Search results for: raw earth concrete
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2891

Search results for: raw earth concrete

911 Preventing Farmer-Herder Conflicts in Ghana: A Constellation of Local Strategies and Solutions

Authors: Abdulai Abubakari

Abstract:

The rollercoaster relationship between farmers and herders in Sub-Saharan Africa has compelled most governments to undertake different mitigating strategies. Over the past two decades, the expulsion of migrant herdsmen, the killing of cattle and human beings, and fines have been used by the state and aggrieved individuals to resolve the conflicts. Unlike this paper, most of the research conducted on this subject matter has been largely theoretical and lacks practical solutions to the conflicts. This paper is unique because it focuses on concrete strategies and practical solutions to ending the century-old phenomenon of farmer-herder conflicts in Ghana. The paper employed power or compete (fight) theory as well as compromise and negotiation theories in the analyses. The paper employed, basically, socio-anthropological methods: interviews, focus group discussions, and observations to gather data. The paper found that compromises through negotiation with the stakeholders are the best ways of resolving these conflicts. Through this, we support the compromise and negotiation approach rather than expulsion to resolve farmer-herder conflicts.

Keywords: farmer-herder, conflict, prevention, strategies, stakeholders

Procedia PDF Downloads 40
910 Development of a Research Platform to Revitalize People-Forest Relationship Through a Cycle of Architectural Embodiments

Authors: Hande Ünlü, Yu Morishita

Abstract:

The total area of forest land in Japan accounts for 67% of the national land; however, despite this wealth and hundred years history of silviculture, today Japanese forestry faces socio-economic stagnation in forestry. While the growing gap in the people-forest relationship causes the depopulation of many forest villages, this paper introduces a methodology aiming to develop a place-specific approach in revitalizing this relationship. The paper focuses on a case study from Taiki town in the Hokkaido region to analyze the place's specific socio-economic requirements through interviews and workshops with the local experts, researchers, and stakeholders. Based on the analyzed facts, a master outline of design requirements is developed to produce locally sourced architectural embodiments that aim to act as a unifying element between the forests and the people of Taiki town. In parallel, the proposed methodology aims to generate a cycle of research feed and a researcher retreat, a definition given by Memu Earth Lab to the researchers' stay at Memu in Taiki town for a defined period to analyze local resources, for the continuous improvement of the introduced methodology to revitalize the interaction between people and forest through architecture.

Keywords: architecture, Japanese forestry, local timber, people-forest relationship, research platform

Procedia PDF Downloads 169
909 Nd³⁺: Si₂N₂O (Sinoite) Phosphors for White Light Emitting Diodes

Authors: Alparslan A. Balta, Hilmi Yurdakul, Orkun Tunckan, Servet Turan, Arife Yurdakul

Abstract:

A silicon oxynitride (Si2N2O), the mineralogical name is “Sinoite”, reveals the outstanding physical, mechanical and thermal properties, e.g., good oxidation resistance at high temperatures, high fracture toughness with rod shape, high hardness, low theoretical density, good thermal shock resistance by low thermal expansion coefficient and high thermal conductivity. In addition, the orthorhombic crystal structure of Si2N2O allows accommodating the rare earth (RE) element atoms along the “c” axis due to existing large structural interstitial sites. Here, 0.02 to 0.12 wt. % Nd3+ doped Si2N2O samples were successfully synthesized by spark plasma sintering (SPS) method at 30MPa pressure and 1650oC temperature. Li2O was also utilized as a sintering additive to take advantage of low eutectic point during synthesizing. The specimens were characterized in detail by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and cathodoluminescence (CL) in SEM and photoluminescence (PL) spectroscopy. Based on the overall results, the Si2N2O phase was obtained above 90% by the SPS route. Furthermore, Nd3+: Si2N2O samples showed a very broad intense emission peak between 400-700 nm, which corresponds to white color. Therefore, this material can be considered as a promising candidate for white light-emitting diodes (WLEDs) purposes. This study was supported by TUBITAK under project number 217M667.

Keywords: neodymium, oxynitride, Si₂N₂O, WLEDs

Procedia PDF Downloads 123
908 Turkish Airlines' 85th Anniversary Commercial: An Analysis of the Institutional Identity of a Brand in Terms of Glocalization

Authors: Samil Ozcan

Abstract:

Airlines companies target different customer segments in consideration of pricing, service quality, flight network, etc. and their brand positioning accords with the marketization strategies developed in the same direction. The object of this study, Turkish Airlines, has many peculiarities regarding its brand positioning as compared to its rivals in the sector. In the first place, it appeals to a global customer group because of its Star Alliance membership and its broad flight network with 315 destination points. The second group in its customer segmentation includes domestic customers. For this group, the company follows a marketing strategy that plays to local culture and accentuates the image of Turkishness as an emotional allurement. The advertisements and publicity projects designed in this regard put little emphasis on the service quality the company offers to its clients; it addresses the emotions of the consumers rather than individual benefits and relies on the historical memory of the nation and shared cultural values. This study examines the publicity work which aims at the second segment customer group focusing on Turkish Airlines’ 85th Anniversary Commercial through a symbolic meaning analysis approach. The commercial presents six stories with undertones of nationalism in its theme. Nationalism is not just the product of collective interests based on reason but a result of patriotism in the sense of loyalty to state and nation and love of ethnic belonging. While nationalism refers to concrete notions such as blood tie, common ancestor, shared history, it is not the actuality of these notions that it draws its real strength but the emotions invested in them. The myths of origin, the idea of common homeland, boundary definitions, and symbolic acculturation have instrumental importance in the development of these commonalities. The commercial offers concrete examples for an analysis of Connor’s definition of nationalism based on emotions. Turning points in the history of the Turkish Republic and the historical mission Turkish Airlines undertook in these moments are narrated in six stories in the commercial with a highly emotional theme. These emotions, in general, depend on collective memory generated by national consciousness. Collective memory is not simply remembering the past. It is constructed through the reconstruction and reinterpretation of the past in the present moment. This study inquires the motivations behind the nationalist emotions generated within the collective memory by engaging with the commercial released for the 85th anniversary of Turkish Airlines as the object of analysis. Symbols and myths can be read as key concepts that reveal the relation between 'identity and memory'. Because myths and symbols do not merely reflect on collective memory, they reconstruct it as well. In this sense, the theme of the commercial defines the image of Turkishness with virtues such as self-sacrifice, helpfulness, humanity, and courage through a process of meaning creation based on symbolic mythologizations like flag and homeland. These virtues go beyond describing the image of Turkishness and become an instrument that defines and gives meaning to Turkish identity.

Keywords: collective memory, emotions, identity, nationalism

Procedia PDF Downloads 148
907 Child of the Dark by Carolina Maria De Jesus in a Fundamental Rights Perspective

Authors: Eliziane Navarro, Aparecida Citta

Abstract:

Child of the dark is the work of the Brazilian author Carolina Maria de Jesus published at the first time by Ática & Francisco Alves in 1960. It is, mostly, a story of lack of rights. It lacks to men who live in the slums what is essential in order to take advantage of the privilege of rationality to develop themselves as civilized humans. It is, therefore, in the withholding of the basic rights that inequality finds space to build itself to be the main misery on Earth. Antonio Candido, a Brazilian sociologist, claims that it is the right to literature has the ability to humanize men, once the aptitude to create fiction and fable is essential to the social balance. Hence, for the forming role that literature holds, it must be thought as the number of rights that assure human dignity, such as housing, education, health, freedom, etc. When talking about her routine, Carolina puts in evidence something that has great influence over the formation of human beings, contributing to the way they live: the slum. Even though it happens in a distinct way and using her linguistics variation, Carolina writes about something that will only be discussed later on Brazil’s Cities Statute and Ermia Maricato: the right to the city, and how the slums are, although inserted in the city, an attachment, an illegal city, a dismissing room. It interests ourselves, for that matter, in this work, to analyse how the deprivation of the rights to the city and literature, detailed in Carolina’s journal, conditions human beings to a life where the instincts overcome the social values.

Keywords: Child of the dark, slum, Brazil, architecture and literature

Procedia PDF Downloads 238
906 Impact of Ozone Produced by Vehicular Emission on Chronic Obstructive Pulmonary Disease

Authors: Mohd Kamil Vakil

Abstract:

Air Pollution is caused by the introduction of chemicals in the biosphere. Primary pollutants on reaction with the components of the earth produce Secondary Pollutants like Smog. Ozone is the main ingredient of Smog. The ground level ozone is created by the chemical reactions between Nitrogen Oxides (NOx) and Volatile Organic Compounds (VOCs) in the presence of Sunlight. This ozone can enter inside and call as indoor ozone. The automobile emissions in both moving and idling conditions contribute to the indoor ozone formation. During engine ignition and shutdown, motor vehicles emit the ozone forming pollutants like NOx and VOCs, and the phenomena are called Cold Start and Hot-Soak respectively. Subjects like Chronic Obstructive Pulmonary Disease (COPD) and asthma associated with chronic respiratory diseases are susceptible to the harmful effects of Indoor Ozone. The most common cause of COPD other than smoking is the long-term contract with harmful pollutants like ground-level ozone. It is estimated by WHO that COPD will become the third leading cause of all deaths worldwide by 2030. In this paper, the cold-start and hot-soak vehicle emissions are studied in the context of accumulation of oxides of nitrogen at the outer walls of the building which may cause COPD. The titanium oxide coated building material is further discussed as an absorber of NOx when applied to the walls and roof.

Keywords: indoor air quality, cold start emission, hot-soak, ozone

Procedia PDF Downloads 192
905 Effects of Positron Concentration and Temperature on Ion-Acoustic Solitons in Magnetized Electron-Positron-Ion Plasma

Authors: S. K. Jain, M. K. Mishra

Abstract:

Oblique propagation of ion-acoustic solitons in magnetized electron-positron-ion (EPI) plasma with warm adiabatic ions and isothermal electrons has been studied. Korteweg-de Vries (KdV) equation using reductive perturbation method has been derived for the system, which admits an obliquely propagating soliton solution. It is found that for the selected set of parameter values, the system supports only compressive solitons. Investigations reveal that an increase in positron concentration diminishes the amplitude as well as the width of the soliton. It is also found that the temperature ratio of electron to positron (γ) affects the amplitude of the solitary wave. An external magnetic field do not affect the amplitude of ion-acoustic solitons, but obliqueness angle (θ), the angle between wave vector and magnetic field affects the amplitude. The amplitude of the ion-acoustic solitons increases with increase in angle of obliqueness. Magnetization and obliqueness drastically affect the width of the soliton. An increase in ionic temperature decreases the amplitude and width. For the fixed set of parameters, profiles have been drawn to study the combined effect with variation of two parameters on the characteristics of the ion-acoustic solitons (i.e., amplitude and width). The result may be applicable to plasma in the laboratory as well as in the magnetospheric region of the earth.

Keywords: ion-acoustic solitons, Korteweg-de Vries (KdV) equation, magnetized electron-positron-ion (EPI) plasma, reductive perturbation method

Procedia PDF Downloads 276
904 Extracting the Atmospheric Carbon Dioxide and Convert It into Useful Minerals at the Room Conditions

Authors: Muthana A. M. Jamel Al-Gburi

Abstract:

Elimination of carbon dioxide (CO2) gas from our atmosphere is very important but complicated, and since there is always an increase in the gas amounts of the other greenhouse ones in our atmosphere, causes by both some of the human activities and the burning of the fossil fuels, which leads to the Global Warming phenomena i.e., increasing the earth temperature to a higher level, creates desertification, tornadoes and storms. In our present research project, we constructed our own system to extract carbon dioxide directly from the atmospheric air at the room conditions and investigated how to convert the gas into a useful mineral or Nano scale fibers made of carbon by using several chemical processes and chemical reactions leading to a valuable building material and also to mitigate the environmental negative change. In the present water pool system (Carbone Dioxide Domestic Extractor), the ocean-sea water was used to dissolve the CO2 gas from the room and converted into carbonate minerals by using a number of additives like shampoo, clay and MgO. Note that the atmospheric air includes CO2 gas has circulated within the sea water by air pump connected to a perforated tubes fixed deep on the pool base. Those chemical agents were mixed with the ocean-sea water to convert the formed acid from the water-CO2 reaction into a useful mineral. After we successfully constructed the system, we did intense experiments and investigations on the CO2 gas reduction level and found which is the optimum active chemical agent to work in the atmospheric conditions.

Keywords: global warming, CO₂ gas, ocean-sea water, additives, solubility level

Procedia PDF Downloads 71
903 Calculation of Water Economy Balance for Water Management

Authors: Vakhtang Geladze, Nana Bolashvili, Tamazi Karalashvili, Nino Machavariani, Ana Karalashvili, George Geladze, Nana Kvirkvelia

Abstract:

Fresh water deficit is one of the most important global problems today. It must be taken into consideration that in the nearest future fresh water crisis will become even more acute owing to the global climate warming and fast desertification processes in the world. Georgia is rich in water resources, but there are disbalance between the eastern and western parts of the country. The goal of the study is to integrate the recent mechanisms compatible with European standards into Georgian water resources management system on the basis of GIS. Moreover, to draw up water economy balance for the purpose of proper determination of water consumption priorities that will be an exchange ratio of water resources and water consumption of the concrete territory. For study region was choose south-eastern part of country, Kvemo kartli Region. This is typical agrarian region, tends to the desertification. The water supply of the region was assessed on the basis of water economy balance, which was first time calculated for this region.

Keywords: desertification, GIS, sustainable management, water management

Procedia PDF Downloads 133
902 A Review on the Future Canadian RADARSAT Constellation Mission and Its Capabilities

Authors: Mohammed Dabboor

Abstract:

Spaceborne Synthetic Aperture Radar (SAR) systems are active remote sensing systems independent of weather and sun illumination, two factors which usually inhibit the use of optical satellite imagery. A SAR system could acquire single, dual, compact or fully polarized SAR imagery. Each SAR imagery type has its advantages and disadvantages. The sensitivity of SAR images is a function of the: 1) band, polarization, and incidence angle of the transmitted electromagnetic signal, and 2) geometric and dielectric properties of the radar target. The RADARSAT-1 (launched on November 4, 1995), RADARSAT-2 ((launched on December 14, 2007) and RADARSAT Constellation Mission (to be launched in July 2018) are three past, current, and future Canadian SAR space missions. Canada is developing the RADARSAT Constellation Mission (RCM) using small satellites to further maximize the capability to carry out round-the-clock surveillance from space. The Canadian Space Agency, in collaboration with other government-of-Canada departments, is leading the design, development and operation of the RADARSAT Constellation Mission to help addressing key priorities. The purpose of our presentation is to give an overview of the future Canadian RCM SAR mission with its satellites. Also, the RCM SAR imaging modes along with the expected SAR products will be described. An emphasis will be given to the mission unique capabilities and characteristics, such as the new compact polarimetry SAR configuration. In this presentation, we will summarize the RCM advancement from previous RADARSAT satellite missions. Furthermore, the potential of the RCM mission for different Earth observation applications will be outlined.

Keywords: compact polarimetry, RADARSAT, SAR mission, SAR applications

Procedia PDF Downloads 173
901 Comparative Study between Inertial Navigation System and GPS in Flight Management System Application

Authors: Othman Maklouf, Matouk Elamari, M. Rgeai, Fateh Alej

Abstract:

In modern avionics the main fundamental component is the flight management system (FMS). An FMS is a specialized computer system that automates a wide variety of in-flight tasks, reducing the workload on the flight crew to the point that modern civilian aircraft no longer carry flight engineers or navigators. The main function of the FMS is in-flight management of the flight plan using various sensors such as Global Positioning System (GPS) and Inertial Navigation System (INS) to determine the aircraft's position and guide the aircraft along the flight plan. GPS which is satellite based navigation system, and INS which generally consists of inertial sensors (accelerometers and gyroscopes). GPS is used to locate positions anywhere on earth, it consists of satellites, control stations, and receivers. GPS receivers take information transmitted from the satellites and uses triangulation to calculate a user’s exact location. The basic principle of an INS is based on the integration of accelerations observed by the accelerometers on board the moving platform, the system will accomplish this task through appropriate processing of the data obtained from the specific force and angular velocity measurements. Thus, an appropriately initialized inertial navigation system is capable of continuous determination of vehicle position, velocity and attitude without the use of the external information. The main objective of article is to introduce a comparative study between the two systems under different conditions and scenarios using MATLAB with SIMULINK software.

Keywords: flight management system, GPS, IMU, inertial navigation system

Procedia PDF Downloads 288
900 Overview and Post Damage Analysis of Nepal Earthquake 2015

Authors: Vipin Kumar Singhal, Rohit Kumar Mittal, Pavitra Ranjan Maiti

Abstract:

Damage analysis is one of the preliminary activities to be done after an earthquake so as to enhance the seismic building design technologies and prevent similar type of failure in future during earthquakes. This research article investigates the damage pattern and most probable reason of failure by observing photographs of seven major buildings collapsed/damaged which were evenly spread over the region during Mw7.8, Nepal earthquake 2015 followed by more than 400 aftershocks of Mw4 with one aftershock reaching a magnitude of Mw7.3. Over 250,000 buildings got damaged, and more than 9000 people got injured in this earthquake. Photographs of these buildings were collected after the earthquake and the cause of failure was estimated along with the severity of damage and comment on the reparability of structure has been made. Based on observations, it was concluded that the damage in reinforced concrete buildings was less compared to masonry structures. The number of buildings damaged was high near Kathmandu region due to high building density in that region. This type of damage analysis can be used as a cost effective and quick method for damage assessment during earthquakes.

Keywords: Nepal earthquake, damage analysis, damage assessment, damage scales

Procedia PDF Downloads 359
899 Evaluation of Hand Arm Vibrations of Low Profile Dump Truck Operators in an Underground Metal Mine According to Job Component Analysis of a Work Cycle

Authors: Sridhar S, Govinda Raj Mandela, Aruna Mangalpady

Abstract:

In the present day scenario, Indian underground mines are moving towards full scale mechanisation for improvement of production and productivity levels. These mines are employing a wide variety of earth moving machines for the transportation of ore and overburden (waste). Low Profile Dump Trucks (LPDTs) have proven more advantageous towards improvement of production levels in underground mines through quick transportation. During the operation of LPDT, different kinds of vibrations are generated which can affect the health condition of the operator. Keeping this in view, the present research work focuses on measurement and evaluation of Hand Arm Vibrations (HAVs) from the steering system of LPDTs. The study also aims to evaluate the HAVs of different job components of a work cycle in operating LPDTs. The HAVs were measured and evaluated according to ISO 5349-2: 2001 standards, and the daily vibration exposures A(8) were calculated. The evaluated A(8) results show that LPDTs of 60 and 50 tons capacity have vibration levels more than that of the Exposure Action Value (EAV) of 2.5 m/s2 in every job component of the work cycle. Further, the results show that the vibration levels were more during empty haulage especially during descending journey when compared to other job components in all LPDTs considered for the study.

Keywords: low profile dump trucks, hand arm vibrations, exposure action value, underground mines

Procedia PDF Downloads 122
898 A Study on Application of Elastic Theory for Computing Flexural Stresses in Preflex Beam

Authors: Nasiri Ahmadullah, Shimozato Tetsuhiro, Masayuki Tai

Abstract:

This paper presents the step-by-step procedure for using Elastic Theory to calculate the internal stresses in composite bridge girders prestressed by the Preflexing Technology, called Prebeam in Japan and Preflex beam worldwide. Elastic Theory approaches preflex beams the same way as it does the conventional composite girders. Since preflex beam undergoes different stages of construction, calculations are made using different sectional and material properties. Stresses are calculated in every stage using the properties of the specific section. Stress accumulation gives the available stress in a section of interest. Concrete presence in the section implies prestress loss due to creep and shrinkage, however; more work is required to be done in this field. In addition to the graphical presentation of this application, this paper further discusses important notes of graphical comparison between the results of an experimental-only research carried out on a preflex beam, with the results of simulation based on the elastic theory approach, for an identical beam using Finite Element Modeling (FEM) by the author.

Keywords: composite girder, Elastic Theory, preflex beam, prestressing

Procedia PDF Downloads 268
897 The Influence of a Vertical Rotation on the Fluid Dynamics of Compositional Plumes

Authors: Khaled Suleiman Mohammed Al-Mashrafi

Abstract:

A compositional plume is a fluid flow in a directional channel of finite width in another fluid of different material composition. The study of the dynamics of compositional plumes plays an essential role in many real-life applications like industrial applications (e.g., iron casting), environmental applications (e.g., salt fingers and sea ice), and geophysical applications (e.g., solidification at the inner core boundary (ICB) of the Earth, and mantle plumes). The dynamics of compositional plumes have been investigated experimentally and theoretically. The experimental works observed that the plume flow seems to be stable, although some experiments showed that it can be unstable. At the same time, the theoretical investigations showed that the plume flow is unstable. This is found to be true even if the plume is subject to rotation or/and in the presence of a magnetic field and even if another plume of different composition is also present. It is noticeable that all the theoretical studies on the dynamics of compositional plumes are conducted in unbounded domains. The present work is to investigate theoretically the influence of vertical walls (boundaries) on the dynamics of compositional plumes in the absence/presence of a rotation field. The mathematical model of the dynamics of compositional plumes used the equations of continuity, motion, heat, concentration of light material, and state. It is found that the presence of boundaries has a strong influence on the basic state solution as well as the stability of the plume, particularly when the plume is close to the boundary, but the compositional plume remains unstable.

Keywords: compositional plumes, stability, bounded domain, vertical boundaries

Procedia PDF Downloads 9
896 The Impact of Multiple Stressors on the Functioning and Resilience of Model Freshwater Ecosystems

Authors: Sajida Saqira, Anthony Chariton, Grant C. Hose

Abstract:

The Anthropocene has seen dramatic environmental changes which are affecting every ecosystem on earth. Freshwater ecosystems are particularly vulnerable as they are at risk from the many activities that go on and contaminants that are released in catchments. They are thus subject to many stressors simultaneously. Freshwater ecosystems respond to stress at all levels of biological organization, from subcellular to community structure and ecosystem functioning. The aim of this study was to examine the resistance and resilience of freshwater ecosystems to multiple stressors. Here we explored the individual and combined effects of copper as a chemical stressor and common carp (Cyprinus carpio) as a biological stressor on the health, functioning, and recovery of outdoor experimental pond ecosystems in a long-term, controlled, factorial experiment. Primary productivity, decomposition, and water and sediment quality were analysed at regular intervals for one year to understand the health and functioning of the ecosystems. Changes to benthic biota were quantified using DNA-based and traditional microscopy-based counts of invertebrates. Carp were added to the ponds to copper contaminated sediments (with controls) to explore the combined effects of copper and carp and removed after six months to explore the resilience and recovery of the system. The outcomes of this study will advance our understanding of the impacts of multiple stressors on freshwater ecosystems, and the resilience of these systems to copper and C. carpio, which are both globally significant stressors in freshwater systems.

Keywords: carp, copper, ecosystem health, freshwater ecosystem, multiple stressors

Procedia PDF Downloads 108
895 Production of Cement-Free Construction Materials via Fly Ash Carbonation

Authors: Zhenhua Wei, Gabriel Falzone, Bu Wang, Laurent Pilon, Gaurav Sant

Abstract:

The production of ordinary Portland cement (OPC) is a CO₂ intensive process. Specifically, cement clinkering reactions require not only substantial energy in the form of heat, but also result in the release of CO₂, from limestone decarbonation and the combustion of fuel. To overcome this CO₂ intensive process, clinkering-free cementation is demonstrated by the carbonation of fly ash; i.e., a by-product of coal combustion. It is shown that in moist environments and at sub-boiling temperatures, calcium-rich fly ashes readily react with gas-phase CO₂ to provide cementation. After seven days of CO₂ exposure at 75°C, such formulations achieve a compressive strength on the order of 35 MPa and take-up 9% CO₂ (by mass of the solid). On the other hand, calcium-deficient fly ashes, due to their lack of alkalinity (i.e., abundance of mobile Ca or Mg), show little if any potential for CO₂ uptake and strength gain. The role of the CO₂ concentration and processing temperature are discussed and linked to the progress of reactions, and the development of microstructure. The outcomes demonstrate a means for enabling clinkering-free cementation while enabling beneficial utilization of CO₂ and fly ash; i.e., two abundant but underutilized industrial by-products.

Keywords: fly ash, carbonation, concrete, strength

Procedia PDF Downloads 238
894 Education for Sustainability: Implementing a Place-Based Watershed Science Course for High School Students

Authors: Dina L. DiSantis

Abstract:

Development and implementation of a place-based watershed science course for high school students will prove to be a valuable experience for both student and teacher. By having students study and assess the watershed dynamics of a local stream, they will better understand how human activities affect this valuable resource. It is important that students gain tangible skills that will help them to have an understanding of water quality analysis and the importance of preserving our Earth's water systems. Having students participate in real world practices is the optimal learning environment and can offer students a genuine learning experience, by cultivating a knowledge of place, while promoting education for sustainability. Additionally, developing a watershed science course for high school students will give them a hands-on approach to studying science; which is both beneficial and more satisfying to students. When students conduct their own research, collect and analyze data, they will be intimately involved in addressing water quality issues and solving critical water quality problems. By providing students with activities that take place outside the confines of the indoor classroom, you give them the opportunity to gain an appreciation of the natural world. Placed-based learning provides students with problem-solving skills in everyday situations while enhancing skills of inquiry. An overview of a place-based watershed science course and its impact on student learning will be presented.

Keywords: education for sustainability, place-based learning, watershed science, water quality

Procedia PDF Downloads 143
893 Additive Carbon Dots Nanocrystals for Enhancement of the Efficiency of Dye-Sensitized Solar Cell in Energy Applications Technology

Authors: Getachew Kuma Watiro

Abstract:

The need for solar energy is constantly increasing and it is widely available on the earth’s surface. Photovoltaic technology is one of the most capable of all viable energy technology and is seen as a promising approach to the control era as it is readily available and has zero carbon emissions. Inexpensive and versatile solar cells have achieved the conversion efficiency and long life of dye-sensitized solar cells, improving the conversion efficiency from the sun to electricity. DSSCs have received a lot of attention for Various potential commercial uses, such as mobile devices and portable electronic devices, as well as integrated solar cell modules. The systematic reviews were used to show the critical impact of additive C-dots in the Dye-Sensitized solar cell for energy application technology. This research focuses on the following methods to synthesize nanoparticles such as facile, polyol, calcination, and hydrothermal technique. In addition to these, there are additives C-dots by the Hydrothermal method. This study deals with the progressive development of DSSC in photovoltaic technology. The applications of single and heterojunction structure technology devices were used (ZnO, NiO, SnO2, and NiO/ZnO/N719) and applied some additives C-dots (ZnO/C-dots /N719, NiO/C-dots /N719, SnO2 /C-dots /N719 and NiO/ZnO/C-dots/N719) and the effects of C-dots were reviewed. More than all, the technology of DSSC with C-dots enhances efficiency. Finally, recommendations have been made for future research on the application of DSSC with the use of these additives.

Keywords: dye-sensitized solar cells, heterojunction’s structure, carbon dot, conversion efficiency

Procedia PDF Downloads 111
892 Investigate the Performance of SMA-FRP Composite Bars in Seismic Regions under Corrosion Conditions

Authors: Amirmozafar Benshams, Saman Shafeinejad, Mohammad Zaman Kabir, Farzad Hatami, Mohammadreza Khedmati, Mesbah Saybani

Abstract:

Steel bars has been used in concrete structures for more than one hundred years but lack of corrosion resistance of steel reinforcement has resulted in many structural failures. Fiber Reinforced Polymer (FRP) bar is an acceptable solution to replace steel to mitigate corrosion problem. Since FRP is a brittle material its use in seismic region has been a concern. FRP RC structures can be made ductile by employing a ductile material such as Shape Memory Alloy (SMA) at the plastic hinge region and FRP at the other regions on the other hand SMA is highly resistant to corrosion. Shape Memory Alloy has the unique ability to undergo large inelastic deformation and regain its initial shape through stress removal therefore utilizing composite SMA-FRP bars not only have good corrosion resistance but also have good performance in seismic region. The result show indicate that such composite SMA-FRP bars can substantially reduce the residual drift with adequate energy dissipation capacity during earthquake.

Keywords: steel bar, shape memory alloy, FRP, corrosion

Procedia PDF Downloads 377
891 The Review for Repair of Masonry Structures Using the Crack Stitching Technique

Authors: Sandile Daniel Ngidi

Abstract:

Masonry structures often crack due to different factors, which include differential movement of structures, thermal expansion, and seismic waves. Retrofitting is introduced to ensure that these cracks do not expand to a point of making the wall fail. Crack stitching is one of many repairing methods used to repair cracked masonry walls. It is done by stitching helical stainless steel reinforcement bars to reconnect and stabilize the wall. The basic element of this reinforcing system is the mechanical interlink between the helical stainless-steel bar and the grout, which makes it such a flexible and well-known masonry repair system. The objective of this review was to use previous experimental work done by different authors to check the efficiency and effectiveness of using the crack stitching technique to repair and stabilize masonry walls. The technique was found to be effective to rejuvenate the strength of a masonry structure to be stronger than initial strength. Different factors were investigated, which include economic features, sustainability, buildability, and suitability of this technique for application in developing communities.

Keywords: brickforce, crack-stitching, masonry concrete, reinforcement, wall panels

Procedia PDF Downloads 160
890 A Study of Evolutional Control Systems

Authors: Ti-Jun Xiao, Zhe Xu

Abstract:

Controllability is one of the fundamental issues in control systems. In this paper, we study the controllability of second order evolutional control systems in Hilbert spaces with memory and boundary controls, which model dynamic behaviors of some viscoelastic materials. Transferring the control problem into a moment problem and showing the Riesz property of a family of functions related to Cauchy problems for some integrodifferential equations, we obtain a general boundary controllability theorem for these second order evolutional control systems. This controllability theorem is applicable to various concrete 1D viscoelastic systems and recovers some previous related results. It is worth noting that Riesz sequences can be used for numerical computations of the control functions and the identification of new Riesz sequence is of independent interest for the basis-function theory. Moreover, using the Riesz sequences, we obtain the existence and uniqueness of (weak) solutions to these second order evolutional control systems in Hilbert spaces. Finally, we derive the exact boundary controllability of a viscoelastic beam equation, as an application of our abstract theorem.

Keywords: evolutional control system, controllability, boundary control, existence and uniqueness

Procedia PDF Downloads 209
889 Modeling of Gas Extraction from a Partially Gas-Saturated Porous Gas Hydrate Reservoir with Respect to Thermal Interactions with Surrounding Rocks

Authors: Angelina Chiglintseva, Vladislav Shagapov

Abstract:

We know from the geological data that quite sufficient gas reserves are concentrated in hydrates that occur on the Earth and on the ocean floor. Therefore, the development of these sources of energy and the storage of large reserves of gas hydrates is an acute global problem. An advanced technology for utilizing gas is to store it in a gas-hydrate state. Under natural conditions, storage facilities can be established, e.g., in underground reservoirs, where quite large volumes of gas can be conserved compared with reservoirs of pure gas. An analysis of the available experimental data of the kinetics and the mechanism of the gas-hydrate formation process shows the self-conservation effect that allows gas to be stored at negative temperatures and low values of pressures of up to several atmospheres. A theoretical model has been constructed for the gas-hydrate reservoir that represents a unique natural chemical reactor, and the principal possibility of the full extraction of gas from a hydrate due to the thermal reserves of the reservoirs themselves and the surrounding rocks has been analyzed. The influence exerted on the evolution of a gas hydrate reservoir by the reservoir thicknesses and the parameters that determine its initial state (a temperature, pressure, hydrate saturation) has been studied. It has been established that the shortest time of exploitation required by the reservoirs with a thickness of a few meters for the total hydrate decomposition is recorded in the cyclic regime when gas extraction alternated with the subsequent conservation of the gas hydrate deposit. The study was performed by a grant from the Russian Science Foundation (project No.15-11-20022).

Keywords: conservation, equilibrium state, gas hydrate reservoir, rocks

Procedia PDF Downloads 286
888 Manufacturing Process of Rubber Cement Composite Paver Block

Authors: Ratnadip Natwarbhai Bhoi

Abstract:

The objective of this research paper is to study waste tire crumb rubber granules as a partial concrete replacement by the different percentages of facing layer thickness and without facing layer in the production of rubber cement composite paver block. The physical properties of RCCRP compressive strength, flexural strength, abrasion strength density, and water absorption testing by the IS 15658:2006 method. All these physical properties depend upon the ratio of crumb rubber uses. The result showed that the with facing layer at 15 mm, 25 mm, totally rubberized and without facing layer had little effect on compressive strength, flexural strength and abrasion resistance properties. Water absorption is also important for the service life of the product. The crumb rubber paver block also performed quite well in both compressive strength and abrasion resistance. The rubber cement composite rubber paver block is suitable for nonstructural purposes, such as being lightweight and easy installation for the walkway, sidewalks, and playing area applications.

Keywords: rubber cement, crumb rubber, composite, layer

Procedia PDF Downloads 85
887 Exploring Heidegger’s Fourfold through Architecture-Dwelling for Imaginary Fictional Characters in Drawings

Authors: Hassan Wajid

Abstract:

Architecture design studio with all its accouterments, especially pedagogies, has been committed to awakening the students to the true meaning of the concept of Dwelling. The real task is how to make them unlearn the associations of “dwelling as a rented or owned accommodation by the road with a car parked in front of a garage door and replace it by the fundamental experiential-phenomenological manifestations of Light, Space, Gravity and Time through assigned readings and small theoretical challenges resulting in drawings and models. The primary challenge for teachers remained the introduction of the act or desire of ‘Dwelling’ philosophically. The academic link had been offered by Albert Hofstadter's Poetry, Language, through which Martin Heidegger’s fourfold concept of ‘Building Dwelling, Thinking’ primarily served to guide us through this trajectory in helping to build an intellectual framework as justification of the term “dwelling” in its various meanings. Gaston Bachelard’s Poetics of Space and Merleau-Ponti’s Phenomenology of Perception also got assigned as reading. Four fictional characters created by two master short story writers G Maupassant, and O Henry were introduced as DwellersClients in search of their respective dwellings as drawn imaginations in the studio four-fold of Light, Space, Gravity, and Time and at the same time aspire to understand thoroughly Heidegger’s Four-Fold of Earth, Sky, Divinities and Mortals. asserting its place in the corresponding story and its unique character as the Dweller.

Keywords: dwelling, imagination, architectural manifestation, phenomenological

Procedia PDF Downloads 58
886 Optimizing Oxidation Process Parameters of Al-Li Base Alloys Using Taguchi Method

Authors: Muna K. Abbass, Laith A. Mohammed, Muntaha K. Abbas

Abstract:

The oxidation of Al-Li base alloy containing small amounts of rare earth (RE) oxides such as 0.2 wt% Y2O3 and 0.2wt% Nd2O3 particles have been studied at temperatures: 400ºC, 500ºC and 550°C for 60hr in a dry air. Alloys used in this study were prepared by melting and casting in a permanent steel mould under controlled atmosphere. Identification of oxidation kinetics was carried out by using weight gain/surface area (∆W/A) measurements while scanning electron microscopy (SEM) and x-ray diffraction analysis were used for micro structural morphologies and phase identification of the oxide scales. It was observed that the oxidation kinetic for all studied alloys follows the parabolic law in most experimental tests under the different oxidation temperatures. It was also found that the alloy containing 0.2 wt %Y 2O3 particles possess the lowest oxidation rate and shows great improvements in oxidation resistance compared to the alloy containing 0.2 wt % Nd2O3 particles and Al-Li base alloy. In this work, Taguchi method is performed to estimate the optimum weight gain /area (∆W/A) parameter in oxidation process of Al-Li base alloys to obtain a minimum thickness of oxidation layer. Taguchi method is used to formulate the experimental layout, to analyses the effect of each parameter (time, temperature and alloy type) on the oxidation generation and to predict the optimal choice for each parameter and analyzed the effect of these parameters on the weight gain /area (∆W/A) parameter. The analysis shows that, the temperature significantly affects on the (∆W/A) parameter.

Keywords: Al-Li base alloy, oxidation, Taguchi method, temperature

Procedia PDF Downloads 360
885 Moment-Curvature Relation for Nonlinear Analysis of Slender Structural Walls

Authors: E. Dehghan, R. Dehghan

Abstract:

Generally, the slender structural walls have flexural behavior. Since behavior of bending members can be explained by moment–curvature relation, therefore, an analytical model is proposed based on moment–curvature relation for slender structural walls. The moment–curvature relationships of RC sections are constructed through section analysis. Governing equations describing the bond-slip behavior in walls are derived and applied to moment–curvature relations. For the purpose of removing the imprecision in analytical results, the plastic hinge length is included in the finite element modeling. Finally, correlation studies between analytical and experimental results are conducted with the objective to establish the validity of the proposed algorithms. The results show that bond-slip effect is more significant in walls subjected to larger axial compression load. Moreover, preferable results are obtained when ultimate strain of concrete is assumed conservatively.

Keywords: nonlinear analysis, slender structural walls, moment-curvature relation, bond-slip, plastic hinge length

Procedia PDF Downloads 305
884 Hydrogeophysical Investigations of Groundwater Resources and Demarcation of Saltwater-Freshwater Interface in Kilwa Kisiwani Island, Se Tanzania

Authors: Simon R. Melchioly, Ibrahimu C. Mjemah, Isaac M. Marobhe

Abstract:

The main objective of this research was to identify new potential sources of groundwater resources using geophysical methods and also to demarcate the saltwater - freshwater interface. Kilwa Kisiwani Island geologically is covered mostly by Quaternary alluvial sediments, sand, and gravel. The geophysical techniques employed during the research include Vertical Electrical Sounding (VES), Earth Resistivity Tomography (ERT), and Transient Electromagnetics (TEM). Two-dimensional interpolated geophysical results show that there exist freshwater lenses formations that are potential aquifers on the Island with resistivity values ranging from 11.68 Ωm to 46.71 Ωm. These freshwater lenses are underlain by formation with brackish water in which the resistivity values are varying between 3.89 Ωm and 1.6 Ωm. Saltwater with resistivity less than 1 Ωm is found at the bottom being overlaid by brackish saturated formation. VES resistivity results show that 89% (16 out of 18) of the VES sites are potential for groundwater resources drilling while TEM results indicate that 75% (12 out of 16) of TEM sites are potential for groundwater borehole drilling. The recommended drilling depths for potential sites in Kilwa Kisiwani Island show that the maximum depth is 25 m and the minimum being 10 m below ground surface. The aquifer structure in Kilwa Kisiwani Island is a shallow, unconfined freshwater lenses floating above the seawater and the maximum thickness of the aquifer is 25 m for few selected VES and TEM sites while the minimum thickness being 10 m.

Keywords: groundwater, hydrogeophysical, Kilwa Kisiwani, freshwater, saltwater, resistivity

Procedia PDF Downloads 186
883 The Effect of Sand Content on Behavior of Kaolin Clay

Authors: Hamed Tohidi, James W. Mahar

Abstract:

One of the unknowns in the design of zoned earth dams is the percentage of sand which can be present in a clay core and still retain the necessary plasticity to prevent cracking in response to deformation. Cracks in the clay core of a dam caused by differential settlement can lead to failure of the dam. In this study, a series of Atterberg Limit tests and unconfined compression strength tests have been conducted in the ISU soil mechanics laboratory on prepared mixes of quartz sand and commercial clays (Kaolin and Smectite) to determine the relationship between sand content, plasticity and squeezing behavior. The prepared mixes have variable percentages of sand ranging between 10 and 90% by weight. Plastic limit test results in which specimens can be rolled into 1/8 in. threads without crumbling and plasticity index values which represent the range of water content over which the specimens can be remolded without cracking were used to evaluate the plasticity of the sand-clay mixtures. The test results show that the design mixes exhibit plastic behavior with sand contents up to 80% by weight. However, the plasticity of the mixes decreases with increasing sand content. For unconfined compression strength tests, the same mixtures of sand and clay (Kaolin) were made in plastic limit. The results which were concluded from the UCC tests represent the relationship between sand-clay content and chance of having squeezing behavior, also according to the results from UCC, strength of different samples and stress-strain curves can be obtained.

Keywords: clay's behaviour, plasticity, sand content, Kaolin clay

Procedia PDF Downloads 238
882 Upconversion Nanoparticles for Imaging and Controlled Photothermal Release of Anticancer Drug in Breast Cancer

Authors: Rishav Shrestha, Yong Zhang

Abstract:

The Anti-Stoke upconversion process has been used extensively for bioimaging and is recently being used for photoactivated therapy in cancer utilizing upconversion nanoparticles (UCNs). The UCNs have an excitation band at 980nm; 980nm laser excitation used to produce UV/Visible emissions also produce a heating effect. Light-to-heat conversion has been observed in nanoparticles(NPs) doped with neodymium(Nd) or ytterbium(Yb)/erbium(Er) ions. Despite laser-induced heating in Rare-earth doped NPs being proven to be a relatively efficient process, only few attempts to use them as photothermal agents in biosystems have been made up to now. Gold nanoparticles and carbon nanotubes are the most researched and developed for photothermal applications. Both have large heating efficiency and outstanding biocompatibility. However, they show weak fluorescence which makes them harder to track in vivo. In that regard, UCNs are attractive due to their excellent optical features in addition to their light-to-heat conversion and excitation by NIR, for imaging and spatiotemporally releasing drugs. In this work, we have utilized a simple method to coat Nd doped UCNs with thermoresponsive polymer PNIPAM on which 4-Hydroxytamoxifen (4-OH-T) is loaded. Such UCNs demonstrate a high loading efficiency and low leakage of 4-OH-T. Encouragingly, the release of 4-OH-T can be modulated by varying the power and duration of the NIR. Such UCNs were then used to demonstrate imaging and controlled photothermal release of 4-OH-T in MCF-7 breast cancer cells.

Keywords: cancer therapy, controlled release, photothermal release, upconversion nanoparticles

Procedia PDF Downloads 415