Search results for: residency training
1990 Barriers to Tuberculosis Detection in Portuguese Prisons
Authors: M. F. Abreu, A. I. Aguiar, R. Gaio, R. Duarte
Abstract:
Background: Prison establishments constitute high-risk environments for the transmission and spread of tuberculosis (TB), given their epidemiological context and the difficulty of implementing preventive and control measures. Guidelines for control and prevention of tuberculosis in prisons have been described as incomplete and heterogeneous internationally, due to several identified obstacles, for example scarcity of human resources and funding of prisoner health services. In Portugal, a protocol was created in 2014 with the aim to define and standardize procedures of detection and prevention of tuberculosis within prisons. Objective: The main objective of this study was to identify and describe barriers to tuberculosis detection in prisons of Porto and Lisbon districts in Portugal. Methods: A cross-sectional study was conducted from 2ⁿᵈ January 2018 till 30ᵗʰ June 2018. Semi-structured questionnaires were applied to health care professionals working in the prisons of the districts of Porto (n=6) and Lisbon (n=8). As inclusion criteria we considered having work experience in the area of tuberculosis (either in diagnosis, treatment, or follow up). The questionnaires were self-administered, in paper format. Descriptive analyses of the questionnaire variables were made using frequencies and median. Afterwards, a hierarchical agglomerative clusters analysis was performed. After obtaining the clusters, the chi-square test was applied to study the association between the variables collected and the clusters. The level of significance considered was 0.05. Results: From the total of 186 health professionals, 139 met the criteria of inclusion and 82 health professionals were interviewed (62,2% of participation). Most were female, nurses, with a median age of 34 years, with term employment contract. From the cluster analysis, two groups were identified with different characteristics and behaviors for the procedures of this protocol. Statistically significant results were found in: elements of cluster 1 (78% of the total participants) work in prisons for a longer time (p=0.003), 45,3% work > 4 years while 50% of the elements of cluster 2 work for less than a year, and more frequently answered they know and apply the procedures of the protocol (p=0.000). Both clusters answered frequently the need of having theoretical-practical training for TB (p=0.000), especially in the areas of diagnosis, treatment and prevention and that there is scarcity of funding to prisoner health services (p=0.000). Regarding procedures for TB screening (periodic and contact screening) and procedures for transferring a prisoner with this disease, cluster 1 also answered more frequently to perform them (p=0.000). They also referred that the material/equipment for TB screening is accessible and available (p=0.000). From this clusters we identified as barriers scarcity of human resources, the need to theoretical-practical training for tuberculosis, inexperience in working in health services prisons and limited knowledge of protocol procedures. Conclusions: The barriers found in this study are the same described internationally. This protocol is mostly being applied in portuguese prisons. The study also showed the need to invest in human and material resources. This investigation bridged gaps in knowledge that could help prison health services optimize the care provided for early detection and adherence of prisoners to treatment of tuberculosis.Keywords: barriers, health care professionals, prisons, protocol, tuberculosis
Procedia PDF Downloads 1461989 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods
Authors: Cristina Vatamanu, Doina Cosovan, Dragos Gavrilut, Henri Luchian
Abstract:
In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through semi-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.Keywords: ensembles, false positives, feature selection, one side class algorithm
Procedia PDF Downloads 2921988 Research on the Risks of Railroad Receiving and Dispatching Trains Operators: Natural Language Processing Risk Text Mining
Authors: Yangze Lan, Ruihua Xv, Feng Zhou, Yijia Shan, Longhao Zhang, Qinghui Xv
Abstract:
Receiving and dispatching trains is an important part of railroad organization, and the risky evaluation of operating personnel is still reflected by scores, lacking further excavation of wrong answers and operating accidents. With natural language processing (NLP) technology, this study extracts the keywords and key phrases of 40 relevant risk events about receiving and dispatching trains and reclassifies the risk events into 8 categories, such as train approach and signal risks, dispatching command risks, and so on. Based on the historical risk data of personnel, the K-Means clustering method is used to classify the risk level of personnel. The result indicates that the high-risk operating personnel need to strengthen the training of train receiving and dispatching operations towards essential trains and abnormal situations.Keywords: receiving and dispatching trains, natural language processing, risk evaluation, K-means clustering
Procedia PDF Downloads 911987 Abdominal Exercises Can Modify Abdominal Function in Postpartum Women: A Randomized Control Trial Comparing Curl-up to Drawing-in Combined With Diaphragmatic Aspiration
Authors: Yollande Sènan Djivoh, Dominique de Jaeger
Abstract:
Background: Abdominal exercises are commonly practised nowadays. Specific techniques of abdominal muscles strengthening like hypopressive exercises have recently emerged and their practice is encouraged against the practice of Curl-up especially in postpartum. The acute and the training effects of these exercises did not allow to advise one exercise to the detriment of another. However, physiotherapists remain reluctant to perform Curl-up with postpartum women because of its potential harmful effect on the pelvic floor. Design: This study was a randomized control trial registered under the number PACTR202110679363984. Objective: to observe the training effect of two experimental protocols (Curl-up versus Drawing-in+Diaphragmatic aspiration) on the abdominal wall (interrecti distance, rectus and transversus abdominis thickness, abdominal strength) in Beninese postpartum women. Pelvic floor function (tone, endurance, urinary incontinence) will be assessed to evaluate potential side effects of exercises on the pelvic floor. Method: Postpartum women diagnosed with diastasis recti were randomly assigned to one of three groups (Curl-up, Drawingin+Diaphragmatic aspiration and control). Abdominal and pelvic floor parameters were assessed before and at the end of the 6-week protocol. The interrecti distance and the abdominal muscles thickness were assessed by ultrasound and abdominal strength by dynamometer. Pelvic floor tone and strength were assessed with Biofeedback and urinary incontinence was quantified by pad test. To compare the results between the three groups and the two measurements, a two-way Anova test with repeated measures was used (p<0.05). When interaction was significant, a posthoc using Student t test, with Bonferroni correction, was used to compare the three groups regarding the difference (end value minus initial value). To complete these results, a paired Student t test was used to compare in each group the initial and end values. Results: Fifty-eight women participated in this study, divided in three groups with similar characteristics regarding their age (29±5 years), parity (2±1 children), BMI (26±4 kg/m2 ), time since the last birth (10±2 weeks), weight of their baby at birth (330±50 grams). Time effect and interaction were significant (p<0.001) for all abdominal parameters. Experimental groups improved more than control group. Curl-up group improved more (p=0.001) than Drawing-in+Diaphragmatic aspiration group regarding the interrecti distance (9.3±4.2 mm versus 6.6±4.6 mm) and abdominal strength (20.4±16.4 Newton versus 11.4±12.8 Newton). Drawingin+Diaphragmatic aspiration group improved (0.8±0.7 mm) more than Curl-up group (0.5±0.7 mm) regarding the transversus abdominis thickness (p=0.001). Only Curl-up group improved (p<0.001) the rectus abdominis thickness (1.5±1.2 mm). For pelvic floor parameters, both experimental groups improved (p=0.01) except for tone which improved (p=0.03) only in Drawing-in+Diaphragmatic aspiration group from 19.9±4.1 cmH2O to 22.2±4.5 cmH2O. Conclusion: Curl-up was more efficient to improve abdominal function than Drawingin+Diaphragmatic aspiration. However, these exercises are complementary. None of them degraded the pelvic floor, but Drawing-in+Diaphragmatic aspiration improved further the pelvic floor function. Clinical implications: Curl-up, Drawing-in and Diaphragmatic aspiration can be used for the management of abdominal function in postpartum women. Exercises must be chosen considering the specific needs of each woman’s abdominal and pelvic floor function.Keywords: curl-up, drawing-in, diaphragmatic aspiration, hypopressive exercise, postpartum women
Procedia PDF Downloads 821986 The Effectiveness of Online Learning in the Wisconsin Technical College System
Authors: Julie Furst-Bowe
Abstract:
Over the past decade, there has been significant growth in online courses and programs at all levels of education in the United States. This study explores the growth of online and blended (or hybrid) programs offered by the sixteen technical colleges in the Wisconsin Technical College System (WTCS). The WTCS provides education and training programs to more than 300,000 students each year in career clusters including agriculture, business, energy, information technology, healthcare, human services, manufacturing, and transportation. These programs range from short-term training programs that may lead to a certificate to two-year programs that lead to an associate degree. Students vary in age from high school students who are exploring career interests to employees who are seeking to gain additional skills or enter a new career. Because there is currently a shortage of skilled workers in nearly all sectors in the state of Wisconsin, it is critical that the WTCS is providing fully educated and trained graduates to fill workforce needs in a timely manner. For this study, information on online and blended programs for the past five years was collected from the WTCS, including types of programs, course and program enrollments, course completion rates, program completion rates, time to completion and graduate employment rates. The results of this study indicate that the number of online and blended courses and programs is continuing to increase each year. Online and blended programs are most commonly found in the business, human services, and information technology areas, and they are less commonly found in agriculture, healthcare, manufacturing, and transportation programs. Overall, course and program completion rates were higher for blended programs when compared to fully online programs. Students preferred the blended programs over the fully online programs. Overall, graduates were placed into related jobs at a rate of approximately 90 percent, although there was some variation in graduate placement rates by programs and by colleges. Differences in graduate employment rate appeared to be based on geography and sector as employers did not distinguish between graduates who had completed their programs via traditional, blended or fully online instruction. Recommendations include further exploration as to the reasons that blended courses and programs appear to be more effective than fully online courses and programs. It is also recommended that those program areas that are not using blended or online delivery methods, including agriculture, health, manufacturing and transportation, explore the use of these methods to make their courses and programs more accessible to students, particularly working adults. In some instances, colleges were partnering with specific companies to ensure that groups of employees were completing online coursework leading to a certificate or a degree. Those partnerships are to be encouraged in order for the state to continue to improve the skills of its workforce. Finally, it is recommended that specific colleges specialize in the delivery of specific programs using online technology since it is not bound by geographic considerations. This approach would take advantage of the strengths of the individual colleges and avoid unnecessary duplication.Keywords: career and technical education, online learning, skills shortage, technical colleges
Procedia PDF Downloads 1361985 Evaluation of Sustained Improvement in Trauma Education Approaches for the College of Emergency Nursing Australasia Trauma Nursing Program
Authors: Pauline Calleja, Brooke Alexander
Abstract:
In 2010 the College of Emergency Nursing Australasia (CENA) undertook sole administration of the Trauma Nursing Program (TNP) across Australia. The original TNP was developed from recommendations by the Review of Trauma and Emergency Services-Victoria. While participant and faculty feedback about the program was positive, issues were identified that were common for industry training programs in Australia. These issues included didactic approaches, with many lectures and little interaction/activity for participants. Participants were not necessarily encouraged to undertake deep learning due to the teaching and learning principles underpinning the course, and thus participants described having to learn by rote, and only gain a surface understanding of principles that were not always applied to their working context. In Australia, a trauma or emergency nurse may work in variable contexts that impact on practice, especially where resources influence scope and capacity of hospitals to provide trauma care. In 2011, a program review was undertaken resulting in major changes to the curriculum, teaching, learning and assessment approaches. The aim was to improve learning including a greater emphasis on pre-program preparation for participants, the learning environment and clinically applicable contextualized outcomes participants experienced. Previously if participants wished to undertake assessment, they were given a take home examination. The assessment had poor uptake and return, and provided no rigor since assessment was not invigilated. A new assessment structure was enacted with an invigilated examination during course hours. These changes were implemented in early 2012 with great improvement in both faculty and participant satisfaction. This presentation reports on a comparison of participant evaluations collected from courses post implementation in 2012 and in 2015 to evaluate if positive changes were sustained. Methods: Descriptive statistics were applied in analyzing evaluations. Since all questions had more than 20% of cells with a count of <5, Fisher’s Exact Test was used to identify significance (p = <0.05) between groups. Results: A total of fourteen group evaluations were included in this analysis, seven CENA TNP groups from 2012 and seven from 2015 (randomly chosen). A total of 173 participant evaluations were collated (n = 81 from 2012 and 92 from 2015). All course evaluations were anonymous, and nine of the original 14 questions were applicable for this evaluation. All questions were rated by participants on a five-point Likert scale. While all items showed improvement from 2012 to 2015, significant improvement was noted in two items. These were in regard to the content being delivered in a way that met participant learning needs and satisfaction with the length and pace of the program. Evaluation of written comments supports these results. Discussion: The aim of redeveloping the CENA TNP was to improve learning and satisfaction for participants. These results demonstrate that initial improvements in 2012 were able to be maintained and in two essential areas significantly improved. Changes that increased participant engagement, support and contextualization of course materials were essential for CENA TNP evolution.Keywords: emergency nursing education, industry training programs, teaching and learning, trauma education
Procedia PDF Downloads 2721984 Divergence of Innovation Capabilities within the EU
Authors: Vishal Jaunky, Jonas Grafström
Abstract:
The development of the European Union’s (EU) single economic market and rapid technological change has resulted in major structural changes in EU’s member states economies. The general liberalization process that the countries has undergone together has convinced the governments of the member states of need to upgrade their economic and training systems in order to be able to face the economic globalization. Several signs of economic convergence have been found but less is known about the knowledge production. This paper addresses the convergence pattern of technological innovation in 13 European Union (EU) states over the time period 1990-2011 by means of parametric and non-parametric techniques. Parametric approaches revolve around the neoclassical convergence theories. This paper reveals divergence of both the β and σ types. Further, we found evidence of stochastic divergence and non-parametric convergence approach such as distribution dynamics shows a tendency towards divergence. This result is supported with the occurrence of γ-divergence. The policies of the EU to reduce technological gap among its member states seem to be missing its target, something that can have negative long run consequences for the market.Keywords: convergence, patents, panel data, European union
Procedia PDF Downloads 2871983 Face Tracking and Recognition Using Deep Learning Approach
Authors: Degale Desta, Cheng Jian
Abstract:
The most important factor in identifying a person is their face. Even identical twins have their own distinct faces. As a result, identification and face recognition are needed to tell one person from another. A face recognition system is a verification tool used to establish a person's identity using biometrics. Nowadays, face recognition is a common technique used in a variety of applications, including home security systems, criminal identification, and phone unlock systems. This system is more secure because it only requires a facial image instead of other dependencies like a key or card. Face detection and face identification are the two phases that typically make up a human recognition system.The idea behind designing and creating a face recognition system using deep learning with Azure ML Python's OpenCV is explained in this paper. Face recognition is a task that can be accomplished using deep learning, and given the accuracy of this method, it appears to be a suitable approach. To show how accurate the suggested face recognition system is, experimental results are given in 98.46% accuracy using Fast-RCNN Performance of algorithms under different training conditions.Keywords: deep learning, face recognition, identification, fast-RCNN
Procedia PDF Downloads 1401982 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance
Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning
Procedia PDF Downloads 301981 An Accurate Computer-Aided Diagnosis: CAD System for Diagnosis of Aortic Enlargement by Using Convolutional Neural Networks
Authors: Mahdi Bazarganigilani
Abstract:
Aortic enlargement, also known as an aortic aneurysm, can occur when the walls of the aorta become weak. This disease can become deadly if overlooked and undiagnosed. In this paper, a computer-aided diagnosis (CAD) system was introduced to accurately diagnose aortic enlargement from chest x-ray images. An enhanced convolutional neural network (CNN) was employed and then trained by transfer learning by using three different main areas from the original images. The areas included the left lung, heart, and right lung. The accuracy of the system was then evaluated on 1001 samples by using 4-fold cross-validation. A promising accuracy of 90% was achieved in terms of the F-measure indicator. The results showed using different areas from the original image in the training phase of CNN could increase the accuracy of predictions. This encouraged the author to evaluate this method on a larger dataset and even on different CAD systems for further enhancement of this methodology.Keywords: computer-aided diagnosis systems, aortic enlargement, chest X-ray, image processing, convolutional neural networks
Procedia PDF Downloads 1621980 The Design of the Multi-Agent Classification System (MACS)
Authors: Mohamed R. Mhereeg
Abstract:
The paper discusses the design of a .NET Windows Service based agent system called MACS (Multi-Agent Classification System). MACS is a system aims to accurately classify spread-sheet developers competency over a network. It is designed to automatically and autonomously monitor spread-sheet users and gather their development activities based on the utilization of the software Multi-Agent Technology (MAS). This is accomplished in such a way that makes management capable to efficiently allow for precise tailor training activities for future spread-sheet development. The monitoring agents of MACS are intended to be distributed over the WWW in order to satisfy the monitoring and classification of the multiple developer aspect. The Prometheus methodology is used for the design of the agents of MACS. Prometheus has been used to undertake this phase of the system design because it is developed specifically for specifying and designing agent-oriented systems. Additionally, Prometheus specifies also the communication needed between the agents in order to coordinate to achieve their delegated tasks.Keywords: classification, design, MACS, MAS, prometheus
Procedia PDF Downloads 3991979 A Hybrid System for Boreholes Soil Sample
Authors: Ali Ulvi Uzer
Abstract:
Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.Keywords: feature selection, sequential forward selection, support vector machines, soil sample
Procedia PDF Downloads 4551978 Project Management at University: Towards an Evaluation Process around Cooperative Learning
Authors: J. L. Andrade-Pineda, J.M. León-Blanco, M. Calle, P. L. González-R
Abstract:
The enrollment in current Master's degree programs usually pursues gaining the expertise required in real-life workplaces. The experience we present here concerns the learning process of "Project Management Methodology (PMM)", around a cooperative/collaborative mechanism aimed at affording students measurable learning goals and providing the teacher with the ability of focusing on the weaknesses detected. We have designed a mixed summative/formative evaluation, which assures curriculum engage while enriches the comprehension of PMM key concepts. In this experience we converted the students into active actors in the evaluation process itself and we endowed ourselves as teachers with a flexible process in which along with qualifications (score), other attitudinal feedback arises. Despite the high level of self-affirmation on their discussion within the interactive assessment sessions, they ultimately have exhibited a great ability to review and correct the wrong reasoning when that was the case.Keywords: cooperative-collaborative learning, educational management, formative-summative assessment, leadership training
Procedia PDF Downloads 1691977 Rotational and Linear Accelerations of an Anthropometric Test Dummy Head from Taekwondo Kicks among Amateur Practitioners
Authors: Gabriel P. Fife, Saeyong Lee, David M. O'Sullivan
Abstract:
Introduction: Although investigations into injury characteristics are represented well in the literature, few have investigated the biomechanical characteristics associated with head impacts in Taekwondo. Therefore, the purpose of this study was to identify the kinematic characteristics of head impacts due to taekwondo kicks among non-elite practitioners. Participants: Male participants (n= 11, 175 + 5.3 cm, 71 + 8.3 kg) with 7.5 + 3.6 years of taekwondo training volunteered for this study. Methods: Participants were asked to perform five repetitions of each technique (i.e., turning kick, spinning hook kick, spinning back kick, front axe kick, and clench axe kick) aimed at the Hybrid III head with their dominant kicking leg. All participants wore a protective foot pad (thickness = 12 mm) that is commonly used in competition and training. To simulate head impact in taekwondo, the target consisted of a Hybrid III 50th Percentile Crash Test Dummy (Hybrid III) head (mass = 5.1 kg) and neck (fitted with taekwondo headgear) secured to an aluminum support frame and positioned to each athlete’s standing height. The Hybrid III head form was instrumented with a 500 g tri-axial accelerometer (PCB Piezotronics) mounted to the head center of gravity to obtain resultant linear accelerations (RLA). Rotational accelerations were collected using three angular rate sensors mounted orthogonally to each other (Diversified Technical Systems ARS-12 K Angular Rate Sensor). The accelerometers were interfaced via a 3-channel, battery-powered integrated circuit piezoelectric sensor signal conditioner (PCB Piezotronics) and connected to a desktop computer for analysis. Acceleration data were captured using LABVIEW Signal Express and processed in accordance with SAE J211-1 channel frequency class 1000. Head injury criteria values (HIC) were calculated using the VSRSoftware. A one-way analysis of variance was used to determine differences between kicks, while the Tukey HSD test was employed for pairwise comparisons. The level of significance was set to an effect size of 0.20. All statistical analyses were done using R 3.1.0. Results: A statistically significant difference was observed in RLA (p = 0.00075); however, these differences were not clinically meaningful (η² = 0.04, 95% CI: -0.94 to 1.03). No differences were identified with ROTA (p = 0.734, η² = 0.0004, 95% CI: -0.98 to 0.98). A statistically significant difference (p < 0.001) between kicks in HIC was observed, with a medium effect (η2= 0.08, 95% CI: -0.98 to 1.07). However, the confidence interval of this difference indicates uncertainty. Tukey HSD test identified differences (p < 0.001) between kicking techniques in RLA and HIC. Conclusion: This study observed head impact levels that were comparable to previous studies of similar objectives and methodology. These data are important as impact measures from this study may be more representative of impact levels experienced by non-elite competitors. Although the clench axe kick elicited a lower RLA, the ROTA of this technique was higher than levels from other techniques (although not large differences in reference to effect sizes). As the axe kick has been reported to cause severe head injury, future studies may consider further study of this kick important.Keywords: Taekwondo, head injury, biomechanics, kicking
Procedia PDF Downloads 261976 Adaption Model for Building Agile Pronunciation Dictionaries Using Phonemic Distance Measurements
Authors: Akella Amarendra Babu, Rama Devi Yellasiri, Natukula Sainath
Abstract:
Where human beings can easily learn and adopt pronunciation variations, machines need training before put into use. Also humans keep minimum vocabulary and their pronunciation variations are stored in front-end of their memory for ready reference, while machines keep the entire pronunciation dictionary for ready reference. Supervised methods are used for preparation of pronunciation dictionaries which take large amounts of manual effort, cost, time and are not suitable for real time use. This paper presents an unsupervised adaptation model for building agile and dynamic pronunciation dictionaries online. These methods mimic human approach in learning the new pronunciations in real time. A new algorithm for measuring sound distances called Dynamic Phone Warping is presented and tested. Performance of the system is measured using an adaptation model and the precision metrics is found to be better than 86 percent.Keywords: pronunciation variations, dynamic programming, machine learning, natural language processing
Procedia PDF Downloads 1751975 Incidence of Disasters and Coping Mechanism among Farming Households in South West Nigeria
Authors: Fawehinmi Olabisi Alaba, O. R. Adeniyi
Abstract:
Farming households faces lots of disaster which contribute to endemic poverty. Anticipated increases in extreme weather events will exacerbate this. Primary data was administered to farming household using multi-stage random sampling technique. The result of the analysis shows that majority of the respondents (69.9%) are male, have mean household size, years of formal education and age of 5±1.14, 6±3.41, and 51.06±10.43 respectively. The major (48.9%) type of disaster experienced is flooding. Major coping mechanism adopted is sourcing for support from family and friends. Age, education, experience, access to extension agent, and mitigation control method contribute significantly to vulnerability to disaster. The major adaptation method (62.3%) is construction of drainage. The study revealed that the coping mechanisms employed may become less effective as increasingly fragile livelihood systems struggle to withstand disaster shocks. Thus there is need for training of the farmers on measures to adapt to mitigate the shock from disasters.Keywords: adaptation, disasters, flooding, vulnerability
Procedia PDF Downloads 2601974 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder
Authors: Dua Hişam, Serhat İkizoğlu
Abstract:
Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting
Procedia PDF Downloads 691973 Stock Prediction and Portfolio Optimization Thesis
Authors: Deniz Peksen
Abstract:
This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.Keywords: stock prediction, portfolio optimization, data science, machine learning
Procedia PDF Downloads 801972 The Effects of Aging on Visuomotor Behaviors in Reaching
Authors: Mengjiao Fan, Thomson W. L. Wong
Abstract:
It is unavoidable that older adults may have to deal with aging-related motor problems. Aging is highly likely to affect motor learning and control as well. For example, older adults may suffer from poor motor function and quality of life due to age-related eye changes. These adverse changes in vision results in impairment of movement automaticity. Reaching is a fundamental component of various complex movements, which is therefore beneficial to explore the changes and adaptation in visuomotor behaviors. The current study aims to explore how aging affects visuomotor behaviors by comparing motor performance and gaze behaviors between two age groups (i.e., young and older adults). Visuomotor behaviors in reaching under providing or blocking online visual feedback (simulated visual deficiency) conditions were investigated in 60 healthy young adults (Mean age=24.49 years, SD=2.12) and 37 older adults (Mean age=70.07 years, SD=2.37) with normal or corrected-to-normal vision. Participants in each group were randomly allocated into two subgroups. Subgroup 1 was provided with online visual feedback of the hand-controlled mouse cursor. However, in subgroup 2, visual feedback was blocked to simulate visual deficiency. The experimental task required participants to complete 20 times of reaching to a target by controlling the mouse cursor on the computer screen. Among all the 20 trials, start position was upright in the center of the screen and target appeared at a randomly selected position by the tailor-made computer program. Primary outcomes of motor performance and gaze behaviours data were recorded by the EyeLink II (SR Research, Canada). The results suggested that aging seems to affect the performance of reaching tasks significantly in both visual feedback conditions. In both age groups, blocking online visual feedback of the cursor in reaching resulted in longer hand movement time (p < .001), longer reaching distance away from the target center (p<.001) and poorer reaching motor accuracy (p < .001). Concerning gaze behaviors, blocking online visual feedback increased the first fixation duration time in young adults (p<.001) but decreased it in older adults (p < .001). Besides, under the condition of providing online visual feedback of the cursor, older adults conducted a longer fixation dwell time on target throughout reaching than the young adults (p < .001) although the effect was not significant under blocking online visual feedback condition (p=.215). Therefore, the results suggested that different levels of visual feedback during movement execution can affect gaze behaviors differently in older and young adults. Differential effects by aging on visuomotor behaviors appear on two visual feedback patterns (i.e., blocking or providing online visual feedback of hand-controlled cursor in reaching). Several specific gaze behaviors among the older adults were found, which imply that blocking of visual feedback may act as a stimulus to seduce extra perceptive load in movement execution and age-related visual degeneration might further deteriorate the situation. It indeed provides us with insight for the future development of potential rehabilitative training method (e.g., well-designed errorless training) in enhancing visuomotor adaptation for our aging population in the context of improving their movement automaticity by facilitating their compensation of visual degeneration.Keywords: aging effect, movement automaticity, reaching, visuomotor behaviors, visual degeneration
Procedia PDF Downloads 3121971 The Impact of Step-By-Step Program in the Public Preschool Institutions in Kosova
Authors: Rozafa Shala
Abstract:
Development of preschool education in Kosovo has passed through several periods. The period after the 1999 war was very intensive period when preschool education started to change. Step-by-step program was one of the programs which were very well extended during the period after the 1999 war until now. The aim of this study is to present the impact of the step-by-step program in the preschool education. This research is based on the hypothesis that: Step-by-step program continues to be present with its elements, in all other programs that the teachers can use. For data collection a questionnaire is constructed which was distributed to 25 teachers of preschool education who work in public preschool institutions. All the teachers have finished the training for step by step program. To support the data from the questionnaire a focus group is also organized with whom the critical issues of the program were discussed. From the results obtained we can conclude that the step-by-step program has a very strong impact in the preschool level. Many specific elements such as: circle time, weather calendar, environment inside the class, portfolios and many other elements are present in most of the preschool classes. The teacher's approach also has many elements of the step-by-step program.Keywords: preschool education, step-by-step program, impact, teachers
Procedia PDF Downloads 3501970 Automated Detection of Women Dehumanization in English Text
Authors: Maha Wiss, Wael Khreich
Abstract:
Animals, objects, foods, plants, and other non-human terms are commonly used as a source of metaphors to describe females in formal and slang language. Comparing women to non-human items not only reflects cultural views that might conceptualize women as subordinates or in a lower position than humans, yet it conveys this degradation to the listeners. Moreover, the dehumanizing representation of females in the language normalizes the derogation and even encourages sexism and aggressiveness against women. Although dehumanization has been a popular research topic for decades, according to our knowledge, no studies have linked women's dehumanizing language to the machine learning field. Therefore, we introduce our research work as one of the first attempts to create a tool for the automated detection of the dehumanizing depiction of females in English texts. We also present the first labeled dataset on the charted topic, which is used for training supervised machine learning algorithms to build an accurate classification model. The importance of this work is that it accomplishes the first step toward mitigating dehumanizing language against females.Keywords: gender bias, machine learning, NLP, women dehumanization
Procedia PDF Downloads 801969 Factors That Stimulate Employee Development in Polish Small Enterprises
Authors: Ewa Rak
Abstract:
This paper is part of a broader research project on employee development in small enterprises, financed by Polish National Science Centre. The project results will serve as basis for a doctoral dissertation. The paper utilises literature studies and qualitative research conducted in small enterprises operating in the Lower Silesia region of Poland. This paper aims to identify some of the factors that stimulate employee development in small companies operating in Poland. The great variety of business pursuits and applications represented by this sector makes it hard to determine a universal configuration of factors to offer best possible conditions for employee development. Research results suggest that each of the examined companies had one or two of such factors in focus, and serving as the basis for the entire pro-development system. These include: employment security (both for employee and entrepreneur) and extensive knowledge and experience of entrepreneurs, but only if it is combined with a willingness and ability to share it.Keywords: employee development, factors that stimulate employee development, human resources development, Poland, small enterprises, training
Procedia PDF Downloads 2681968 Systolic Blood Pressure Responses to Aerobic Exercise among HIV Positive Patients
Authors: Ka'abu Mu'azu
Abstract:
The study examines the effect of varied intensities of aerobic exercise on Systolic Blood Pressure (SBP) among HIV/AIDS positive patients. Participants of mean age of 20.4 years were randomized into four groups. High Intensity Group (HIG), Moderate Intensity Group (MIG), Low Intensity Group (LIG) and Control Group (COG). SBP was measured at baseline (pre-exercise) and post-exercise (8 weeks). Analysis of variance (ANOVA) indicates a significant training effect on resting values of SBP (F [3, 15] = 8.9, P < 0.05). Sheffe post hoc analysis indicated that both HIG and MIG significantly differ from control (P < 0.05). Dependent t- test indicates difference in HIG (t [7] = 6.5, P < 0.05) and slightly in MIG (t [7] = 5.4, P < 0.05). The study concluded that aerobic exercise is effective in reducing resting values of SBP particularly the activities that are high intensity in nature. The study recommends that high and moderate intensity aerobic exercise should be used for improving health condition of HIV/AIDS patients as regard to decrease in resting value of SBP.Keywords: systolic blood pressure, aerobic exercise, HIV patients, health sciences
Procedia PDF Downloads 3791967 Evaluation of Inceptor Design for Manned Multicopter
Authors: Jędrzej Minda
Abstract:
In aviation, a very narrow spectrum of control inceptors exists, namely centre sticks, side-sticks, pedals, and yokes. However, new types of aircraft are emerging, and with them, a need for new inceptors. A manned multicopter created at AGH University of Science and Technology is an aircraft in which the pilot takes a specific orientation in which classical inceptors may be impractical to use. In this paper, a unique kind of control inceptor is described, which aims to provide a handling quality not unlike standard solutions, and provide a firm grip point for the pilot without the risk of involuntary stick movement. Simulations of the pilot-inceptor model were performed in order to compare the dynamic amplification factors of the design described in this paper with the classical one. A functional prototype is built on which drone pilots carry out a comfort-of-use evaluation. This paper provides a general overview of the project, including a literature review, reasoning behind components selection, and mechanism design finalized by conclusions.Keywords: mechanisms, mechatronics, embedded control, serious gaming for training rescue missions, rescue robotics
Procedia PDF Downloads 821966 An Empirical Analysis of HRM in Different Pharmaceutical Departments of Different Pharmaceutical Industries in Pakistan
Authors: Faisal Ali, Mansoor Shuakat, Cui Lirong, Rabia Riasat
Abstract:
HR is a department that enhances the power of employee performance in regard with their services, and to make the organization strategic objectives. The main concern of HR department is to organize people, focus on policies and their system. The empirical study shows the relationship between HRM (Human Resource Management practices) and their Job Satisfaction. The Hypothesis is testing on a sample of overall 320 employees of 5 different Pharmaceutical departments of different organizations in Pakistan. The important thing as Relationship of Job satisfaction with HR Practices, Impact on Job Satisfaction with HR Practices, Participation of Staff of Different Departments, HR Practices effects the Job satisfaction, Recruitment or Hiring and Selection effects the Job satisfaction, Training and Development, Performance and Appraisals, Compensation affects the Job satisfaction , and Industrial Relationships affects the Job satisfaction. After finishing all data analysis, the conclusion is that lots of Job related activities raise the confidence of Job satisfaction of employees with their salary and other benefits. Implications of HR practices discussed, Limitations, and future research study also offered write the main conclusion for your paper.Keywords: HRM, HR practices, job satisfaction, TQM
Procedia PDF Downloads 3681965 Compromising Quality of Life in Low Income Settlement's: The Case of Ashrayan Prakalpa, Khulna
Authors: Salma Akter, Md. Kamal Uddin
Abstract:
This study aims to demonstrate how top-down shelter policy and its resultant dwelling environment leads to ‘everyday compromise’ by the grassroots according to subjective (satisfaction) and objective (physical design elements and physical environmental elements) indicators, which are measured across three levels of the settlement; macro (Community), meso (Neighborhood or shelter/built environment) and micro (family). Ashrayan Prakalpa is a resettlement /housing project of Government of Bangladesh for providing shelters and human resources development activities like education, microcredit, and training programme to landless, homeless and rootless people. Despite the integrated nature of the shelter policies (comprises poverty alleviation, employment opportunity, secured tenure, and livelihood training), the ‘quality of life’ issue at the different levels of settlements becomes questionable. As dwellers of shelter units (although formally termed as ‘barracks’ rather shelter or housing) remain on the receiving end of government’s resettlement policies, they often involve with spatial-physical and socio-economic negotiation and assume curious forms of spatial practice, which often upholds contradiction with policy planning. Thus, policy based shelter force dwellers to persistently compromise with their provided built environments both in overtly and covertly. Compromising with prescribed designed space and facilities across living places articulated their negotiation with the quality of allocated space, built form and infrastructures, which in turn exert as less quality of life. The top-down shelter project, Dakshin Chandani Mahal Ashrayan Prakalpa at Dighalia Upazila, the study area located at the Eastern fringe area of Khulna, Bangladesh, is still in progress to resettle internally displaced and homeless people. In terms of methodology, this research is primarily exploratory and adopts a case study method, and an analytical framework is developed through the deductive approach for evaluating the quality of life. Secondary data have been obtained from housing policy analysis and relevant literature review, while key informant interview, focus group discussion, necessary drawings and photographs and participant observation across dwelling, neighborhood, and community level have also been administered as primary data collection methodology. Findings have revealed that various shortages, inadequacies, and negligence of policymakers force to compromise with allocated designed space, physical infrastructure and economic opportunities across dwelling, neighborhood and mostly community level. Thus, the outcome of this study can be beneficial for a global-level understating of the compromising the ‘quality of life’ under top-down shelter policy. Locally, for instance, in the context of Bangladesh, it can help policymakers and concerned authorities to formulate the shelter policies and take initiatives to improve the well-being of marginalized.Keywords: Ashrayan Prakalpa, compromise, displaced people, quality of life
Procedia PDF Downloads 1511964 Numerical Methods for Topological Optimization of Wooden Structural Elements
Authors: Daniela Tapusi, Adrian Andronic, Naomi Tufan, Ruxandra Erbașu, Ioana Teodorescu
Abstract:
The proposed theme of this article falls within the policy of reducing carbon emissions imposed by the ‘Green New Deal’ by replacing structural elements made of energy-intensive materials with ecological materials. In this sense, wood has many qualities (high strength/mass and stiffness/mass ratio, low specific gravity, recovery/recycling) that make it competitive with classic building materials. The topological optimization of the linear glulam elements, resulting from different types of analysis (Finite Element Method, simple regression on metamodels), tests on models or by Monte-Carlo simulation, leads to a material reduction of more than 10%. This article proposes a method of obtaining topologically optimized shapes for different types of glued laminated timber beams. The results obtained will constitute the database for AI training.Keywords: timber, glued laminated timber, artificial-intelligence, environment, carbon emissions
Procedia PDF Downloads 391963 The Appraisal of Construction Sites Productivity: In Kendall’s Concordance
Authors: Abdulkadir Abu Lawal
Abstract:
For the dearth of reliable cardinal numerical data, the linked phenomena in productivity indices such as operational costs and company turnovers, etc. could not be investigated. This would not give us insight to the root of productivity problems at unique sites. So, ordinal ranking by professionals who were most directly involved with construction sites was applied for Kendall’s concordance. Responses gathered from independent architects, builders/engineers, and quantity surveyors were herein analyzed. They were responses based on factors that affect sites productivity, and these factors were categorized as head office factors, resource management effectiveness factors, motivational factors, and training/skill development factors. It was found that productivity is low and has to be improved in order to facilitate Nigerian efforts in bridging its infrastructure deficit. The significance of this work is underlined with the Kendall’s coefficient of concordance of 0.78, while remedial measures must be emphasized to stimulate better productivity. Further detailed study can be undertaken by using Fuzzy logic analysis on wider Delphi survey.Keywords: factors, Kendall's coefficient of concordance, magnitude of agreement, percentage magnitude of dichotomy, ranking variables
Procedia PDF Downloads 6271962 Factors Affecting the Climate Change Adaptation in Agriculture in Central and Western Nepal
Authors: Maharjan Shree Kumar
Abstract:
Climate change impacts are observed in all livelihood sectors primarily in agriculture and forestry. Multiple factors have influenced the climate vulnerabilities and adaptations in agricultural at the household level. This study focused on the factors affecting adaptation in agriculture in Madi and Deukhuri valleys of Central and Western Nepal. The systematic random sampling technique was applied to select 154 households in Madi and 150 households in Deukhuri. The main purpose of the study was to analyze the socio-economic factors that either influence or restrain the farmers’ adaptation to climate change at the household level by applying the linear probability model. Based on the analysis, it is revealed that crop diversity, education, training and total land holding (acre) were positively significant for adaptation choices the study sites. Rest of the variables were not significant though indicated positive as expected except age, occupation, ethnicity, family size, and access to credit.Keywords: adaptation, agriculture, climate, factors, Nepal
Procedia PDF Downloads 1521961 Organizational Socialization Levels in Nurses
Authors: Manar Aslan, Ayfer Karaaslan, Serap Selçuk
Abstract:
The research was conducted in order to determine the organizational socialization levels of nurses working in hospitals in the form of a descriptive study. The research population was composed of nurses employed in public and private sector hospitals in the province of Konya with 0-3 years of professional experience in the hospitals (N=1200); and the sample was composed of 495 nurses that accepted to take part in the study voluntarily. Organizational Socialization Scale which was developed by Haueter, Macan and Winter (2003) and whose validity-reliability in Turkish was analyzed by Ataman (2012) was used. Statistical evaluation of data was conducted in SPSS.16 software. The results of the study revealed that the total score taken by nurses at the organizational socialization scale was 262.95; and this was close to the maximum score. Particularly the departmental socialization sub-dimension proved to be higher in comparison to the other two dimensions (organization socialization and task socialization). Statistically meaningful differences were found in the levels of organization socialization in relation to the status of organizational orientation training, level of education and age group.Keywords: nurses, newcomers, organizational socialization, total score
Procedia PDF Downloads 349