy

Authors: Ellis D. Cooper

Abstract:

“Circularchy” is supposed to be an adjustable formal framework with enough expressive power to articulate biological theory about Earthly Life in the sense of multi-scale biological autonomy constrained by non-equilibrium thermodynamics. “Formal framework” means specifically a multi-sorted first-order-theorywithequality (for each sort). Philosophically, such a theory is one kind of “microlect,” which means a “way of speaking” (or, more generally, a “way of behaving”) for overtly expressing a “mental model” of some “referent.” Other kinds of microlect include “natural microlect,” “diagrammatic microlect,” and “behavioral microlect,” with examples such as “political theory,” “Euclidean geometry,” and “dance choreography,” respectively. These are all describable in terms of a vocabulary conforming to grammar. As aspects of human culture, they are possibly reminiscent of Ernst Cassirer’s idea of “symbolic form;” as vocabularies, they are akin to Richard Rorty’s idea of “final vocabulary” for expressing a mental model of one’s life. A formal microlect is presented by stipulating sorts, variables, calculations, predicates, and postulates. Calculations (a.k.a., “terms”) may be composed to form more complicated calculations; predicates (a.k.a., “relations”) may be logically combined to form more complicated predicates; and statements (a.k.a., “sentences”) are grammatically correct expressions which are true or false. Conclusions are statements derived using logical rules of deduction from postulates, other assumed statements, or previously derived conclusions. A circularchy is a formal microlect constituted by two or more sub-microlects, each with its distinct stipulations of sorts, variables, calculations, predicates, and postulates. Within a sub-microlect some postulates or conclusions are equations which are statements that declare equality of specified calculations. An equational bond between an equation in one sub-microlect and an equation in either the same sub-microlect or in another sub-microlect is a predicate that declares equality of symbols occurring in a side of one equation with symbols occurring in a side of the other equation. Briefly, a circularchy is a network of equational bonds between sub-microlects. A circularchy is solvable if there exist solutions for all equations that satisfy all equational bonds. If a circularchy is not solvable, then a challenge would be to discover the obstruction to solvability and then conjecture what adjustments might remove the obstruction. Adjustment means changes in stipulated ingredients (sorts, etc.) of sub-microlects, or changes in equational bonds between sub-microlects, or introduction of new sub-microlects and new equational bonds. A circularchy is modular insofar as each sub-microlect is a node in a network of equation bonds. Solvability of a circularchy may be conjectured. Efforts to prove solvability may be thwarted by a counter-example or may lead to the construction of a solution. An automated theorem-proof assistant would likely be necessary for investigating a substantial circularchy, such as one purported to represent Earthly Life. Such investigations (chains of statements) would be concurrent with and no substitute for simulations (chains of numbers).

Keywords: autonomy, first-order theory, mathematics, thermodynamics

Procedia PDF Downloads 214
1601 The Nonlinear Dynamic Response of a Rotor System Supported by Hydrodynamic Journal Bearings

Authors: Amira Amamou, Mnaouar Chouchane

Abstract:

This paper investigates the bifurcation and nonlinear behavior of two degrees of freedom model of a symmetrical balanced rigid rotor supported by two identical journal bearings. The fluid film hydrodynamic reactions are modeled by applying both the short and the long bearing approximation and using half Sommerfeld solution. A numerical integration of equations of the journal centre motion is presented to predict the presence and the size of stable or unstable limit cycles in the neighborhood of the stability critical speed. For their stability margins, a continuation method based on the predictor-corrector mechanism is used. The numerical results of responses show that stability and bifurcation behaviors of periodic motions depend strongly on bearing parameters and its dynamic characteristics.

Keywords: hydrodynamic journal bearing, nonlinear stability, continuation method, bifurcations

Procedia PDF Downloads 403
1600 Variation of Inductance in a Switched-Reluctance Motor under Various Rotor Faults

Authors: Muhammad Asghar Saqib, Saad Saleem Khan, Syed Abdul Rahman Kashif

Abstract:

In order to have higher efficiency, performance and reliability the regular monitoring of an electrical motor is required. This article presents a novel view of the air-gap magnetic field analysis of a switched reluctance motor under rotor cracks and rotor tilt along its shaft axis. The fault diagnosis is illustrated on the basis of a 3-D model of the motor using finite element analysis (FEA). The analytical equations of flux linkages have been used to determine the inductance. The results of the 3-D finite element analysis on a 6/4 switched reluctance motor (SRM) shows the variation of mutual inductance with the tilting of the rotor shaft and cracked rotor conditions. These results present useful information regarding the detection of shaft tilting and cracked rotors.

Keywords: switched reluctance motor, finite element analysis, cracked rotor, 3-D modelling of a srm

Procedia PDF Downloads 658
1599 Pressure Distribution, Load Capacity, and Thermal Effect with Generalized Maxwell Model in Journal Bearing Lubrication

Authors: M. Guemmadi, A. Ouibrahim

Abstract:

This numerical investigation aims to evaluate how a viscoelastic lubricant described by a generalized Maxwell model, affects the pressure distribution, the load capacity and thermal effect in a journal bearing lubrication. We use for the purpose the CFD package software completed by adapted user define functions (UDFs) to solve the coupled equations of momentum, of energy and of the viscoelastic model (generalized Maxwell model). Two parameters, viscosity and relaxation time are involved to show how viscoelasticity substantially affect the pressure distribution, the load capacity and the thermal transfer by comparison to Newtonian lubricant. These results were also compared with the available published results.

Keywords: journal bearing, lubrication, Maxwell model, viscoelastic fluids, computational modelling, load capacity

Procedia PDF Downloads 539
1598 Contact Temperature of Sliding Surfaces in AISI 316 Austenitic Stainless Steel During PIN on Disk Dry Wear Testing

Authors: Dler Abdullah Ahmed, Zozan Ahmed Mohammed

Abstract:

This study looked into contact surface temperature during a pin-on-disk test. Friction and wear between sliding surfaces raised the temperature differential between the contact surface and ambient temperatures Tdiff. Tdiff was significantly influenced by wear test variables. Tdiff rose with the increase of sliding speed and applied load while dropped with the increase in ambient temperature. The highest Tdiff was 289°C during the tests at room temperature and 2.5 m/s sliding speed, while the minimum was only 24 °C during the tests at 400°C and 0.5 m/s. However, the maximum contact temperature Tmax was found during tests conducted at high ambient temperatures. The Tmax was estimated based on the theoretical equation. The comparison of experimental and theoretical Tmax data revealed good agreement.

Keywords: pin on disk test, contact temperature, wear, sliding surface, friction, ambient temperature

Procedia PDF Downloads 69
1597 Steady and Oscillatory States of Swirling Flows under an Axial Magnetic Field

Authors: Brahim Mahfoud, Rachid Bessaïh

Abstract:

In this paper, a numerical study of steady and oscillatory flows with heat transfer submitted to an axial magnetic field is studied. The governing Navier-Stokes, energy, and potential equations along with appropriate boundary conditions are solved by using the finite-volume method. The flow and temperature fields are presented by stream function and isotherms, respectively. The flow between counter-rotating end disks is very unstable and reveals a great richness of structures. The results are presented for various values of the Hartmann number, Ha=5, 10, 20, and 30, and Richardson numbers , Ri=0, 0.5, 1, 2, and 4, in order to see their effects on the value of the critical Reynolds number, Recr. Stability diagrams are established according to the numerical results of this investigation. These diagrams put in evidence the dependence of Recr with the increase of Ha for various values of Ri.

Keywords: swirling, counter-rotating end disks, magnetic field, oscillatory, cylinder

Procedia PDF Downloads 319
1596 Thermal Ageing of a 316 Nb Stainless Steel: From Mechanical and Microstructural Analyses to Thermal Ageing Models for Long Time Prediction

Authors: Julien Monnier, Isabelle Mouton, Francois Buy, Adrien Michel, Sylvain Ringeval, Joel Malaplate, Caroline Toffolon, Bernard Marini, Audrey Lechartier

Abstract:

Chosen to design and assemble massive components for nuclear industry, the 316 Nb austenitic stainless steel (also called 316 Nb) suits well this function thanks to its mechanical, heat and corrosion handling properties. However, these properties might change during steel’s life due to thermal ageing causing changes within its microstructure. Our main purpose is to determine if the 316 Nb will keep its mechanical properties after an exposition to industrial temperatures (around 300 °C) during a long period of time (< 10 years). The 316 Nb is composed by different phases, which are austenite as main phase, niobium-carbides, and ferrite remaining from the ferrite to austenite transformation during the process. Our purpose is to understand thermal ageing effects on the material microstructure and properties and to submit a model predicting the evolution of 316 Nb properties as a function of temperature and time. To do so, based on Fe-Cr and 316 Nb phase diagrams, we studied the thermal ageing of 316 Nb steel alloys (1%v of ferrite) and welds (10%v of ferrite) for various temperatures (350, 400, and 450 °C) and ageing time (from 1 to 10.000 hours). Higher temperatures have been chosen to reduce thermal treatment time by exploiting a kinetic effect of temperature on 316 Nb ageing without modifying reaction mechanisms. Our results from early times of ageing show no effect on steel’s global properties linked to austenite stability, but an increase of ferrite hardness during thermal ageing has been observed. It has been shown that austenite’s crystalline structure (cfc) grants it a thermal stability, however, ferrite crystalline structure (bcc) favours iron-chromium demixion and formation of iron-rich and chromium-rich phases within ferrite. Observations of thermal ageing effects on ferrite’s microstructure were necessary to understand the changes caused by the thermal treatment. Analyses have been performed by using different techniques like Atomic Probe Tomography (APT) and Differential Scanning Calorimetry (DSC). A demixion of alloy’s elements leading to formation of iron-rich (α phase, bcc structure), chromium-rich (α’ phase, bcc structure), and nickel-rich (fcc structure) phases within the ferrite have been observed and associated to the increase of ferrite’s hardness. APT results grant information about phases’ volume fraction and composition, allowing to associate hardness measurements to the volume fractions of the different phases and to set up a way to calculate α’ and nickel-rich particles’ growth rate depending on temperature. The same methodology has been applied to DSC results, which allowed us to measure the enthalpy of α’ phase dissolution between 500 and 600_°C. To resume, we started from mechanical and macroscopic measurements and explained the results through microstructural study. The data obtained has been match to CALPHAD models’ prediction and used to improve these calculations and employ them to predict 316 Nb properties’ change during the industrial process.

Keywords: stainless steel characterization, atom probe tomography APT, vickers hardness, differential scanning calorimetry DSC, thermal ageing

Procedia PDF Downloads 89
1595 A New Computational Package for Using in CFD and Other Problems (Third Edition)

Authors: Mohammad Reza Akhavan Khaleghi

Abstract:

This paper shows changes done to the Reduced Finite Element Method (RFEM) that its result will be the most powerful numerical method that has been proposed so far (some forms of this method are so powerful that they can approximate the most complex equations simply Laplace equation!). Finite Element Method (FEM) is a powerful numerical method that has been used successfully for the solution of the existing problems in various scientific and engineering fields such as its application in CFD. Many algorithms have been expressed based on FEM, but none have been used in popular CFD software. In this section, full monopoly is according to Finite Volume Method (FVM) due to better efficiency and adaptability with the physics of problems in comparison with FEM. It doesn't seem that FEM could compete with FVM unless it was fundamentally changed. This paper shows those changes and its result will be a powerful method that has much better performance in all subjects in comparison with FVM and another computational method. This method is not to compete with the finite volume method but to replace it.

Keywords: reduced finite element method, new computational package, new finite element formulation, new higher-order form, new isogeometric analysis

Procedia PDF Downloads 109
1594 Optimum Design of Piled-Raft Systems

Authors: Alaa Chasib Ghaleb, Muntadher M. Abbood

Abstract:

This paper presents a study of the problem of the optimum design of piled-raft foundation systems. The study has been carried out using a hypothetic problem and soil investigations of six sites locations in Basrah city to evaluate the adequacy of using the piled-raft foundation concept. Three dimensional finite element analysis method has been used, to perform the structural analysis. The problem is optimized using Hooke and Jeeves method with the total weight of the foundation as objective function and each of raft thickness, piles length, number of piles and piles diameter as design variables. It is found that the total and differential settlement decreases with increasing the raft thickness, the number of piles, the piles length, and the piles diameter. Finally parametric study for load values, load type and raft dimensions have been studied and the results have been discussed.

Keywords: Hooke and Jeeves, optimum design, piled-raft, foundations

Procedia PDF Downloads 220
1593 Experimental Performance and Numerical Simulation of Double Glass Wall

Authors: Thana Ananacha

Abstract:

This paper reports the numerical and experimental performances of Double Glass Wall are investigated. Two configurations were considered namely, the Double Clear Glass Wall (DCGW) and the Double Translucent Glass Wall (DTGW). The coupled governing equations as well as boundary conditions are solved using the finite element method (FEM) via COMSOLTM Multiphysics. Temperature profiles and flow field of the DCGW and DTGW are reported and discussed. Different constant heat fluxes were considered namely 400 and 800 W.m-2 the corresponding initial condition temperatures were to 30.5 and 38.5 ºC respectively. The results show that the simulation results are in agreement with the experimental data. Conclusively, the model considered in this study could reasonable be used simulate the thermal and ventilation performance of the DCGW and DTGW configurations.

Keywords: thermal simulation, Double Glass Wall, velocity field, finite element method (FEM)

Procedia PDF Downloads 356
1592 Investigation of Hydrate Formation of Associated Petroleum Gas from Promoter Solutions for the Purpose of Utilization and Reduction of Its Burning

Authors: M. E. Semenov, U. Zh. Mirzakimov, A. S. Stoporev, R. S. Pavelev, M. A. Varfolomeev

Abstract:

Gas hydrates are host-guest compounds. Guest molecules can be low molecular weight components of associated petroleum gas (C1-C4 hydrocarbons), carbon dioxide, hydrogen sulfide, and nitrogen. Gas hydrates have a number of unique properties that make them interesting from a technological point of view, for example, for storing hydrocarbon gases in solid form under moderate thermobaric conditions. Currently, the possibility of storing and transporting hydrocarbon gases in the form of solid hydrate is being actively explored throughout the world. The hydrate form of gas has a number of advantages, including a significant gas content in the hydrate, relative safety and environmental friendliness of the process. Recently, new developments have been proposed that seek to reduce the number of steps to obtain the finished hydrate, for example, using a pressing device/screw inside the reactor. However, the energy consumption required for the hydrate formation process remains a challenge. Thus, the goal of the current work is to study the patterns and mechanisms of the hydrate formation process using small additions of hydrate formation promoters under static conditions. The study of these aspects will help solve the problem of accelerated production of gas hydrates with minimal energy consumption. New compounds have been developed at Kazan Federal University that can accelerate the formation of methane hydrate with a small amount of promoter in water, not exceeding 0.1% by weight. These promoters were synthesized based on available natural compounds and showed high efficiency in accelerating the growth of methane hydrate. To test the influence of promoters on the process of hydrate formation, standard experiments are carried out under dynamic conditions with stirring. During such experiments, the time at which hydrate formation begins (induction period), the temperature at which formation begins (supercooling), the rate of hydrate formation, and the degree of conversion of water to hydrate are assessed. This approach helps to determine the most effective compound in comparative experiments with different promoters and select their optimal concentration. These experimental studies made it possible to study the features of the formation of associated petroleum gas hydrate from promoter solutions under static conditions. Phase transformations were studied using high-pressure micro-differential scanning calorimetry under various experimental conditions. Visual studies of the growth mode of methane hydrate depending on the type of promoter were also carried out. The work is an extension of the methodology for studying the effect of promoters on the process of associated petroleum gas hydrate formation in order to identify new ways to accelerate the formation of gas hydrates without the use of mixing. This work presents the results of a study of the process of associated petroleum gas hydrate formation using high-pressure differential scanning micro-calorimetry, visual investigation, gas chromatography, autoclaves study, and stability data. It was found that the synthesized compounds multiply the conversion of water into hydrate under static conditions up to 96% due to a change in the growth mechanism of associated petroleum gas hydrate.

Keywords: gas hydrate, gas storage, promotor, associated petroleum gas

Procedia PDF Downloads 58