Search results for: forecasting accuracy
2162 A Weighted Approach to Unconstrained Iris Recognition
Authors: Yao-Hong Tsai
Abstract:
This paper presents a weighted approach to unconstrained iris recognition. Nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.Keywords: authentication, iris recognition, adaboost, local binary pattern
Procedia PDF Downloads 2252161 Analysis and Rule Extraction of Coronary Artery Disease Data Using Data Mining
Authors: Rezaei Hachesu Peyman, Oliyaee Azadeh, Salahzadeh Zahra, Alizadeh Somayyeh, Safaei Naser
Abstract:
Coronary Artery Disease (CAD) is one major cause of disability in adults and one main cause of death in developed. In this study, data mining techniques including Decision Trees, Artificial neural networks (ANNs), and Support Vector Machine (SVM) analyze CAD data. Data of 4948 patients who had suffered from heart diseases were included in the analysis. CAD is the target variable, and 24 inputs or predictor variables are used for the classification. The performance of these techniques is compared in terms of sensitivity, specificity, and accuracy. The most significant factor influencing CAD is chest pain. Elderly males (age > 53) have a high probability to be diagnosed with CAD. SVM algorithm is the most useful way for evaluation and prediction of CAD patients as compared to non-CAD ones. Application of data mining techniques in analyzing coronary artery diseases is a good method for investigating the existing relationships between variables.Keywords: classification, coronary artery disease, data-mining, knowledge discovery, extract
Procedia PDF Downloads 6572160 Application of the MOOD Technique to the Steady-State Euler Equations
Authors: Gaspar J. Machado, Stéphane Clain, Raphael Loubère
Abstract:
The goal of the present work is to numerically study steady-state nonlinear hyperbolic equations in the context of the finite volume framework. We will consider the unidimensional Burgers' equation as the reference case for the scalar situation and the unidimensional Euler equations for the vectorial situation. We consider two approaches to solve the nonlinear equations: a time marching algorithm and a direct steady-state approach. We first develop the necessary and sufficient conditions to obtain the existence and unicity of the solution. We treat regular examples and solutions with a steady shock and to provide very-high-order finite volume approximations we implement a method based on the MOOD technology (Multi-dimensional Optimal Order Detection). The main ingredient consists in using an 'a posteriori' limiting strategy to eliminate non physical oscillations deriving from the Gibbs phenomenon while keeping a high accuracy for the smooth part.Keywords: Euler equations, finite volume, MOOD, steady-state
Procedia PDF Downloads 2772159 Error Correction Method for 2D Ultra-Wideband Indoor Wireless Positioning System Using Logarithmic Error Model
Authors: Phornpat Chewasoonthorn, Surat Kwanmuang
Abstract:
Indoor positioning technologies have been evolved rapidly. They augment the Global Positioning System (GPS) which requires line-of-sight to the sky to track the location of people or objects. This study developed an error correction method for an indoor real-time location system (RTLS) based on an ultra-wideband (UWB) sensor from Decawave. Multiple stationary nodes (anchor) were installed throughout the workspace. The distance between stationary and moving nodes (tag) can be measured using a two-way-ranging (TWR) scheme. The result has shown that the uncorrected ranging error from the sensor system can be as large as 1 m. To reduce ranging error and thus increase positioning accuracy, This study purposes an online correction algorithm using the Kalman filter. The results from experiments have shown that the system can reduce ranging error down to 5 cm.Keywords: indoor positioning, ultra-wideband, error correction, Kalman filter
Procedia PDF Downloads 1602158 Sliding Mode MRAS Observer for Optimized Backstepping Control of Induction Motor
Authors: Chaouch Souad, Abdou Latifa, Larbi Chrifi Alaoui
Abstract:
This paper deals with sensorless backstepping control of induction motor using MRAS technique associated to sliding mode approach. A high order genetic algorithm structure is used to approximate a control law designed by the Backstepping technique, and to find the best parameters globally optimized. However, the Backstepping control approach is unsuitable for high performance applications because the need of a speed sensor for increased accuracy and the absence of any error decay mechanism. In this paper a nonlinear observer, obtained by combining sliding mode structure and model reference adaptive system (MRAS), is designed for the rotor flux and rotor speed estimations. To validate the proposed method, the results are presented for showing the improved drive characteristics and performances.Keywords: Backstepping Control, Induction Motor, Genetic Algorithm, Sliding Mode observer
Procedia PDF Downloads 7322157 Heat Transfer Studies for LNG Vaporization During Underwater LNG Releases
Authors: S. Naveen, V. Sivasubramanian
Abstract:
A modeling theory is proposed to consider the vaporization of LNG during its contact with water following its release from an underwater source. The spillage of LNG underwater can lead to a decrease in the surface temperature of water and subsequent freezing. This can in turn affect the heat flux distribution from the released LNG onto the water surrounding it. The available models predict the rate of vaporization considering the surface of contact as a solid wall, and considering the entire phenomena as a solid-liquid operation. This assumption greatly under-predicted the overall heat transfer on LNG water interface. The vaporization flux would first decrease during the film boiling, followed by an increase during the transition boiling and a steady decrease during the nucleate boiling. A superheat theory is introduced to enhance the accuracy in the prediction of the heat transfer between LNG and water. The work suggests that considering the superheat theory can greatly enhance the prediction of LNG vaporization on underwater releases and also help improve the study of overall thermodynamics.Keywords: evaporation rate, heat transfer, LNG vaporization, underwater LNG release
Procedia PDF Downloads 4392156 A t-SNE and UMAP Based Neural Network Image Classification Algorithm
Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang
Abstract:
Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.Keywords: t-SNE, UMAP, fashion MNIST, neural networks
Procedia PDF Downloads 1982155 Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms
Authors: Dhruvit S. Berawala, Jann R. Ursin, Obrad Slijepcevic
Abstract:
Shale gas is one of the most rapidly growing forms of natural gas. Unconventional natural gas deposits are difficult to characterize overall, but in general are often lower in resource concentration and dispersed over large areas. Moreover, gas is densely packed into the matrix through adsorption which accounts for large volume of gas reserves. Gas production from tight shale deposits are made possible by extensive and deep well fracturing which contacts large fractions of the formation. The conventional reservoir modelling and production forecasting methods, which rely on fluid-flow processes dominated by viscous forces, have proved to be very pessimistic and inaccurate. This paper presents a new approach to forecast shale gas production by detailed modeling of gas desorption, diffusion and non-linear flow mechanisms in combination with statistical representation of these processes. The representation of the model involves a cube as a porous media where free gas is present and a sphere (SiC: Sphere in Cube model) inside it where gas is adsorbed on to the kerogen or organic matter. Further, the sphere is considered consisting of many layers of adsorbed gas in an onion-like structure. With pressure decline, the gas desorbs first from the outer most layer of sphere causing decrease in its molecular concentration. The new available surface area and change in concentration triggers the diffusion of gas from kerogen. The process continues until all the gas present internally diffuses out of the kerogen, gets adsorbs onto available surface area and then desorbs into the nanopores and micro-fractures in the cube. Each SiC idealizes a gas pathway and is characterized by sphere diameter and length of the cube. The diameter allows to model gas storage, diffusion and desorption; the cube length takes into account the pathway for flow in nanopores and micro-fractures. Many of these representative but general cells of the reservoir are put together and linked to a well or hydraulic fracture. The paper quantitatively describes these processes as well as clarifies the geological conditions under which a successful shale gas production could be expected. A numerical model has been derived which is then compiled on FORTRAN to develop a simulator for the production of shale gas by considering the spheres as a source term in each of the grid blocks. By applying SiC to field data, we demonstrate that the model provides an effective way to quickly access gas production rates from shale formations. We also examine the effect of model input properties on gas production.Keywords: adsorption, diffusion, non-linear flow, shale gas production
Procedia PDF Downloads 1662154 Experimental Study of CO2 Absorption in Different Blend Solutions as Solvent for CO2 Capture
Authors: Rouzbeh Ramezani, Renzo Di Felice
Abstract:
Nowadays, removal of CO2 as one of the major contributors to global warming using alternative solvents with high CO2 absorption efficiency, is an important industrial operation. In this study, three amines, including 2-methylpiperazine, potassium sarcosinate and potassium lysinate as potential additives, were added to the potassium carbonate solution as a base solvent for CO2 capture. In order to study the absorption performance of CO2 in terms of loading capacity of CO2 and absorption rate, the absorption experiments in a blend of additives with potassium carbonate were carried out using the vapor-liquid equilibrium apparatus at a temperature of 313.15 K, CO2 partial pressures ranging from 0 to 50 kPa and at mole fractions 0.2, 0.3, and 0.4. Furthermore, the performance of CO2 absorption in these blend solutions was compared with pure monoethanolamine and with pure potassium carbonate. Finally, a correlation with good accuracy was developed using the nonlinear regression analysis in order to predict CO2 loading capacity.Keywords: absorption rate, carbon dioxide, CO2 capture, global warming, loading capacity
Procedia PDF Downloads 2842153 Sentiment Analysis: Comparative Analysis of Multilingual Sentiment and Opinion Classification Techniques
Authors: Sannikumar Patel, Brian Nolan, Markus Hofmann, Philip Owende, Kunjan Patel
Abstract:
Sentiment analysis and opinion mining have become emerging topics of research in recent years but most of the work is focused on data in the English language. A comprehensive research and analysis are essential which considers multiple languages, machine translation techniques, and different classifiers. This paper presents, a comparative analysis of different approaches for multilingual sentiment analysis. These approaches are divided into two parts: one using classification of text without language translation and second using the translation of testing data to a target language, such as English, before classification. The presented research and results are useful for understanding whether machine translation should be used for multilingual sentiment analysis or building language specific sentiment classification systems is a better approach. The effects of language translation techniques, features, and accuracy of various classifiers for multilingual sentiment analysis is also discussed in this study.Keywords: cross-language analysis, machine learning, machine translation, sentiment analysis
Procedia PDF Downloads 7142152 FE Analysis of Blade-Disc Dovetail Joints Using Mortar Base Frictional Contact Formulation
Authors: Abbas Moradi, Mohsen Safajoy, Reza Yazdanparast
Abstract:
Analysis of blade-disc dovetail joints is one of the biggest challenges facing designers of aero-engines. To avoid comparatively expensive experimental full-scale tests, numerical methods can be used to simulate loaded disc-blades assembly. Mortar method provides a powerful and flexible tool for solving frictional contact problems. In this study, 2D frictional contact in dovetail has been analysed based on the mortar algorithm. In order to model the friction, the classical law of coulomb and moving friction cone algorithm is applied. The solution is then obtained by solving the resulting set of non-linear equations using an efficient numerical algorithm based on Newton–Raphson Method. The numerical results show that this approach has better convergence rate and accuracy than other proposed numerical methods.Keywords: computational contact mechanics, dovetail joints, nonlinear FEM, mortar approach
Procedia PDF Downloads 3522151 Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation
Authors: A. M. Gheitaghy, H. Saffari, G. Q. Zhang
Abstract:
Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method are found to be good.Keywords: convective and radiative boundary, electrical simulation method, nonlinear heat conduction, spherical coordinate
Procedia PDF Downloads 3332150 Risks of Investment in the Development of Its Personnel
Authors: Oksana Domkina
Abstract:
According to the modern economic theory, human capital became one of the main production factors and the most promising direction of investment, as such investment provides opportunity of obtaining high and long-term economic and social effects. Informational technology (IT) sector is the representative of this new economy which is most dependent on human capital as the main competitive factor. So the question for this sector is not whether investment in development of personal should be made, but what are the most effective ways of executing it and who has to pay for the education: Worker, company or government. In this paper we examine the IT sector, describe the labor market of IT workers and its development, and analyze the risks that IT companies may face if they invest in the development of their workers and what factors influence it. The main problem and difficulty of quantitative estimation of risk of investment in human capital of a company and its forecasting is human factor. Human behavior is often unpredictable and complex, so it requires specific approaches and methods of assessment. To build a comprehensive method of estimation of the risk of investment in human capital of a company considering human factor, we decided to use the method of analytic hierarchy process (AHP), that initially was created and developed. We separated three main group of factors: Risks related to the worker, related to the company, and external factors. To receive data for our research, we conducted a survey among the HR departments of Ukrainian IT companies used them as experts for the AHP method. Received results showed that IT companies mostly invest in the development of their workers, although several hire only already qualified personnel. According to the results, the most significant risks are the risk of ineffective training and the risk of non-investment that are both related to the firm. The analysis of risk factors related to the employee showed that, the factors of personal reasons, motivation, and work performance have almost the same weights of importance. Regarding internal factors of the company, there is a high role of the factor of compensation and benefits, factors of interesting projects, team, and career opportunities. As for the external environment, one of the most dangerous factor of risk is competitor activities, meanwhile the political and economical situation factor also has a relatively high weight, which is easy to explain by the influence of severe crisis in Ukraine during 2014-2015. The presented method allows to take into consideration all main factors that affect the risk of investment in human capital of a company. This gives a base for further research in this field and allows for a creation of a practical framework for making decisions regarding the personnel development strategy and specific employees' development plans for the HR departments.Keywords: risks, personnel development, investment in development, factors of risk, risk of investment in development, IT, analytic hierarchy process, AHP
Procedia PDF Downloads 3002149 Computational Cell Segmentation in Immunohistochemically Image of Meningioma Tumor Using Fuzzy C-Means and Adaptive Vector Directional Filter
Authors: Vahid Anari, Leila Shahmohammadi
Abstract:
Diagnosing and interpreting manually from a large cohort dataset of immunohistochemically stained tissue of tumors using an optical microscope involves subjectivity and also is tedious for pathologist specialists. Moreover, digital pathology today represents more of an evolution than a revolution in pathology. In this paper, we develop and test an unsupervised algorithm that can automatically enhance the IHC image of a meningioma tumor and classify cells into positive (proliferative) and negative (normal) cells. A dataset including 150 images is used to test the scheme. In addition, a new adaptive color image enhancement method is proposed based on a vector directional filter (VDF) and statistical properties of filtering the window. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.Keywords: digital pathology, cell segmentation, immunohistochemically, noise reduction
Procedia PDF Downloads 672148 [Keynote Talk]: Thermal Performance of Common Building Insulation Materials: Operating Temperature and Moisture Effect
Authors: Maatouk Khoukhi
Abstract:
An accurate prediction of the heat transfer through the envelope components of building is required to achieve an accurate cooling/heating load calculation which leads to precise sizing of the hvac equipment. This also depends on the accuracy of the thermal conductivity of the building insulation material. The proper use of thermal insulation in buildings (k-value) contribute significantly to reducing the HVAC size and consequently the annual energy cost. The first part of this paper presents an overview of building thermal insulation and their applications. The second part presents some results related to the change of the polystyrene insulation thermal conductivity with the change of the operating temperature and the moisture. Best-fit linear relationship of the k-value in term of the operating temperatures and different percentage of moisture content by weight has been established. The thermal conductivity of the polystyrene insulation material increases with the increase of both operating temperature and humidity content.Keywords: building insulation material, moisture content, operating temperature, thermal conductivity
Procedia PDF Downloads 3222147 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems
Authors: Sultan Noman Qasem
Abstract:
This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFNN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.Keywords: radial basis function network, hybrid learning, multi-objective optimization, genetic algorithm
Procedia PDF Downloads 5642146 Optimization and Design of Current-Mode Multiplier Circuits with Applications in Analog Signal Processing for Gas Industrial Package Systems
Authors: Mohamad Baqer Heidari, Hefzollah.Mohammadian
Abstract:
This brief presents two original implementations of improved accuracy current-mode multiplier/divider circuits. Besides the advantage of their simplicity, these original multiplier/divider structures present the advantage of very small linearity errors that can be obtained as a result of the proposed design techniques (0.75% and 0.9%, respectively, for an extended range of the input currents). The original multiplier/divider circuits permit a facile reconfiguration, the presented structures representing the functional basis for implementing complex function synthesizer circuits. The proposed computational structures are designed for implementing in 0.18-µm CMOS technology, with a low-voltage operation (a supply voltage of 1.2 V). The circuits’ power consumptions are 60 and 75 µW, respectively, while their frequency bandwidths are 79.6 and 59.7 MHz, respectively.Keywords: analog signal processing, current-mode operation, functional core, multiplier, reconfigurable circuits, industrial package systems
Procedia PDF Downloads 3742145 Detection of COVID-19 Cases From X-Ray Images Using Capsule-Based Network
Authors: Donya Ashtiani Haghighi, Amirali Baniasadi
Abstract:
Coronavirus (COVID-19) disease has spread abruptly all over the world since the end of 2019. Computed tomography (CT) scans and X-ray images are used to detect this disease. Different Deep Neural Network (DNN)-based diagnosis solutions have been developed, mainly based on Convolutional Neural Networks (CNNs), to accelerate the identification of COVID-19 cases. However, CNNs lose important information in intermediate layers and require large datasets. In this paper, Capsule Network (CapsNet) is used. Capsule Network performs better than CNNs for small datasets. Accuracy of 0.9885, f1-score of 0.9883, precision of 0.9859, recall of 0.9908, and Area Under the Curve (AUC) of 0.9948 are achieved on the Capsule-based framework with hyperparameter tuning. Moreover, different dropout rates are investigated to decrease overfitting. Accordingly, a dropout rate of 0.1 shows the best results. Finally, we remove one convolution layer and decrease the number of trainable parameters to 146,752, which is a promising result.Keywords: capsule network, dropout, hyperparameter tuning, classification
Procedia PDF Downloads 782144 Adjustable Counter-Weight for Full Turn Rotary Systems
Authors: G. Karakaya, C. Türker, M. Anaklı
Abstract:
It is necessary to test to see if optical devices such as camera, night vision devices are working properly. Therefore, a precision biaxial rotary system (gimbal) is required for mounting Unit Under Test, UUT. The Gimbal systems can be utilized for precise positioning of the UUT; hence, optical test can be performed with high accuracy. The weight of UUT, which is placed outside the axis of rotation, causes an off-axis moment to the mounting armature. The off-axis moment can act against the direction of movement for some orientation, thus the electrical motor, which rotates the gimbal axis, has to apply higher level of torque to guide and stabilize the system. Moreover, UUT and its mounting fixture to the gimbal can be changed, which causes change in applied resistance moment to the gimbals electrical motor. In this study, a preloaded spring is added to the gimbal system for minimizing applied off axis moment with the help of four bar mechanism. Two different possible methods for preloading spring are introduced and system optimization is performed to eliminate all moment which is created by off axis weight.Keywords: adaptive, balancing, gimbal, mechanics, spring
Procedia PDF Downloads 1222143 Assessment of Planet Image for Land Cover Mapping Using Soft and Hard Classifiers
Authors: Lamyaa Gamal El-Deen Taha, Ashraf Sharawi
Abstract:
Planet image is a new data source from planet lab. This research is concerned with the assessment of Planet image for land cover mapping. Two pixel based classifiers and one subpixel based classifier were compared. Firstly, rectification of Planet image was performed. Secondly, a comparison between minimum distance, maximum likelihood and neural network classifications for classification of Planet image was performed. Thirdly, the overall accuracy of classification and kappa coefficient were calculated. Results indicate that neural network classification is best followed by maximum likelihood classifier then minimum distance classification for land cover mapping.Keywords: planet image, land cover mapping, rectification, neural network classification, multilayer perceptron, soft classifiers, hard classifiers
Procedia PDF Downloads 1872142 Research on Air pollution Spatiotemporal Forecast Model Based on LSTM
Authors: JingWei Yu, Hong Yang Yu
Abstract:
At present, the increasingly serious air pollution in various cities of China has made people pay more attention to the air quality index(hereinafter referred to as AQI) of their living areas. To face this situation, it is of great significance to predict air pollution in heavily polluted areas. In this paper, based on the time series model of LSTM, a spatiotemporal prediction model of PM2.5 concentration in Mianyang, Sichuan Province, is established. The model fully considers the temporal variability and spatial distribution characteristics of PM2.5 concentration. The spatial correlation of air quality at different locations is based on the Air quality status of other nearby monitoring stations, including AQI and meteorological data to predict the air quality of a monitoring station. The experimental results show that the method has good prediction accuracy that the fitting degree with the actual measured data reaches more than 0.7, which can be applied to the modeling and prediction of the spatial and temporal distribution of regional PM2.5 concentration.Keywords: LSTM, PM2.5, neural networks, spatio-temporal prediction
Procedia PDF Downloads 1342141 Optimization of Loudspeaker Part Design Parameters by Air Viscosity Damping Effect
Authors: Yue Hu, Xilu Zhao, Takao Yamaguchi, Manabu Sasajima, Yoshio Koike, Akira Hara
Abstract:
This study optimized the design parameters of a cone loudspeaker as an example of high flexibility of the product design. We developed an acoustic analysis software program that considers the impact of damping caused by air viscosity. In sound reproduction, it is difficult to optimize each parameter of the loudspeaker design. To overcome the limitation of the design problem in practice, this study presents an acoustic analysis algorithm to optimize the design parameters of the loudspeaker. The material character of cone paper and the loudspeaker edge were the design parameters, and the vibration displacement of the cone paper was the objective function. The results of the analysis showed that the design had high accuracy as compared to the predicted value. These results suggested that although the parameter design is difficult, with experience and intuition, the design can be performed easily using the optimized design found with the acoustic analysis software.Keywords: air viscosity, design parameters, loudspeaker, optimization
Procedia PDF Downloads 5132140 Porosities Comparison between Production and Simulation in Motorcycle Fuel Caps of Aluminum High Pressure Die Casting
Authors: P. Meethum, C. Suvanjumrat
Abstract:
Many aluminum motorcycle parts produced by a high pressure die casting. Some parts such as fuel caps were a thin and complex shape. This part risked for porosities and blisters on surface if it only depended on an experience of mold makers for mold design. This research attempted to use CAST-DESIGNER software simulated the high pressure die casting process with the same process parameters of a motorcycle fuel cap production. The simulated results were compared with fuel cap products and expressed the same porosity and blister locations on cap surface. An average of absolute difference of simulated results was obtained 0.094 mm when compared the simulated porosity and blister defect sizes on the fuel cap surfaces with the experimental micro photography. This comparison confirmed an accuracy of software and will use the setting parameters to improve fuel cap molds in the further work.Keywords: aluminum, die casting, fuel cap, motorcycle
Procedia PDF Downloads 3662139 Photonic Dual-Microcomb Ranging with Extreme Speed Resolution
Authors: R. R. Galiev, I. I. Lykov, A. E. Shitikov, I. A. Bilenko
Abstract:
Dual-comb interferometry is based on the mixing of two optical frequency combs with slightly different lines spacing which results in the mapping of the optical spectrum into the radio-frequency domain for future digitizing and numerical processing. The dual-comb approach enables diverse applications, including metrology, fast high-precision spectroscopy, and distance range. Ordinary frequency-modulated continuous-wave (FMCW) laser-based Light Identification Detection and Ranging systems (LIDARs) suffer from two main disadvantages: slow and unreliable mechanical, spatial scan and a rather wide linewidth of conventional lasers, which limits speed measurement resolution. Dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds, along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for an in-flight sampling of gun projectiles moving at 150 meters per second, was previously demonstrated. Nevertheless, pump lasers with EDFA amplifiers made the device bulky and expensive. An alternative approach is a direct coupling of the laser to a reference microring cavity. Backscattering can tune the laser to the eigenfrequency of the cavity via the so-called self-injection locked (SIL) effect. Moreover, the nonlinearity of the cavity allows a solitonic frequency comb generation in the very same cavity. In this work, we developed a fully integrated, power-efficient, electrically driven dual-micro comb source based on the semiconductor lasers SIL to high-quality integrated Si3N4 microresonators. We managed to obtain robust 1400-1700 nm combs generation with a 150 GHz or 1 THz lines spacing and measure less than a 1 kHz Lorentzian withs of stable, MHz spaced beat notes in a GHz band using two separated chips, each pumped by its own, self-injection locked laser. A deep investigation of the SIL dynamic allows us to find out the turn-key operation regime even for affordable Fabry-Perot multifrequency lasers used as a pump. It is important that such lasers are usually more powerful than DFB ones, which were also tested in our experiments. In order to test the advantages of the proposed techniques, we experimentally measured a minimum detectable speed of a reflective object. It has been shown that the narrow line of the laser locked to the microresonator provides markedly better velocity accuracy, showing velocity resolution down to 16 nm/s, while the no-SIL diode laser only allowed 160 nm/s with good accuracy. The results obtained are in agreement with the estimations and open up ways to develop LIDARs based on compact and cheap lasers. Our implementation uses affordable components, including semiconductor laser diodes and commercially available silicon nitride photonic circuits with microresonators.Keywords: dual-comb spectroscopy, LIDAR, optical microresonator, self-injection locking
Procedia PDF Downloads 732138 An Improved Heat Transfer Prediction Model for Film Condensation inside a Tube with Interphacial Shear Effect
Authors: V. G. Rifert, V. V. Gorin, V. V. Sereda, V. V. Treputnev
Abstract:
The analysis of heat transfer design methods in condensing inside plain tubes under existing influence of shear stress is presented in this paper. The existing discrepancy in more than 30-50% between rating heat transfer coefficients and experimental data has been noted. The analysis of existing theoretical and semi-empirical methods of heat transfer prediction is given. The influence of a precise definition concerning boundaries of phase flow (it is especially important in condensing inside horizontal tubes), shear stress (friction coefficient) and heat flux on design of heat transfer is shown. The substantiation of boundary conditions of the values of parameters, influencing accuracy of rated relationships, is given. More correct relationships for heat transfer prediction, which showed good convergence with experiments made by different authors, are substantiated in this work.Keywords: film condensation, heat transfer, plain tube, shear stress
Procedia PDF Downloads 2452137 3D Building Model Utilizing Airborne LiDAR Dataset and Terrestrial Photographic Images
Authors: J. Jasmee, I. Roslina, A. Mohammed Yaziz & A.H Juazer Rizal
Abstract:
The need of an effective building information collection method is vital to support a diversity of land development activities. At present, advances in remote sensing such as airborne LiDAR (Light Detection and Ranging) is an established technology for building information collection, location, and elevation of the reflecting laser points towards the construction of 3D building models. In this study, LiDAR datasets and terrestrial photographic images of buildings towards the construction of 3D building models is explored. It is found that, the quantitative accuracy of the constructed 3D building model, namely in the horizontal and vertical components were ± 0.31m (RMSEx,y) and ± 0.145m (RMSEz) respectively. The accuracies were computed based on sixty nine (69) horizontal and twenty (20) vertical surveyed points. As for the qualitative assessment, it is shown that the appearance of the 3D building model is adequate to support the requirements of LOD3 presentation based on the OGC (Open Geospatial Consortium) standard CityGML.Keywords: LiDAR datasets, DSM, DTM, 3D building models
Procedia PDF Downloads 3212136 Reliable Line-of-Sight and Non-Line-of-Sight Propagation Channel Identification in Ultra-Wideband Wireless Networks
Authors: Mohamed Adnan Landolsi, Ali F. Almutairi
Abstract:
The paper addresses the problem of line-of-sight (LOS) vs. non-line-of-sight (NLOS) propagation link identification in ultra-wideband (UWB) wireless networks, which is necessary for improving the accuracy of radiolocation and positioning applications. A LOS/NLOS likelihood hypothesis testing approach is applied based on exploiting distinctive statistical features of the channel impulse response (CIR) using parameters related to the “skewness” of the CIR and its root mean square (RMS) delay spread. A log-normal fit is presented for the probability densities of the CIR parameters. Simulation results show that different environments (residential, office, outdoor, etc.) have measurable differences in their CIR parameters’ statistics, which is then exploited in determining the nature of the propagation channels. Correct LOS/NLOS channel identification rates exceeding 90% are shown to be achievable for most types of environments. Additional improvement is also obtained by combining both CIR skewness and RMS delay statistics.Keywords: UWB, propagation, LOS, NLOS, identification
Procedia PDF Downloads 2502135 Major Gullies Erosion Sites and Volume of Soil Loss in Edo State, Nigeria
Authors: Augustine Osayande
Abstract:
This research is on Major Gullies Erosion Sites and Volume of Soil Loss in Edo State, Nigeria. The primary objective was to identify notable gullies sites and quantify the volume of soil loss in the study area. Direct field observation and measurement of gullies dimensions was done with the help of research assistants using a measuring tape, Camera and 3percent accuracy Global Positioning System (GPS). The result revealed that notable gullies in the area have resulted in the loss of lives and properties, destruction of arable lands and wastage of large areas of usable lands. Gullies in Edo North have Mean Volume of Soil Loss of 614, 763.33 m³, followed by Edo South with 79,604.76 m³ and Edo Central is 46,242.98 m³ and as such an average of 1,772, 888.7m3 of soil is lost annually in the study area due to gully erosion problem. The danger of gully erosion in helpless regions like Edo State called for urgent remedies in order to arrest the further loss of soil, buildings and other properties.Keywords: Edo, magnitude, gully, volume, soil, sloss
Procedia PDF Downloads 1422134 An Enhanced Floor Estimation Algorithm for Indoor Wireless Localization Systems Using Confidence Interval Approach
Authors: Kriangkrai Maneerat, Chutima Prommak
Abstract:
Indoor wireless localization systems have played an important role to enhance context-aware services. Determining the position of mobile objects in complex indoor environments, such as those in multi-floor buildings, is very challenging problems. This paper presents an effective floor estimation algorithm, which can accurately determine the floor where mobile objects located. The proposed algorithm is based on the confidence interval of the summation of online Received Signal Strength (RSS) obtained from the IEEE 802.15.4 Wireless Sensor Networks (WSN). We compare the performance of the proposed algorithm with those of other floor estimation algorithms in literature by conducting a real implementation of WSN in our facility. The experimental results and analysis showed that the proposed floor estimation algorithm outperformed the other algorithms and provided highest percentage of floor accuracy up to 100% with 95-percent confidence interval.Keywords: floor estimation algorithm, floor determination, multi-floor building, indoor wireless systems
Procedia PDF Downloads 4182133 Projection of Solar Radiation for the Extreme South of Brazil
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Rafael Haag, Elton Rossini
Abstract:
This work aims to validate and make the projections of solar energy for the Brazilian period from 2025 to 2100. As the plants designed by the HadGEM2-AO (Global Hadley Model 2 - Atmosphere) General Circulation Model UK Met Office Hadley Center, belonging to Phase 5 of the Intercomparison of Coupled Models (CMIP5). The simulation results of the model are compared with monthly data from 2006 to 2013, measured by a network of meteorological sections of the National Institute of Meteorology (INMET). The performance of HadGEM2-AO is evaluated by the efficiency coefficient (CEF) and bias. The results are shown in the table of maps and maps. HadGEM2-AO, in the most pessimistic scenario, RCP 8.5 had a very good accuracy, presenting efficiency coefficients between 0.94 and 0.98, the perfect setting being Solar radiation, which indicates a horizontal trend, is a climatic alternative for some regions of the Brazilian scenario, especially in spring.Keywords: climate change, projections, solar radiation, scenarios climate change
Procedia PDF Downloads 151