Search results for: conventional neural network
6653 Assessment of the Effect of Building Materials on Energy Demand of Buildings in Jos: An Experimental and Numerical Approach
Authors: Zwalnan Selfa Johnson, Caleb Nanchen Nimyel, Gideon Duvuna Ayuba
Abstract:
Air conditioning accounts for a significant share of the overall energy consumed in residential buildings. Solar thermal gains in buildings account for a significant component of the air conditioning load in buildings. This study compares the solar thermal gain and air conditioning load of a proposed building design with a typical conventional building in the climatic conditions of Jos, Nigeria, using a combined experimental and computational method using TRNSYS software. According to the findings of this study, the proposed design building's annual average solar thermal gains are lower compared to the reference building's average solar heat gains. The study case building's decreased solar heat gain is mostly attributable to the lower temperature of the building zones because of the greater building volume and lower fenestration ratio (ratio external opening area to the area of the external walls). This result shows that the proposed building design adjusts to the local climate better than the standard conventional construction in Jos to maintain a suitable temperature within the building. This finding means that the air-conditioning electrical energy consumption per volume of the proposed building design will be lower than that of a conventional building design.Keywords: solar heat gain, building zone, cooling energy, air conditioning, zone temperature
Procedia PDF Downloads 936652 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control
Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza
Abstract:
In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing
Procedia PDF Downloads 1476651 [Keynote Talk]: Knowledge Codification and Innovation Success within Digital Platforms
Authors: Wissal Ben Arfi, Lubica Hikkerova, Jean-Michel Sahut
Abstract:
This study examines interfirm networks in the digital transformation era, and in particular, how tacit knowledge codification affects innovation success within digital platforms. Hence, one of the most important features of digital transformation and innovation process outcomes is the emergence of digital platforms, as an interfirm network, at the heart of open innovation. This research aims to illuminate how digital platforms influence inter-organizational innovation through virtual team interactions and knowledge sharing practices within an interfirm network. Consequently, it contributes to the respective strategic management literature on new product development (NPD), open innovation, industrial management, and its emerging interfirm networks’ management. The empirical findings show, on the one hand, that knowledge conversion may be enhanced, especially by the socialization which seems to be the most important phase as it has played a crucial role to hold the virtual team members together. On the other hand, in the process of socialization, the tacit knowledge codification is crucial because it provides the structure needed for the interfirm network actors to interact and act to reach common goals which favor the emergence of open innovation. Finally, our results offer several conditions necessary, but not always sufficient, for interfirm managers involved in NPD and innovation concerning strategies to increasingly shape interconnected and borderless markets and business collaborations. In the digital transformation era, the need for adaptive and innovative business models as well as new and flexible network forms is becoming more significant than ever. Supported by technological advancements and digital platforms, companies could benefit from increased market opportunities and creating new markets for their innovations through alliances and collaborative strategies, as a mode of reducing or eliminating uncertainty environments or entry barriers. Consequently, an efficient and well-structured interfirm network is essential to create network capabilities, to ensure tacit knowledge sharing, to enhance organizational learning and to foster open innovation success within digital platforms.Keywords: interfirm networks, digital platform, virtual teams, open innovation, knowledge sharing
Procedia PDF Downloads 1306650 A Study on Design for Parallel Test Based on Embedded System
Authors: Zheng Sun, Weiwei Cui, Xiaodong Ma, Hongxin Jin, Dongpao Hong, Jinsong Yang, Jingyi Sun
Abstract:
With the improvement of the performance and complexity of modern equipment, automatic test system (ATS) becomes widely used for condition monitoring and fault diagnosis. However, the conventional ATS mainly works in a serial mode, and lacks the ability of testing several equipments at the same time. That leads to low test efficiency and ATS redundancy. Especially for a large majority of equipment under test, the conventional ATS cannot meet the requirement of efficient testing. To reduce the support resource and increase test efficiency, we propose a method of design for the parallel test based on the embedded system in this paper. Firstly, we put forward the general framework of the parallel test system, and the system contains a central management system (CMS) and several distributed test subsystems (DTS). Then we give a detailed design of the system. For the hardware of the system, we use embedded architecture to design DTS. For the software of the system, we use test program set to improve the test adaption. By deploying the parallel test system, the time to test five devices is now equal to the time to test one device in the past. Compared with the conventional test system, the proposed test system reduces the size and improves testing efficiency. This is of great significance for equipment to be put into operation swiftly. Finally, we take an industrial control system as an example to verify the effectiveness of the proposed method. The result shows that the method is reasonable, and the efficiency is improved up to 500%.Keywords: parallel test, embedded system, automatic test system, automatic test system (ATS), central management system, central management system (CMS), distributed test subsystems, distributed test subsystems (DTS)
Procedia PDF Downloads 3056649 Supply Network Design for Production-Distribution of Fish: A Sustainable Approach Using Mathematical Programming
Authors: Nicolás Clavijo Buriticá, Laura Viviana Triana Sanchez
Abstract:
This research develops a productive context associated with the aquaculture industry in northern Tolima-Colombia, specifically in the town of Lerida. Strategic aspects of chain of fish Production-Distribution, especially those related to supply network design of an association devoted to cultivating, farming, processing and marketing of fish are addressed. This research is addressed from a special approach of Supply Chain Management (SCM) which guides management objectives to the system sustainability; this approach is called Sustainable Supply Chain Management (SSCM). The network design of fish production-distribution system is obtained for the case study by two mathematical programming models that aims to maximize the economic benefits of the chain and minimize total supply chain costs, taking into account restrictions to protect the environment and its implications on system productivity. The results of the mathematical models validated in the productive situation of the partnership under study, called Asopiscinorte shows the variation in the number of open or closed locations in the supply network that determines the final network configuration. This proposed result generates for the case study an increase of 31.5% in the partial productivity of storage and processing, in addition to possible favorable long-term implications, such as attending an agile or not a consumer area, increase or not the level of sales in several areas, to meet in quantity, time and cost of work in progress and finished goods to various actors in the chain.Keywords: Sustainable Supply Chain, mathematical programming, aquaculture industry, Supply Chain Design, Supply Chain Configuration
Procedia PDF Downloads 5396648 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 406647 Synthesis and Characterization of PH Sensitive Hydrogel and Its Application in Controlled Drug Release of Tramadol
Authors: Naima Bouslah, Leila Bounabi, Farid Ouazib, Nabila Haddadine
Abstract:
Conventional release dosage forms are known to provide an immediate release of the drug. Controlling the rate of drug release from polymeric matrices is very important for a number of applications, particularly in the pharmaceutical area. Hydrogels are polymers in three-dimensional network arrangement, which can absorb and retain large amounts of water without dissolution. They have been frequently used to develop controlled released formulations for oral administration because they can extend the duration of drug release and thus reduce dose to be administrated improving patient compliance. Tramadol is an opioid pain medication used to treat moderate to moderately severe pain. When taken as an immediate-release oral formulation, the onset of pain relief usually occurs within about an hour. In the present work, we synthesized pH-responsive hydrogels of (hydroxyl ethyl methacrylate-co-acrylic acid), (HEMA-AA) for control drug delivery of tramadol in the gastro-intestinal tractus. The hydrogels with different acrylic acid content, were synthesized by free radical polymerization and characterized by FTIR spectroscopy, X ray diffraction analysis (XRD), differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). FTIR spectroscopy has shown specific hydrogen bonding interactions between the carbonyl groups of the hydrogels and hydroxyl groups of tramadol. Both the XRD and DSC studies revealed that the introduction of tramadol in the hydrogel network induced the amorphization of the drug. The swelling behaviour, absorptive kinetics and the release kinetics of tramadol in simulated gastric fluid (pH 1.2) and in simulated intestinal fluid (pH 7.4) were also investigated. The hydrogels exhibited pH-responsive behavior in the swelling study. The (HEMA-AA) hydrogel swelling was much higher in pH =7.4 medium. The tramadol release was significantly increased when pH of the medium was changed from simulated gastric fluid (pH 1.2) to simulated intestinal fluid (pH 7.4). Using suitable mathematical models, the apparent diffusional coefficients and the corresponding kinetic parameters have been calculated.Keywords: biopolymres, drug delivery, hydrogels, tramadol
Procedia PDF Downloads 3586646 A QoS Aware Cluster Based Routing Algorithm for Wireless Mesh Network Using LZW Lossless Compression
Authors: J. S. Saini, P. P. K. Sandhu
Abstract:
The multi-hop nature of Wireless Mesh Networks and the hasty progression of throughput demands results in multi- channels and multi-radios structures in mesh networks, but the main problem of co-channels interference reduces the total throughput, specifically in multi-hop networks. Quality of Service mentions a vast collection of networking technologies and techniques that guarantee the ability of a network to make available desired services with predictable results. Quality of Service (QoS) can be directed at a network interface, towards a specific server or router's performance, or in specific applications. Due to interference among various transmissions, the QoS routing in multi-hop wireless networks is formidable task. In case of multi-channel wireless network, since two transmissions using the same channel may interfere with each other. This paper has considered the Destination Sequenced Distance Vector (DSDV) routing protocol to locate the secure and optimised path. The proposed technique also utilizes the Lempel–Ziv–Welch (LZW) based lossless data compression and intra cluster data aggregation to enhance the communication between the source and the destination. The use of clustering has the ability to aggregate the multiple packets and locates a single route using the clusters to improve the intra cluster data aggregation. The use of the LZW based lossless data compression has ability to reduce the data packet size and hence it will consume less energy, thus increasing the network QoS. The MATLAB tool has been used to evaluate the effectiveness of the projected technique. The comparative analysis has shown that the proposed technique outperforms over the existing techniques.Keywords: WMNS, QOS, flooding, collision avoidance, LZW, congestion control
Procedia PDF Downloads 3386645 ChaQra: A Cellular Unit of the Indian Quantum Network
Authors: Shashank Gupta, Iteash Agarwal, Vijayalaxmi Mogiligidda, Rajesh Kumar Krishnan, Sruthi Chennuri, Deepika Aggarwal, Anwesha Hoodati, Sheroy Cooper, Ranjan, Mohammad Bilal Sheik, Bhavya K. M., Manasa Hegde, M. Naveen Krishna, Amit Kumar Chauhan, Mallikarjun Korrapati, Sumit Singh, J. B. Singh, Sunil Sud, Sunil Gupta, Sidhartha Pant, Sankar, Neha Agrawal, Ashish Ranjan, Piyush Mohapatra, Roopak T., Arsh Ahmad, Nanjunda M., Dilip Singh
Abstract:
Major research interests on quantum key distribution (QKD) are primarily focussed on increasing 1. point-to-point transmission distance (1000 Km), 2. secure key rate (Mbps), 3. security of quantum layer (device-independence). It is great to push the boundaries on these fronts, but these isolated approaches are neither scalable nor cost-effective due to the requirements of specialised hardware and different infrastructure. Current and future QKD network requires addressing different sets of challenges apart from distance, key rate, and quantum security. In this regard, we present ChaQra -a sub-quantum network with core features as 1) Crypto agility (integration in the already deployed telecommunication fibres), 2) Software defined networking (SDN paradigm for routing different nodes), 3) reliability (addressing denial-of-service with hybrid quantum safe cryptography), 4) upgradability (modules upgradation based on scientific and technological advancements), 5) Beyond QKD (using QKD network for distributed computing, multi-party computation etc). Our results demonstrate a clear path to create and accelerate quantum secure Indian subcontinent under the national quantum mission.Keywords: quantum network, quantum key distribution, quantum security, quantum information
Procedia PDF Downloads 586644 Structural Strength Potentials of Nigerian Groundnut Husk Ash as Partial Cement Replacement in Mortar
Authors: F. A. Olutoge, O.R. Olulope, M. O. Odelola
Abstract:
This study investigates the strength potentials of groundnut husk ash as partial cement replacement in mortar and also develops a predictive model using Artificial Neural Network. Groundnut husks sourced from Ogbomoso, Nigeria, was sun dried, calcined to ash in a furnace at a controlled temperature of 600⁰ C for a period of 6 hours, and sieved through the 75 microns. The ash was subjected to chemical analysis and setting time test. Fine aggregate (sand) for the mortar was sourced from Ado Ekiti, Nigeria. The cement: GHA constituents were blended in ratios 100:0, 95:5, 90:10, 85:15 and 80:20 %. The sum of SiO₂, Al₂O₃, and Fe₂O₃ content in GHA is 26.98%. The compressive strength for mortars PC, GHA5, GHA10, GHA15, and GHA20 ranged from 6.3-10.2 N/mm² at 7days, 7.5-12.3 N/mm² at 14 days, 9.31-13.7 N/mm² at 28 days, 10.4-16.7 N/mm² at 56days and 13.35- 22.3 N/mm² at 90 days respectively, PC, GHA5 and GHA10 had competitive values up to 28 days, but GHA10 gave the highest values at 56 and 90 days while GHA20 had the lowest values at all ages due to dilution effect. Flexural strengths values at 28 days ranged from 1.08 to 1.87 N/mm² and increased to a range of 1.53-4.10 N/mm² at 90 days. The ANN model gave good prediction for compressive strength of the mortars. This study has shown that groundnut husk ash as partial cement replacement improves the strength properties of mortar.Keywords: compressive strength, groundnut husk ash, mortar, pozzolanic index
Procedia PDF Downloads 1556643 The Penetration of Urban Mobility Multi-Modality Enablers in a Vehicle-Dependent City
Authors: Lama Yaseen, Nourah Al-Hosain
Abstract:
A Multi-modal system in urban mobility is an essential framework for an optimized urban transport network. Many cities are still heavily dependent on vehicle transportation, dominantly using conventional fuel-based cars for daily travel. With the reliance on motorized vehicles in large cities such as Riyadh, the capital city of Saudi Arabia, traffic congestion is eminent, which ultimately results in an increase in road emissions and loss of time. Saudi Arabia plans to undergo a massive transformation in mobility infrastructure and urban greening projects, including introducing public transport and other massive urban greening infrastructures that enable alternative mobility options. This paper uses a Geographic Information System (GIS) approach that analyzes the accessibility of current and planned public transport stations and how they intertwine with massive urban greening projects that may play a role as an enabler of micro-mobility and walk-ability options in the city.Keywords: urban development, urban mobility, sustainable mobility, Middle East
Procedia PDF Downloads 1006642 Effect of Coronary Insulators in Increasing the Lifespan of Electrolytic Cells: Short-circuit and Heat Resistance
Authors: Robert P. Dufresne, Hamid Arabzadeh
Abstract:
The current study investigates the effectiveness of a new form of permanent baseboard insulators with an umbrella action, hereinafter referred to as Coronary Insulator, in supporting and protecting the assembly of electrodes immersed in an electrolytic cell and in increasing the lifespan of the lateral sides of the electrolytic cell, in both electro-winning and electro-refinery method. The advantages of using a coronary insulator in addition to the top capping board (equipotential insulator) were studied compared to the conventional assembly of an electrolytic cell. Then, a thermal imaging technique was utilized during high-temperature thermal (heat transfer) tests for sample cell walls with and without coronary insulators in their assembly to show the effectiveness of coronary insulators in protecting the cell wall under extreme conditions. It was shown that, unlike the conventional assembly, which is highly prone to damages to the cell wall under thermal shocks, the presence of coronary insulator can significantly increase the level of protection of the cell due to their ultra-high thermal and chemical resistance, as well as decreasing the replacement frequency of insulators to almost zero. Besides, the results of the study showed that the test assembly with the coronary insulator provides better consistency in positioning and, subsequently, better contact, compared to the conventional method, which reduces the chance of electric short-circuit in the system.Keywords: capping board, coronary insulator, electrolytic cell, thermal shock.
Procedia PDF Downloads 1886641 Image Rotation Using an Augmented 2-Step Shear Transform
Authors: Hee-Choul Kwon, Heeyong Kwon
Abstract:
Image rotation is one of main pre-processing steps for image processing or image pattern recognition. It is implemented with a rotation matrix multiplication. It requires a lot of floating point arithmetic operations and trigonometric calculations, so it takes a long time to execute. Therefore, there has been a need for a high speed image rotation algorithm without two major time-consuming operations. However, the rotated image has a drawback, i.e. distortions. We solved the problem using an augmented two-step shear transform. We compare the presented algorithm with the conventional rotation with images of various sizes. Experimental results show that the presented algorithm is superior to the conventional rotation one.Keywords: high-speed rotation operation, image rotation, transform matrix, image processing, pattern recognition
Procedia PDF Downloads 2786640 Students’ Online Forum Activities and Social Network Analysis in an E-Learning Environment
Authors: P. L. Cheng, I. N. Umar
Abstract:
Online discussion forum is a popular e-learning technique that allows participants to interact and construct knowledge. This study aims to examine the levels of participation, categories of participants and the structure of their interactions in a forum. A convenience sampling of one course coordinator and 23 graduate students was selected in this study. The forums’ log file and the Social Network Analysis software were used in this study. The analysis reveals 610 activities (including viewing forum’s topic, viewing discussion thread, posting a new thread, replying to other participants’ post, updating an existing thread and deleting a post) performed by them in this forum, with an average of 3.83 threads posted. Also, this forum consists of five at-risk participants, six bridging participants, four isolated participants and five leaders of information. In addition, the network density value is 0.15 and there exist five reciprocal interactions in this forum. The closeness value varied between 28 and 68 while the eigen vector centrality value varied between 0.008 and 0.39. The finding indicates that the participants tend to listen more rather than express their opinions in the forum. It was also revealed that those who actively provide supports in the discussion forum were not the same people who received the most responses from their peers. This study found that cliques do not exist in the forum and the participants are not selective to whom they response to, rather, it was based on the content of the posts made by their peers. Based upon the findings, further analysis with different method and population, larger sample size and a longer time frame are recommended.Keywords: e-learning, learning management system, online forum, social network analysis
Procedia PDF Downloads 3906639 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.Keywords: cancer classification, feature selection, deep learning, genetic algorithm
Procedia PDF Downloads 1116638 Reusing of HSS Hacksaw Blades as Rough Machining Tool
Authors: Raja V., Chokkalingam B.
Abstract:
For rough cutting, in many industries and educational institutions using carbon steels or HSS single point cutting tools in center lathe machine. In power hacksaw blades, only the cutter teeth region used to parting off the given material. The portions other than the teeth can be used as a single point cutting tool for rough turning and facing on soft materials. The hardness and Tensile strength of this used Power hacksaw blade is almost same as conventional cutting tools. In this paper, the effect of power hacksaw blades over conventional tool has been compared. Thickness of the blade (1.6 mm) is very small compared to its length and width. Hence, a special tool holding device is designed to hold the tool.Keywords: hardness, high speed steels, power hacksaw blade, tensile strength
Procedia PDF Downloads 4576637 Advancing the Hi-Tech Ecosystem in the Periphery: The Case of the Sea of Galilee Region
Authors: Yael Dubinsky, Orit Hazzan
Abstract:
There is a constant need for hi-tech innovation to be decentralized to peripheral regions. This work describes how we applied design science research (DSR) principles to define what we refer to as the Sea of Galilee (SoG) method. The goal of the SoG method is to harness existing and new technological initiatives in peripheral regions to create a socio-technological network that can initiate and maintain hi-tech activities. The SoG method consists of a set of principles, a stakeholder network, and actual hi-tech business initiatives, including their infrastructure and practices. The three cycles of DSR, the Relevance, Design, and Rigor cycles, layout a research framework to sharpen the requirements, collect data from case studies, and iteratively refine the SoG method based on the existing knowledge base. We propose that the SoG method can be deployed by regional authorities that wish to be considered smart regions (an extension of the notion of smart cities).Keywords: design science research, socio-technological initiatives, Sea of Galilee method, periphery stakeholder network, hi-tech initiatieves
Procedia PDF Downloads 1316636 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention
Authors: Avinash Malladhi
Abstract:
Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory
Procedia PDF Downloads 936635 Deep Learning Based Unsupervised Sport Scene Recognition and Highlights Generation
Authors: Ksenia Meshkova
Abstract:
With increasing amount of multimedia data, it is very important to automate and speed up the process of obtaining meta. This process means not just recognition of some object or its movement, but recognition of the entire scene versus separate frames and having timeline segmentation as a final result. Labeling datasets is time consuming, besides, attributing characteristics to particular scenes is clearly difficult due to their nature. In this article, we will consider autoencoders application to unsupervised scene recognition and clusterization based on interpretable features. Further, we will focus on particular types of auto encoders that relevant to our study. We will take a look at the specificity of deep learning related to information theory and rate-distortion theory and describe the solutions empowering poor interpretability of deep learning in media content processing. As a conclusion, we will present the results of the work of custom framework, based on autoencoders, capable of scene recognition as was deeply studied above, with highlights generation resulted out of this recognition. We will not describe in detail the mathematical description of neural networks work but will clarify the necessary concepts and pay attention to important nuances.Keywords: neural networks, computer vision, representation learning, autoencoders
Procedia PDF Downloads 1276634 Making of Alloy Steel by Direct Alloying with Mineral Oxides during Electro-Slag Remelting
Authors: Vishwas Goel, Kapil Surve, Somnath Basu
Abstract:
In-situ alloying in steel during the electro-slag remelting (ESR) process has already been achieved by the addition of necessary ferroalloys into the electro-slag remelting mold. However, the use of commercially available ferroalloys during ESR processing is often found to be financially less favorable, in comparison with the conventional alloying techniques. However, a process of alloying steel with elements like chromium and manganese using the electro-slag remelting route is under development without any ferrochrome addition. The process utilizes in-situ reduction of refined mineral chromite (Cr₂O₃) and resultant enrichment of chromium in the steel ingot produced. It was established in course of this work that this process can become more advantageous over conventional alloying techniques, both economically and environmentally, for applications which inherently demand the use of the electro-slag remelting process, such as manufacturing of superalloys. A key advantage is the lower overall CO₂ footprint of this process relative to the conventional route of production, storage, and the addition of ferrochrome. In addition to experimentally validating the feasibility of the envisaged reactions, a mathematical model to simulate the reduction of chromium (III) oxide and transfer to chromium to the molten steel droplets was also developed as part of the current work. The developed model helps to correlate the amount of chromite input and the magnitude of chromium alloying that can be achieved through this process. Experiments are in progress to validate the predictions made by this model and to fine-tune its parameters.Keywords: alloying element, chromite, electro-slag remelting, ferrochrome
Procedia PDF Downloads 2236633 DBN-Based Face Recognition System Using Light Field
Authors: Bing Gu
Abstract:
Abstract—Most of Conventional facial recognition systems are based on image features, such as LBP, SIFT. Recently some DBN-based 2D facial recognition systems have been proposed. However, we find there are few DBN-based 3D facial recognition system and relative researches. 3D facial images include all the individual biometric information. We can use these information to build more accurate features, So we present our DBN-based face recognition system using Light Field. We can see Light Field as another presentation of 3D image, and Light Field Camera show us a way to receive a Light Field. We use the commercially available Light Field Camera to act as the collector of our face recognition system, and the system receive a state-of-art performance as convenient as conventional 2D face recognition system.Keywords: DBN, face recognition, light field, Lytro
Procedia PDF Downloads 4646632 Energy Efficient Alternate Hydraulic System Called TejHydroLift
Authors: Tejinder Singh
Abstract:
This paper describes a new more efficient Hydraulic System which uses lesser work to produce more output. Conventional Hydraulic System like Hydraulic Lifts and Rams use lots of water to be pumped to produce output. TejHydroLift will do the equal amount of force with lesser input of water. The paper will show that force applied can be increased manifold without requiring to move smaller force by more distance which used to be required in Conventional Hydraulic Lifts. The paper describes one of the configurations of TejHydroLift System called “Slim Antenna TejHydroLift Configuration”. The TejHydroLift uses lesser water and hence demands lesser work to be performed to move the same load.Keywords: alternate, hydraulic system, efficient, TejHydroLift
Procedia PDF Downloads 2606631 D3Advert: Data-Driven Decision Making for Ad Personalization through Personality Analysis Using BiLSTM Network
Authors: Sandesh Achar
Abstract:
Personalized advertising holds greater potential for higher conversion rates compared to generic advertisements. However, its widespread application in the retail industry faces challenges due to complex implementation processes. These complexities impede the swift adoption of personalized advertisement on a large scale. Personalized advertisement, being a data-driven approach, necessitates consumer-related data, adding to its complexity. This paper introduces an innovative data-driven decision-making framework, D3Advert, which personalizes advertisements by analyzing personalities using a BiLSTM network. The framework utilizes the Myers–Briggs Type Indicator (MBTI) dataset for development. The employed BiLSTM network, specifically designed and optimized for D3Advert, classifies user personalities into one of the sixteen MBTI categories based on their social media posts. The classification accuracy is 86.42%, with precision, recall, and F1-Score values of 85.11%, 84.14%, and 83.89%, respectively. The D3Advert framework personalizes advertisements based on these personality classifications. Experimental implementation and performance analysis of D3Advert demonstrate a 40% improvement in impressions. D3Advert’s innovative and straightforward approach has the potential to transform personalized advertising and foster widespread personalized advertisement adoption in marketing.Keywords: personalized advertisement, deep Learning, MBTI dataset, BiLSTM network, NLP.
Procedia PDF Downloads 446630 Study of Energy Efficient and Quality of Service Based Routing Protocols in Wireless Sensor Networking
Authors: Sachin Sharma
Abstract:
A wireless sensor network (WSN) consists of a large number of sensor nodes which are deployed over an area to perform local computations based on information gathered from the surroundings. With the increasing demand for real-time applications in WSN, real-time critical events anticipate an efficient quality-of-service (QoS) based routing for data delivery from the network infrastructure. Hence, maximizing the lifetime of the network through minimizing the energy is an important challenge in WSN; sensors cannot be easily replaced or recharged due to their ad-hoc deployment in a hazardous environment. Considerable research has been focused on developing robust energy efficient QoS based routing protocols. The main focus of this article is primarily on periodical cycling schemes which represent the most compatible technique for energy saving and we also focus on the data-driven approaches that can be used to improve the energy efficiency. Finally, we will make a review on some communication protocols proposed for sensor networks.Keywords: energy efficient, quality of service, wireless sensor networks, MAC
Procedia PDF Downloads 3486629 Impact of Electric Vehicles on Energy Consumption and Environment
Authors: Amela Ajanovic, Reinhard Haas
Abstract:
Electric vehicles (EVs) are considered as an important means to cope with current environmental problems in transport. However, their high capital costs and limited driving ranges state major barriers to a broader market penetration. The core objective of this paper is to investigate the future market prospects of various types of EVs from an economic and ecological point of view. Our method of approach is based on the calculation of total cost of ownership of EVs in comparison to conventional cars and a life-cycle approach to assess the environmental benignity. The most crucial parameters in this context are km driven per year, depreciation time of the car and interest rate. The analysis of future prospects it is based on technological learning regarding investment costs of batteries. The major results are the major disadvantages of battery electric vehicles (BEVs) are the high capital costs, mainly due to the battery, and a low driving range in comparison to conventional vehicles. These problems could be reduced with plug-in hybrids (PHEV) and range extenders (REXs). However, these technologies have lower CO₂ emissions in the whole energy supply chain than conventional vehicles, but unlike BEV they are not zero-emission vehicles at the point of use. The number of km driven has a higher impact on total mobility costs than the learning rate. Hence, the use of EVs as taxis and in car-sharing leads to the best economic performance. The most popular EVs are currently full hybrid EVs. They have only slightly higher costs and similar operating ranges as conventional vehicles. But since they are dependent on fossil fuels, they can only be seen as energy efficiency measure. However, they can serve as a bridging technology, as long as BEVs and fuel cell vehicle do not gain high popularity, and together with PHEVs and REX contribute to faster technological learning and reduction in battery costs. Regarding the promotion of EVs, the best results could be reached with a combination of monetary and non-monetary incentives, as in Norway for example. The major conclusion is that to harvest the full environmental benefits of EVs a very important aspect is the introduction of CO₂-based fuel taxes. This should ensure that the electricity for EVs is generated from renewable energy sources; otherwise, total CO₂ emissions are likely higher than those of conventional cars.Keywords: costs, mobility, policy, sustainability,
Procedia PDF Downloads 2266628 Image Segmentation Techniques: Review
Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo
Abstract:
Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.Keywords: clustering-based, convolution-network, edge-based, region-growing
Procedia PDF Downloads 976627 The Utilization of Manganese-Enhanced Magnetic Resonance Imaging in the Fields of Ophthalmology and Visual Neuroscience
Authors: Parisa Mansour
Abstract:
Understanding how vision works in both health and disease involves understanding the anatomy and physiology of the eye as well as the neural pathways involved in visual perception. The development of imaging techniques for the visual system is essential for understanding the neural foundation of visual function or impairment. MRI provides a way to examine neural circuit structure and function without invasive procedures, allowing for the detection of brain tissue abnormalities in real time. One of the advanced MRI methods is manganese-enhanced MRI (MEMRI), which utilizes active manganese contrast agents to enhance brain tissue signals in T1-weighted imaging, showcasing connectivity and activity levels. The way manganese ions build up in the eye, and visual pathways can be due to their spread throughout the body or by moving locally along axons in a forward direction and entering neurons through calcium channels that are voltage-gated. The paramagnetic manganese contrast is utilized in MRI for various applications in the visual system, such as imaging neurodevelopment and evaluating neurodegeneration, neuroplasticity, neuroprotection, and neuroregeneration. In this assessment, we outline four key areas of scientific research where MEMRI can play a crucial role - understanding brain structure, mapping nerve pathways, monitoring nerve cell function, and distinguishing between different types of glial cell activity. We discuss various studies that have utilized MEMRI to investigate the visual system, including delivery methods, spatiotemporal features, and biophysical analysis. Based on this literature, we have pinpointed key issues in the field related to toxicity, as well as sensitivity and specificity of manganese enhancement. We will also examine the drawbacks and other options to MEMRI that could offer new possibilities for future exploration.Keywords: glial activity, manganese-enhanced magnetic resonance imaging, neuroarchitecture, neuronal activity, neuronal tract tracing, visual pathway, eye
Procedia PDF Downloads 416626 Replacing an Old PFN System with a Solid State Modulator without Changing the Klystron Transformer
Authors: Klas Elmquist, Anders Larsson
Abstract:
Until the year 2000, almost all short pulse modulators in the accelerator world were made with the pulse forming network (PFN) technique. The pulse forming network systems have since then been replaced with solid state modulators that have better efficiency, better stability, and lower cost of ownership, and they are much smaller. In this paper, it is shown that it is possible to replace a pulse forming network system with a solid-state system without changing the klystron tank and the klystron transformer. The solid-state modulator uses semiconductors switching at 1 kV level. A first pulse transformer transforms the voltage up to 10 kV. The 10 kV pulse is finally fed into the original transformer that is placed under the klystron. A flatness of 0.8 percent and stability of 100 PPM is achieved. The test is done with a CPI 8262 type of klystron. It is also shown that it is possible to run such a system with long cables between the transformers. When using this technique, it will be possible to keep original sub-systems like filament systems, vacuum systems, focusing solenoid systems, and cooling systems for the klystron. This will substantially reduce the cost of an upgrade and prolong the life of the klystron system.Keywords: modulator, solid-state, PFN-system, thyratron
Procedia PDF Downloads 1346625 Natural Gas Flow Optimization Using Pressure Profiling and Isolation Techniques
Authors: Syed Tahir Shah, Fazal Muhammad, Syed Kashif Shah, Maleeha Gul
Abstract:
In recent days, natural gas has become a relatively clean and quality source of energy, which is recovered from deep wells by expensive drilling activities. The recovered substance is purified by processing in multiple stages to remove the unwanted/containments like dust, dirt, crude oil and other particles. Mostly, gas utilities are concerned with essential objectives of quantity/quality of natural gas delivery, financial outcome and safe natural gas volumetric inventory in the transmission gas pipeline. Gas quantity and quality are primarily related to standards / advanced metering procedures in processing units/transmission systems, and the financial outcome is defined by purchasing and selling gas also the operational cost of the transmission pipeline. SNGPL (Sui Northern Gas Pipelines Limited) Pakistan has a wide range of diameters of natural gas transmission pipelines network of over 9125 km. This research results in answer a few of the issues in accuracy/metering procedures via multiple advanced gadgets for gas flow attributes after being utilized in the transmission system and research. The effects of good pressure management in transmission gas pipeline network in contemplation to boost the gas volume deposited in the existing network and finally curbing gas losses UFG (Unaccounted for gas) for financial benefits. Furthermore, depending on the results and their observation, it is directed to enhance the maximum allowable working/operating pressure (MAOP) of the system to 1235 PSIG from the current round about 900 PSIG, such that the capacity of the network could be entirely utilized. In gross, the results depict that the current model is very efficient and provides excellent results in the minimum possible time.Keywords: natural gas, pipeline network, UFG, transmission pack, AGA
Procedia PDF Downloads 956624 A Smart Sensor Network Approach Using Affordable River Water Level Sensors
Authors: Dian Zhang, Brendan Heery, Maria O’Neill, Ciprian Briciu-Burghina, Noel E. O’Connor, Fiona Regan
Abstract:
Recent developments in sensors, wireless data communication and the cloud computing have brought the sensor web to a whole new generation. The introduction of the concept of ‘Internet of Thing (IoT)’ has brought the sensor research into a new level, which involves the developing of long lasting, low cost, environment friendly and smart sensors; new wireless data communication technologies; big data analytics algorithms and cloud based solutions that are tailored to large scale smart sensor network. The next generation of smart sensor network consists of several layers: physical layer, where all the smart sensors resident and data pre-processes occur, either on the sensor itself or field gateway; data transmission layer, where data and instructions exchanges happen; the data process layer, where meaningful information is extracted and organized from the pre-process data stream. There are many definitions of smart sensor, however, to summarize all these definitions, a smart sensor must be Intelligent and Adaptable. In future large scale sensor network, collected data are far too large for traditional applications to send, store or process. The sensor unit must be intelligent that pre-processes collected data locally on board (this process may occur on field gateway depends on the sensor network structure). In this case study, three smart sensing methods, corresponding to simple thresholding, statistical model and machine learning based MoPBAS method, are introduced and their strength and weakness are discussed as an introduction to the smart sensing concept. Data fusion, the integration of data and knowledge from multiple sources, are key components of the next generation smart sensor network. For example, in the water level monitoring system, weather forecast can be extracted from external sources and if a heavy rainfall is expected, the server can send instructions to the sensor notes to, for instance, increase the sampling rate or switch on the sleeping mode vice versa. In this paper, we describe the deployment of 11 affordable water level sensors in the Dublin catchment. The objective of this paper is to use the deployed river level sensor network at the Dodder catchment in Dublin, Ireland as a case study to give a vision of the next generation of a smart sensor network for flood monitoring to assist agencies in making decisions about deploying resources in the case of a severe flood event. Some of the deployed sensors are located alongside traditional water level sensors for validation purposes. Using the 11 deployed river level sensors in a network as a case study, a vision of the next generation of smart sensor network is proposed. Each key component of the smart sensor network is discussed, which hopefully inspires the researchers who are working in the sensor research domain.Keywords: smart sensing, internet of things, water level sensor, flooding
Procedia PDF Downloads 381