Search results for: euler circuit and path
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2067

Search results for: euler circuit and path

87 Case-Based Reasoning for Modelling Random Variables in the Reliability Assessment of Existing Structures

Authors: Francesca Marsili

Abstract:

The reliability assessment of existing structures with probabilistic methods is becoming an increasingly important and frequent engineering task. However probabilistic reliability methods are based on an exhaustive knowledge of the stochastic modeling of the variables involved in the assessment; at the moment standards for the modeling of variables are absent, representing an obstacle to the dissemination of probabilistic methods. The framework according to probability distribution functions (PDFs) are established is represented by the Bayesian statistics, which uses Bayes Theorem: a prior PDF for the considered parameter is established based on information derived from the design stage and qualitative judgments based on the engineer past experience; then, the prior model is updated with the results of investigation carried out on the considered structure, such as material testing, determination of action and structural properties. The application of Bayesian statistics arises two different kind of problems: 1. The results of the updating depend on the engineer previous experience; 2. The updating of the prior PDF can be performed only if the structure has been tested, and quantitative data that can be statistically manipulated have been collected; performing tests is always an expensive and time consuming operation; furthermore, if the considered structure is an ancient building, destructive tests could compromise its cultural value and therefore should be avoided. In order to solve those problems, an interesting research path is represented by investigating Artificial Intelligence (AI) techniques that can be useful for the automation of the modeling of variables and for the updating of material parameters without performing destructive tests. Among the others, one that raises particular attention in relation to the object of this study is constituted by Case-Based Reasoning (CBR). In this application, cases will be represented by existing buildings where material tests have already been carried out and an updated PDFs for the material mechanical parameters has been computed through a Bayesian analysis. Then each case will be composed by a qualitative description of the material under assessment and the posterior PDFs that describe its material properties. The problem that will be solved is the definition of PDFs for material parameters involved in the reliability assessment of the considered structure. A CBR system represent a good candi¬date in automating the modelling of variables because: 1. Engineers already draw an estimation of the material properties based on the experience collected during the assessment of similar structures, or based on similar cases collected in literature or in data-bases; 2. Material tests carried out on structure can be easily collected from laboratory database or from literature; 3. The system will provide the user of a reliable probabilistic description of the variables involved in the assessment that will also serve as a tool in support of the engineer’s qualitative judgments. Automated modeling of variables can help in spreading probabilistic reliability assessment of existing buildings in the common engineering practice, and target at the best intervention and further tests on the structure; CBR represents a technique which may help to achieve this.

Keywords: reliability assessment of existing buildings, Bayesian analysis, case-based reasoning, historical structures

Procedia PDF Downloads 337
86 Short and Long Crack Growth Behavior in Ferrite Bainite Dual Phase Steels

Authors: Ashok Kumar, Shiv Brat Singh, Kalyan Kumar Ray

Abstract:

There is growing awareness to design steels against fatigue damage Ferrite martensite dual-phase steels are known to exhibit favourable mechanical properties like good strength, ductility, toughness, continuous yielding, and high work hardening rate. However, dual-phase steels containing bainite as second phase are potential alternatives for ferrite martensite steels for certain applications where good fatigue property is required. Fatigue properties of dual phase steels are popularly assessed by the nature of variation of crack growth rate (da/dN) with stress intensity factor range (∆K), and the magnitude of fatigue threshold (∆Kth) for long cracks. There exists an increased emphasis to understand not only the long crack fatigue behavior but also short crack growth behavior of ferrite bainite dual phase steels. The major objective of this report is to examine the influence of microstructures on the short and long crack growth behavior of a series of developed dual-phase steels with varying amounts of bainite and. Three low carbon steels containing Nb, Cr and Mo as microalloying elements steels were selected for making ferrite-bainite dual-phase microstructures by suitable heat treatments. The heat treatment consisted of austenitizing the steel at 1100°C for 20 min, cooling at different rates in air prior to soaking these in a salt bath at 500°C for one hour, and finally quenching in water. Tensile tests were carried out on 25 mm gauge length specimens with 5 mm diameter using nominal strain rate 0.6x10⁻³ s⁻¹ at room temperature. Fatigue crack growth studies were made on a recently developed specimen configuration using a rotating bending machine. The crack growth was monitored by interrupting the test and observing the specimens under an optical microscope connected to an Image analyzer. The estimated crack lengths (a) at varying number of cycles (N) in different fatigue experiments were analyzed to obtain log da/dN vs. log °∆K curves for determining ∆Kthsc. The microstructural features of these steels have been characterized and their influence on the near threshold crack growth has been examined. This investigation, in brief, involves (i) the estimation of ∆Kthsc and (ii) the examination of the influence of microstructure on short and long crack fatigue threshold. The maximum fatigue threshold values obtained from short crack growth experiments on various specimens of dual-phase steels containing different amounts of bainite are found to increase with increasing bainite content in all the investigated steels. The variations of fatigue behavior of the selected steel samples have been explained with the consideration of varying amounts of the constituent phases and their interactions with the generated microstructures during cyclic loading. Quantitative estimation of the different types of fatigue crack paths indicates that the propensity of a crack to pass through the interfaces depends on the relative amount of the microstructural constituents. The fatigue crack path is found to be predominantly intra-granular except for the ones containing > 70% bainite in which it is predominantly inter-granular.

Keywords: bainite, dual phase steel, fatigue crack growth rate, long crack fatigue threshold, short crack fatigue threshold

Procedia PDF Downloads 203
85 Molecular Characterization, Host Plant Resistance and Epidemiology of Bean Common Mosaic Virus Infecting Cowpea (Vigna unguiculata L. Walp)

Authors: N. Manjunatha, K. T. Rangswamy, N. Nagaraju, H. A. Prameela, P. Rudraswamy, M. Krishnareddy

Abstract:

The identification of virus in cowpea especially potyviruses is confusing. Even though there are several studies on viruses causing diseases in cowpea, difficult to distinguish based on symptoms and serological detection. The differentiation of potyviruses considering as a constraint, the present study is initiated for molecular characterization, host plant resistance and epidemiology of the BCMV infecting cowpea. The etiological agent causing cowpea mosaic was identified as Bean Common Mosaic Virus (BCMV) on the basis of RT-PCR and electron microscopy. An approximately 750bp PCR product corresponding to coat protein (CP) region of the virus and the presence of long flexuous filamentous particles measuring about 952 nm in size typical to genus potyvirus were observed under electron microscope. The characterized virus isolate genome had 10054 nucleotides, excluding the 3’ terminal poly (A) tail. Comparison of polyprotein of the virus with other potyviruses showed similar genome organization with 9 cleavage sites resulted in 10 functional proteins. The pairwise sequence comparison of individual genes, P1 showed most divergent, but CP gene was less divergent at nucleotide and amino acid level. A phylogenetic tree constructed based on multiple sequence alignments of the polyprotein nucleotide and amino acid sequences of cowpea BCMV and potyviruses showed virus is closely related to BCMV-HB. Whereas, Soybean variant of china (KJ807806) and NL1 isolate (AY112735) showed 93.8 % (5’UTR) and 94.9 % (3’UTR) homology respectively with other BCMV isolates. This virus transmitted to different leguminous plant species and produced systemic symptoms under greenhouse conditions. Out of 100 cowpea genotypes screened, three genotypes viz., IC 8966, V 5 and IC 202806 showed immune reaction in both field and greenhouse conditions. Single marker analysis (SMA) was revealed out of 4 SSR markers linked to BCMV resistance, M135 marker explains 28.2 % of phenotypic variation (R2) and Polymorphic information content (PIC) value of these markers was ranged from 0.23 to 0.37. The correlation and regression analysis showed rainfall, and minimum temperature had significant negative impact and strong relationship with aphid population, whereas weak correlation was observed with disease incidence. Path coefficient analysis revealed most of the weather parameters exerted their indirect contributions to the aphid population and disease incidence except minimum temperature. This study helps to identify specific gaps in knowledge for researchers who may wish to further analyse the science behind complex interactions between vector-virus and host in relation to the environment. The resistant genotypes identified are could be effectively used in resistance breeding programme.

Keywords: cowpea, epidemiology, genotypes, virus

Procedia PDF Downloads 236
84 Comparison of Incidence and Risk Factors of Early Onset and Late Onset Preeclampsia: A Population Based Cohort Study

Authors: Sadia Munir, Diana White, Aya Albahri, Pratiwi Hastania, Eltahir Mohamed, Mahmood Khan, Fathima Mohamed, Ayat Kadhi, Haila Saleem

Abstract:

Preeclampsia is a major complication of pregnancy. Prediction and management of preeclampsia is a challenge for obstetricians. To our knowledge, no major progress has been achieved in the prevention and early detection of preeclampsia. There is very little known about the clear treatment path of this disorder. Preeclampsia puts both mother and baby at risk of several short term- and long term-health problems later in life. There is huge health service cost burden in the health care system associated with preeclampsia and its complications. Preeclampsia is divided into two different types. Early onset preeclampsia develops before 34 weeks of gestation, and late onset develops at or after 34 weeks of gestation. Different genetic and environmental factors, prognosis, heritability, biochemical and clinical features are associated with early and late onset preeclampsia. Prevalence of preeclampsia greatly varies all over the world and is dependent on ethnicity of the population and geographic region. To authors best knowledge, no published data on preeclampsia exist in Qatar. In this study, we are reporting the incidence of preeclampsia in Qatar. The purpose of this study is to compare the incidence and risk factors of both early onset and late onset preeclampsia in Qatar. This retrospective longitudinal cohort study was conducted using data from the hospital record of Women’s Hospital, Hamad Medical Corporation (HMC), from May 2014-May 2016. Data collection tool, which was approved by HMC, was a researcher made extraction sheet that included information such as blood pressure during admission, socio demographic characteristics, delivery mode, and new born details. A total of 1929 patients’ files were identified by the hospital information management when they apply codes of preeclampsia. Out of 1929 files, 878 had significant gestational hypertension without proteinuria, 365 had preeclampsia, 364 had severe preeclampsia, and 188 had preexisting hypertension with superimposed proteinuria. In this study, 78% of the data was obtained by hospital electronic system (Cerner) and the remaining 22% was from patient’s paper records. We have gone through detail data extraction from 560 files. Initial data analysis has revealed that 15.02% of pregnancies were complicated with preeclampsia from May 2014-May 2016. We have analyzed difference in the two different disease entities in the ethnicity, maternal age, severity of hypertension, mode of delivery and infant birth weight. We have identified promising differences in the risk factors of early onset and late onset preeclampsia. The data from clinical findings of preeclampsia will contribute to increased knowledge about two different disease entities, their etiology, and similarities/differences. The findings of this study can also be used in predicting health challenges, improving health care system, setting up guidelines, and providing the best care for women suffering from preeclampsia.

Keywords: preeclampsia, incidence, risk factors, maternal

Procedia PDF Downloads 141
83 Proposals for the Practical Implementation of the Biological Monitoring of Occupational Exposure for Antineoplastic Drugs

Authors: Mireille Canal-Raffin, Nadege Lepage, Antoine Villa

Abstract:

Context: Most antineoplastic drugs (AD) have a potential carcinogenic, mutagenic and/or reprotoxic effect and are classified as 'hazardous to handle' by National Institute for Occupational Safety and Health Their handling increases with the increase of cancer incidence. AD contamination from workers who handle AD and/or care for treated patients is, therefore, a major concern for occupational physicians. As part of the process of evaluation and prevention of chemical risks for professionals exposed to AD, Biological Monitoring of Occupational Exposure (BMOE) is the tool of choice. BMOE allows identification of at-risk groups, monitoring of exposures, assessment of poorly controlled exposures and the effectiveness and/or wearing of protective equipment, and documenting occupational exposure incidents to AD. This work aims to make proposals for the practical implementation of the BMOE for AD. The proposed strategy is based on the French good practice recommendations for BMOE, issued in 2016 by 3 French learned societies. These recommendations have been adapted to occupational exposure to AD. Results: AD contamination of professionals is a sensitive topic, and the BMOE requires the establishment of a working group and information meetings within the concerned health establishment to explain the approach, objectives, and purpose of monitoring. Occupational exposure to AD is often discontinuous and 2 steps are essential upstream: a study of the nature and frequency of AD used to select the Biological Exposure Indice(s) (BEI) most representative of the activity; a study of AD path in the institution to target exposed professionals and to adapt medico-professional information sheet (MPIS). The MPIS is essential to gather the necessary elements for results interpretation. Currently, 28 urinary specific BEIs of AD exposure have been identified, and corresponding analytical methods have been published: 11 BEIs were AD metabolites, and 17 were AD. Results interpretation is performed by groups of homogeneous exposure (GHE). There is no threshold biological limit value of interpretation. Contamination is established when an AD is detected in trace concentration or in a urine concentration equal or greater than the limit of quantification (LOQ) of the analytical method. Results can only be compared to LOQs of these methods, which must be as low as possible. For 8 of the 17 AD BEIs, the LOQ is very low with values between 0.01 to 0.05µg/l. For the other BEIs, the LOQ values were higher between 0.1 to 30µg/l. Results restitution by occupational physicians to workers should be individual and collective. Faced with AD dangerousness, in cases of workers contamination, it is necessary to put in place corrective measures. In addition, the implementation of prevention and awareness measures for those exposed to this risk is a priority. Conclusion: This work is a help for occupational physicians engaging in a process of prevention of occupational risks related to AD exposure. With the current analytical tools, effective and available, the (BMOE) to the AD should now be possible to develop in routine occupational physician practice. The BMOE may be complemented by surface sampling to determine workers' contamination modalities.

Keywords: antineoplastic drugs, urine, occupational exposure, biological monitoring of occupational exposure, biological exposure indice

Procedia PDF Downloads 136
82 Surface Roughness in the Incremental Forming of Drawing Quality Cold Rolled CR2 Steel Sheet

Authors: Zeradam Yeshiwas, A. Krishnaia

Abstract:

The aim of this study is to verify the resulting surface roughness of parts formed by the Single-Point Incremental Forming (SPIF) process for an ISO 3574 Drawing Quality Cold Rolled CR2 Steel. The chemical composition of drawing quality Cold Rolled CR2 steel is comprised of 0.12 percent of carbon, 0.5 percent of manganese, 0.035 percent of sulfur, 0.04 percent phosphorous, and the remaining percentage is iron with negligible impurities. The experiments were performed on a 3-axis vertical CNC milling machining center equipped with a tool setup comprising a fixture and forming tools specifically designed and fabricated for the process. The CNC milling machine was used to transfer the tool path code generated in Mastercam 2017 environment into three-dimensional motions by the linear incremental progress of the spindle. The blanks of Drawing Quality Cold Rolled CR2 steel sheets of 1 mm of thickness have been fixed along their periphery by a fixture and hardened high-speed steel (HSS) tools with a hemispherical tip of 8, 10 and 12mm of diameter were employed to fabricate sample parts. To investigate the surface roughness, hyperbolic-cone shape specimens were fabricated based on the chosen experimental design. The effect of process parameters on the surface roughness was studied using three important process parameters, i.e., tool diameter, feed rate, and step depth. In this study, the Taylor-Hobson Surtronic 3+ surface roughness tester profilometer was used to determine the surface roughness of the parts fabricated using the arithmetic mean deviation (Rₐ). In this instrument, a small tip is dragged across a surface while its deflection is recorded. Finally, the optimum process parameters and the main factor affecting surface roughness were found using the Taguchi design of the experiment and ANOVA. A Taguchi experiment design with three factors and three levels for each factor, the standard orthogonal array L9 (3³) was selected for the study using the array selection table. The lowest value of surface roughness is significant for surface roughness improvement. For this objective, the ‘‘smaller-the-better’’ equation was used for the calculation of the S/N ratio. The finishing roughness parameter Ra has been measured for the different process combinations. The arithmetic means deviation (Rₐ) was measured via the experimental design for each combination of the control factors by using Taguchi experimental design. Four roughness measurements were taken for a single component and the average roughness was taken to optimize the surface roughness. The lowest value of Rₐ is very important for surface roughness improvement. For this reason, the ‘‘smaller-the-better’’ Equation was used for the calculation of the S/N ratio. Analysis of the effect of each control factor on the surface roughness was performed with a ‘‘S/N response table’’. Optimum surface roughness was obtained at a feed rate of 1500 mm/min, with a tool radius of 12 mm, and with a step depth of 0.5 mm. The ANOVA result shows that step depth is an essential factor affecting surface roughness (91.1 %).

Keywords: incremental forming, SPIF, drawing quality steel, surface roughness, roughness behavior

Procedia PDF Downloads 62
81 Determinants of Life Satisfaction in Canada: A Causal Modelling Approach

Authors: Rose Branch-Allen, John Jayachandran

Abstract:

Background and purpose: Canada is a pluralistic, multicultural society with an ethno-cultural composition that has been shaped over time by immigrants and their descendants. Although Canada welcomes these immigrants, many will endure hardship and assimilation difficulties. Despite these life hurdles, surveys consistently disclose high life satisfaction for all Canadians. Most research studies on Life Satisfaction/ Subjective Wellbeing (SWB) have focused on one main determinant and a variety of social demographic variables to delineate the determinants of life satisfaction. However, very few research studies examine life satisfaction from a holistic approach. In addition, we need to understand the causal pathways leading to life satisfaction, and develop theories that explain why certain variables differentially influence the different components of SWB. The aim this study was to utilize a holistic approach to construct a causal model and identify major determinants of life satisfaction. Data and measures: This study utilized data from the General Social Survey, with a sample size of 19, 597. The exogenous concepts included age, gender, marital status, household size, socioeconomic status, ethnicity, location, immigration status, religiosity, and neighborhood. The intervening concepts included health, social contact, leisure, enjoyment, work-family balance, quality time, domestic labor, and sense of belonging. The endogenous concept life satisfaction was measured by multiple indicators (Cronbach’s alpha = .83). Analysis: Several multiple regression models were run sequentially to estimate path coefficients for the causal model. Results: Overall, above average satisfaction with life was reported for respondents with specific socio-economic, demographic and lifestyle characteristics. With regard to exogenous factors, respondents who were female, younger, married, from high socioeconomic status background, born in Canada, very religious, and demonstrated high level of neighborhood interaction had greater satisfaction with life. Similarly, intervening concepts suggested respondents had greater life satisfaction if they had better health, more social contact, less time on passive leisure activities and more time on active leisure activities, more time with family and friends, more enjoyment with volunteer activities, less time on domestic labor and a greater sense of belonging to the community. Conclusions and Implications: Our results suggest that a holistic approach is necessary for establishing determinants of life satisfaction, and that life satisfaction is not merely comprised of positive or negative affect rather understanding the causal process of life satisfaction. Even though, most of our findings are consistent with previous studies, a significant number of causal connections contradict some of the findings in literature today. We have provided possible explanation for these anomalies researchers encounter in studying life satisfaction and policy implications.

Keywords: causal model, holistic approach, life satisfaction, socio-demographic variables, subjective well-being

Procedia PDF Downloads 356
80 Temperature-Dependent Post-Mortem Changes in Human Cardiac Troponin-T (cTnT): An Approach in Determining Postmortem Interval

Authors: Sachil Kumar, Anoop Kumar Verma, Wahid Ali, Uma Shankar Singh

Abstract:

Globally approximately 55.3 million people die each year. In the India there were 95 lakh annual deaths in 2013. The number of deaths resulted from homicides, suicides and unintentional injuries in the same period was about 5.7 lakh. The ever-increasing crime rate necessitated the development of methods for determining time since death. An erroneous time of death window can lead investigators down the wrong path or possibly focus a case on an innocent suspect. In this regard a research was carried out by analyzing the temperature dependent degradation of a Cardiac Troponin-T protein (cTnT) in the myocardium postmortem as a marker for time since death. Cardiac tissue samples were collected from (n=6) medico-legal autopsies, (in the Department of Forensic Medicine and Toxicology, King George’s Medical University, Lucknow India) after informed consent from the relatives and studied post-mortem degradation by incubation of the cardiac tissue at room temperature (20±2 OC), 12 0C, 25 0C and 37 0C for different time periods ((~5, 26, 50, 84, 132, 157, 180, 205, and 230 hours). The cases included were the subjects of road traffic accidents (RTA) without any prior history of disease who died in the hospital and their exact time of death was known. The analysis involved extraction of the protein, separation by denaturing gel electrophoresis (SDS-PAGE) and visualization by Western blot using cTnT specific monoclonal antibodies. The area of the bands within a lane was quantified by scanning and digitizing the image using Gel Doc. The data shows a distinct temporal profile corresponding to the degradation of cTnT by proteases found in cardiac muscle. The disappearance of intact cTnT and the appearance of lower molecular weight bands are easily observed. Western blot data clearly showed the intact protein at 42 kDa, two major (27 kDa, 10kDa) fragments, two additional minor fragments (32 kDa) and formation of low molecular weight fragments as time increases. At 12 0C the intensity of band (intact cTnT) decreased steadily as compared to RT, 25 0C and 37 0C. Overall, both PMI and temperature had a statistically significant effect where the greatest amount of protein breakdown was observed within the first 38 h and at the highest temperature, 37 0C. The combination of high temperature (37 0C) and long Postmortem interval (105.15 hrs) had the most drastic effect on the breakdown of cTnT. If the percent intact cTnT is calculated from the total area integrated within a Western blot lane, then the percent intact cTnT shows a pseudo-first order relationship when plotted against the log of the time postmortem. These plots show a good coefficient of correlation of r = 0.95 (p=0.003) for the regression of the human heart at different temperature conditions. The data presented demonstrates that this technique can provide an extended time range during which Postmortem interval can be more accurately estimated.

Keywords: degradation, postmortem interval, proteolysis, temperature, troponin

Procedia PDF Downloads 386
79 Comparative Analysis of Smart City Development: Assessing the Resilience and Technological Advancement in Singapore and Bucharest

Authors: Sînziana Iancu

Abstract:

In an era marked by rapid urbanization and technological advancement, the concept of smart cities has emerged as a pivotal solution to address the complex challenges faced by urban centres. As cities strive to enhance the quality of life for their residents, the development of smart cities has gained prominence. This study embarks on a comparative analysis of two distinct smart city models, Singapore and Bucharest, to assess their resilience and technological advancements. The significance of this study lies in its potential to provide valuable insights into the strategies, strengths, and areas of improvement in smart city development, ultimately contributing to the advancement of urban planning and sustainability. Methodologies: This comparative study employs a multifaceted approach to comprehensively analyse the smart city development in Singapore and Bucharest: * Comparative Analysis: A systematic comparison of the two cities is conducted, focusing on key smart city indicators, including digital infrastructure, integrated public services, urban planning and sustainability, transportation and mobility, environmental monitoring, safety and security, innovation and economic resilience, and community engagement; * Case Studies: In-depth case studies are conducted to delve into specific smart city projects and initiatives in both cities, providing real-world examples of their successes and challenges; * Data Analysis: Official reports, statistical data, and relevant publications are analysed to gather quantitative insights into various aspects of smart city development. Major Findings: Through a comprehensive analysis of Singapore and Bucharest's smart city development, the study yields the following major findings: * Singapore excels in digital infrastructure, integrated public services, safety, and innovation, showcasing a high level of resilience across these domains; * Bucharest is in the early stages of smart city development, with notable potential for growth in digital infrastructure and community engagement.; * Both cities exhibit a commitment to sustainable urban planning and environmental monitoring, with room for improvement in integrating these aspects into everyday life; * Transportation and mobility solutions are a priority for both cities, with Singapore having a more advanced system, while Bucharest is actively working on improving its transportation infrastructure; * Community engagement, while important, requires further attention in both cities to enhance the inclusivity of smart city initiatives. Conclusion: In conclusion, this study serves as a valuable resource for urban planners, policymakers, and stakeholders in understanding the nuances of smart city development and resilience. While Singapore stands as a beacon of success in various smart city indicators, Bucharest demonstrates potential and a willingness to adapt and grow in this domain. As cities worldwide embark on their smart city journeys, the lessons learned from Singapore and Bucharest provide invaluable insights into the path toward urban sustainability and resilience in the digital age.

Keywords: bucharest, resilience, Singapore, smart city

Procedia PDF Downloads 69
78 Evaluating the Impact of Early Maternal Incarceration on Male Delinquent Behavior during Emerging Adulthood through the Mediating Mechanism of Mastery

Authors: Richard Abel

Abstract:

In the United States, increased incarceration rates have caused many adolescents to feel the strain of parental absence. This absence is then manifest through adolescent feelings of parental rejection. Additionally, upon reentry maternal incarceration may be related to adolescents experienced perceived excessive disciple. It is possible parents engage in this manner of discipline attempting to prevent the child from taking the same path to incarceration as the parent. According to General Strain Theory, adolescents encountering strain are likely to experience negative emotions. The emotion that is most likely to lead to delinquency is anger through reduced inhibitions and motivation to act. Additionally, males are more likely to engage in delinquent behavior, regardless of experiencing strain. This is not the case for every male who experiences maternal incarceration, parental rejection, excessive discipline, or anger. There are protective factors that enable agency within individuals. One such protective factor is mastery, or the perception that one is in control of his or her own future. The model proposed in this research suggests maternal incarceration is associated with increased parental rejection and excessive discipline in males. Males experiencing parental rejection and excessive discipline are likely to experience increased anger, which is then associated with increases in delinquent behavior. This model explores whether agency, in the form of mastery, mediates the relationship between strains and negative emotions, or between negative emotions and delinquent behavior. The Kaplan Longitudinal and Multigenerational Study (KLAMS) dataset is uniquely situated to analyze this model providing longitudinal data collected from both parents and their offspring. Maternal incarceration is constructed using parental responses such that the mother was incarcerated after the child’s birth, and any incarceration that happened prior to birth is excluded. The remaining variables of the study are all constructed from varying waves of the adolescent survey. Parental rejection, along with control variables for age, race, parental socioeconomic status, neighborhood effects, delinquent peers, and prior delinquent behavior are all constructed using Wave I data. To increase causal inference, the negative emotion of anger and the mediating variable of mastery are measured during Wave II. Lastly, delinquent behavior is measured at Wave III. Results of the analysis show expected relationships such that adolescent males encountering maternal incarceration show increased perception of parental rejection and excessive discipline. Additionally, there is a positive relationship between parental rejection and excessive discipline at Wave I and feelings of anger at Wave II for males. For males experiencing either of these strains in Wave I, feelings of anger in Wave II are found to be associated with increased delinquent behavior in Wave III. Mastery was found to mediate the relationship between both parental rejection and excessive discipline and anger, but no such mediation occurs in the relationship between anger and delinquency, regardless of the strain being experienced. These findings suggest adolescent males who feel they are in control of their own lives are less likely to experience negative emotions produced by the occurrence of strain, thereby decreasing male engagement in delinquent behavior later in life.

Keywords: delinquency, mastery, maternal incarceration, strain

Procedia PDF Downloads 133
77 Communicating Safety: A Digital Ethnography Investigating Social Media Use for Workplace Safety

Authors: Kelly Jaunzems

Abstract:

Social media is a powerful instrument of communication, enabling the presentation of information in multiple forms and modes, amplifying the interactions between people, organisations, and stakeholders, and increasing the range of communication channels available. Younger generations are highly engaged with social media and more likely to use this channel than any other to seek information. Given this, it may appear extraordinary that occupational safety and health professionals have yet to seriously engage with social media for communicating safety messages to younger audiences who, in many industries, might be statistically more likely to encounter more workplace harm or injury. Millennials, defined as those born between 1981-2000, have distinctive characteristics that also impact their interaction patterns rendering many traditional occupational safety and health communication channels sub-optimal or near obsolete. Used to immediate responses, 280-character communication, shares, likes, and visual imagery, millennials struggle to take seriously the low-tech, top-down communication channels such as safety noticeboards, toolbox meetings, and passive tick-box online inductions favoured by traditional OSH professionals. This paper draws upon well-established communication findings, which argue that it is important to know a target audience and reach them using their preferred communication pathways, particularly if the aim is to impact attitudes and behaviours. Health practitioners have adopted social media as a communication channel with great success, yet safety practitioners have failed to follow this lead. Using a digital ethnography approach, this paper examines seven organisations’ Facebook posts from two one-month periods one year apart, one in 2018 and one in 2019. Each of the years informs organisation-based case studies. Comparing, contrasting, and drawing upon these case studies, the paper discusses and evaluates the (non) use of social media communication of safety information in terms of user engagement, shareability, and overall appeal. The success of health practitioners’ use of social media provides a compelling template for the implementation of social media into organisations’ safety communication strategies. Highly visible content such as that found on social media allows an organization to become more responsive and engage in two-way conversations with their audience, creating more engaged and participatory conversations around safety. Further, using social media to address younger audiences with a range of tonal qualities (for example, the use of humour) can achieve cut through in a way that grim statistics fail to do. On the basis of 18 months of interviews, filed work, and data analysis, the paper concludes with recommendations for communicating safety information via social media. It proposes exploration of the social media communication formula that, when utilised by safety practitioners, may create an effective social media presence. It is anticipated that such social media use will increase engagement, expand the number of followers and reduce the likelihood and severity of safety-related incidents. The tools offered may provide a path for safety practitioners to reach a disengaged generation of workers to build a cohesive and inclusive conversation around ways to keep people safe at work.

Keywords: social media, workplace safety, communication strategies, young workers

Procedia PDF Downloads 116
76 Sensory Integration for Standing Postural Control Among Children and Adolescents with Autistic Spectrum Disorder Compared with Typically Developing Children and Adolescents

Authors: Eglal Y. Ali, Smita Rao, Anat Lubetzky, Wen Ling

Abstract:

Background: Postural abnormalities, rigidity, clumsiness, and frequent falls are common among children with autism spectrum disorders (ASD). The central nervous system’s ability to process all reliable sensory inputs (weighting) and disregard potentially perturbing sensory input (reweighting) is critical for successfully maintaining standing postural control. This study examined how sensory inputs (visual and somatosensory) are weighted and reweighted to maintain standing postural control in children with ASD compared with typically developing (TD) children. Subjects: Forty (20 (TD) and 20 ASD) children and adolescents participated in this study. The groups were matched for age, weight, and height. Participants had normal somatosensory (no somatosensory hypersensitivity), visual, and vestibular perception. Participants with ASD were categorized with severity level 1 according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) and Social Responsiveness Scale. Methods: Using one force platform, the center of pressure (COP) was measured during quiet standing for 30 seconds, 3 times first standing on stable surface with eyes open (Condition 1), followed by randomization of the following 3 conditions: Condition 2 standing on stable surface with eyes closed, (visual input perturbed); Condition 3 standing on compliant foam surface with eyes open, (somatosensory input perturbed); and Condition 4 standing on compliant foam surface with eyes closed, (both visual and somatosensory inputs perturbed). Standing postural control was measured by three outcome measures: COP sway area, COP anterior-posterior (AP), and mediolateral (ML) path length (PL). A repeated measure mixed model Analysis of Variance was conducted to determine whether there was a significant difference between the two groups in the mean of the three outcome measures across the four conditions. Results: According to all three outcome measures, both groups showed a gradual increase in postural sway from condition 1 to condition 4. However, TD participants showed a larger postural sway than those with ASD. There was a significant main effect of condition on three outcome measures (p< 0.05). Only the COP AP PL showed a significant main effect of the group (p<0.05) and a significant group by condition interaction (p<0.05). In COP AP PL, TD participants showed a significant difference between condition 2 and the baseline (p<0.05), whereas the ASD group did not. This suggests that the ASD group did not weight visual input as much as the TD group. A significant difference between conditions for the ASD group was seen only when participants stood on foam regardless of the visual condition, suggesting that the ASD group relied more on the somatosensory inputs to maintain the standing postural control. Furthermore, the ASD group exhibited significantly smaller postural sway compared with TD participants during standing on the stable surface, whereas the postural sway of the ASD group was close to that of the TD group on foam. Conclusion: These results suggest that participants with high functioning ASD (level 1, no somatosensory hypersensitivity in ankles and feet) over-rely on somatosensory inputs and use a stiffening strategy for standing postural control. This deviation in the reweighting mechanism might explain the postural abnormalities mentioned above among children with ASD.

Keywords: autism spectrum disorders, postural sway, sensory weighting and reweighting, standing postural control

Procedia PDF Downloads 54
75 Sensory Weighting and Reweighting for Standing Postural Control among Children and Adolescents with Autistic Spectrum Disorder Compared with Typically Developing Children and Adolescents

Authors: Eglal Y. Ali, Smita Rao, Anat Lubetzky, Wen Ling

Abstract:

Background: Postural abnormalities, rigidity, clumsiness, and frequent falls are common among children with autism spectrum disorders (ASD). The central nervous system’s ability to process all reliable sensory inputs (weighting) and disregard potentially perturbing sensory input (reweighting) is critical for successfully maintaining standing postural control. This study examined how sensory inputs (visual and somatosensory) are weighted and reweighted to maintain standing postural control in children with ASD compared with typically developing (TD) children. Subjects: Forty (20 (TD) and 20 ASD) children and adolescents participated in this study. The groups were matched for age, weight, and height. Participants had normal somatosensory (no somatosensory hypersensitivity), visual, and vestibular perception. Participants with ASD were categorized with severity level 1 according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) and Social Responsiveness Scale. Methods: Using one force platform, the center of pressure (COP) was measured during quiet standing for 30 seconds, 3 times first standing on stable surface with eyes open (Condition 1), followed by randomization of the following 3 conditions: Condition 2 standing on stable surface with eyes closed, (visual input perturbed); Condition 3 standing on a compliant foam surface with eyes open, (somatosensory input perturbed); and Condition 4 standing on a compliant foam surface with eyes closed, (both visual and somatosensory inputs perturbed). Standing postural control was measured by three outcome measures: COP sway area, COP anterior-posterior (AP), and mediolateral (ML) path length (PL). A repeated measure mixed model analysis of variance was conducted to determine whether there was a significant difference between the two groups in the mean of the three outcome measures across the four conditions. Results: According to all three outcome measures, both groups showed a gradual increase in postural sway from condition 1 to condition 4. However, TD participants showed a larger postural sway than those with ASD. There was a significant main effect of the condition on three outcome measures (p< 0.05). Only the COP AP PL showed a significant main effect of the group (p<0.05) and a significant group by condition interaction (p<0.05). In COP AP PL, TD participants showed a significant difference between condition 2 and the baseline (p<0.05), whereas the ASD group did not. This suggests that the ASD group did not weigh visual input as much as the TD group. A significant difference between conditions for the ASD group was seen only when participants stood on foam regardless of the visual condition, suggesting that the ASD group relied more on the somatosensory inputs to maintain the standing postural control. Furthermore, the ASD group exhibited significantly smaller postural sway compared with TD participants during standing on a stable surface, whereas the postural sway of the ASD group was close to that of the TD group on foam. Conclusion: These results suggest that participants with high-functioning ASD (level 1, no somatosensory hypersensitivity in ankles and feet) over-rely on somatosensory inputs and use a stiffening strategy for standing postural control. This deviation in the reweighting mechanism might explain the postural abnormalities mentioned above among children with ASD.

Keywords: autism spectrum disorders, postural sway, sensory weighting and reweighting, standing postural control

Procedia PDF Downloads 117
74 Gender Bias and the Role It Plays in Student Evaluation of Instructors

Authors: B. Garfolo, L. Kelpsh, R. Roak, R. Kuck

Abstract:

Often, student ratings of instructors play a significant role in the career path of an instructor in higher education. So then, how does a student view the effectiveness of instructor teaching? This question has been address by literally thousands of studies found in the literature. Yet, why does this question still persist? A literature review reveals that while it is true that student evaluations of instructors can be biased, there is still a considerable amount of work that needs to be done in understanding why. As student evaluations of instructors can be used in a variety of settings (formative or summative) it is critical to understand the nature of the bias. The authors believe that not only is some bias possible in student evaluations, it should be expected for the simple reason that a student evaluation is a human activity and as such, relies upon perception and interpersonal judgment. As such, student ratings are affected by the same factors that can potentially affect any rater’s judgment, such as stereotypes based on gender, culture, race, etc. Previous study findings suggest that student evaluations of teacher effectiveness differ between male and female raters. However, even though studies have shown that instructor gender does play an important role in influencing student ratings, the exact nature and extent of that role remains the subject of debate. Researchers, in their attempt to define good teaching, have looked for differences in student evaluations based on a variety of characteristics such as course type, class size, ability level of the student and grading practices in addition to instructor and student characteristics (gender, age, etc.) with inconsistent results. If a student evaluation represents more than an instructor’s teaching ability, for example, a physical characteristic such as gender, then this information must be taken into account if the evaluation is to have meaning with respect to instructor assessment. While the authors concede that it is difficult or nearly impossible to separate gender from student perception of teaching practices in person, it is, however, possible to shield an instructor’s gender identity with respect to an online teaching experience. The online teaching modality presents itself as a unique opportunity to experiment directly with gender identity. The analysis of the differences of online behavior of individuals when they perceive that they are interacting with a male or female could provide a wealth of data on how gender influences student perceptions of teaching effectiveness. Given the importance of the role student ratings play in hiring, retention, promotion, tenure, and salary deliberations in academic careers, this question warrants further attention as it is important to be aware of possible bias in student evaluations if they are to be used at all with respect to any academic considerations. For experimental purposes, the author’s constructed and online class where each instructors operate under two different gender identities. In this study, each instructor taught multiple sections of the same class using both a male identity and a female identity. The study examined student evaluations of teaching based on certain student and instructor characteristics in order to determine if and where male and female students might differ in their ratings of instructors based on instructor gender. Additionally, the authors examined if there are differences between undergraduate and graduate students' ratings with respect to the experimental criteria.

Keywords: gender bias, ethics, student evaluations, student perceptions, online instruction

Procedia PDF Downloads 266
73 Black-Box-Optimization Approach for High Precision Multi-Axes Forward-Feed Design

Authors: Sebastian Kehne, Alexander Epple, Werner Herfs

Abstract:

A new method for optimal selection of components for multi-axes forward-feed drive systems is proposed in which the choice of motors, gear boxes and ball screw drives is optimized. Essential is here the synchronization of electrical and mechanical frequency behavior of all axes because even advanced controls (like H∞-controls) can only control a small part of the mechanical modes – namely only those of observable and controllable states whose value can be derived from the positions of extern linear length measurement systems and/or rotary encoders on the motor or gear box shafts. Further problems are the unknown processing forces like cutting forces in machine tools during normal operation which make the estimation and control via an observer even more difficult. To start with, the open source Modelica Feed Drive Library which was developed at the Laboratory for Machine Tools, and Production Engineering (WZL) is extended from one axis design to the multi axes design. It is capable to simulate the mechanical, electrical and thermal behavior of permanent magnet synchronous machines with inverters, different gear boxes and ball screw drives in a mechanical system. To keep the calculation time down analytical equations are used for field and torque producing equivalent circuit, heat dissipation and mechanical torque at the shaft. As a first step, a small machine tool with a working area of 635 x 315 x 420 mm is taken apart, and the mechanical transfer behavior is measured with an impulse hammer and acceleration sensors. With the frequency transfer functions, a mechanical finite element model is built up which is reduced with substructure coupling to a mass-damper system which models the most important modes of the axes. The model is modelled with Modelica Feed Drive Library and validated by further relative measurements between machine table and spindle holder with a piezo actor and acceleration sensors. In a next step, the choice of possible components in motor catalogues is limited by derived analytical formulas which are based on well-known metrics to gain effective power and torque of the components. The simulation in Modelica is run with different permanent magnet synchronous motors, gear boxes and ball screw drives from different suppliers. To speed up the optimization different black-box optimization methods (Surrogate-based, gradient-based and evolutionary) are tested on the case. The objective that was chosen is to minimize the integral of the deviations if a step is given on the position controls of the different axes. Small values are good measures for a high dynamic axes. In each iteration (evaluation of one set of components) the control variables are adjusted automatically to have an overshoot less than 1%. It is obtained that the order of the components in optimization problem has a deep impact on the speed of the black-box optimization. An approach to do efficient black-box optimization for multi-axes design is presented in the last part. The authors would like to thank the German Research Foundation DFG for financial support of the project “Optimierung des mechatronischen Entwurfs von mehrachsigen Antriebssystemen (HE 5386/14-1 | 6954/4-1)” (English: Optimization of the Mechatronic Design of Multi-Axes Drive Systems).

Keywords: ball screw drive design, discrete optimization, forward feed drives, gear box design, linear drives, machine tools, motor design, multi-axes design

Procedia PDF Downloads 286
72 Conceptual and Preliminary Design of Landmine Searching UAS at Extreme Environmental Condition

Authors: Gopalasingam Daisan

Abstract:

Landmines and ammunitions have been creating a significant threat to the people and animals, after the war, the landmines remain in the land and it plays a vital role in civilian’s security. Especially the Children are at the highest risk because they are curious. After all, an unexploded bomb can look like a tempting toy to an inquisitive child. The initial step of designing the UAS (Unmanned Aircraft Systems) for landmine detection is to choose an appropriate and effective sensor to locate the landmines and other unexploded ammunitions. The sensor weight and other components related to the sensor supporting device’s weight are taken as a payload weight. The mission requirement is to find the landmines in a particular area by making a proper path that will cover all the vicinity in the desired area. The weight estimation of the UAV (Unmanned Aerial Vehicle) can be estimated by various techniques discovered previously with good accuracy at the first phase of the design. The next crucial part of the design is to calculate the power requirement and the wing loading calculations. The matching plot techniques are used to determine the thrust-to-weight ratio, and this technique makes this process not only easiest but also precisely. The wing loading can be calculated easily from the stall equation. After these calculations, the wing area is determined from the wing loading equation and the required power is calculated from the thrust to weight ratio calculations. According to the power requirement, an appropriate engine can be selected from the available engine from the market. And the wing geometric parameter is chosen based on the conceptual sketch. The important steps in the wing design to choose proper aerofoil and which will ensure to create sufficient lift coefficient to satisfy the requirements. The next component is the tail; the tail area and other related parameters can be estimated or calculated to counteract the effect of the wing pitching moment. As the vertical tail design depends on many parameters, the initial sizing only can be done in this phase. The fuselage is another major component, which is selected based on the slenderness ratio, and also the shape is determined on the sensor size to fit it under the fuselage. The landing gear is one of the important components which is selected based on the controllability and stability requirements. The minimum and maximum wheel track and wheelbase can be determined based on the crosswind and overturn angle requirements. The minor components of the landing gear design and estimation are not the focus of this project. Another important task is to calculate the weight of the major components and it is going to be estimated using empirical relations and also the mass is added to each such component. The CG and moment of inertia are also determined to each component separately. The sensitivity of the weight calculation is taken into consideration to avoid extra material requirements and also reduce the cost of the design. Finally, the aircraft performance is calculated, especially the V-n (velocity and load factor) diagram for different flight conditions such as not disturbed and with gust velocity.

Keywords: landmine, UAS, matching plot, optimization

Procedia PDF Downloads 170
71 Assessing the Environmental Efficiency of China’s Power System: A Spatial Network Data Envelopment Analysis Approach

Authors: Jianli Jiang, Bai-Chen Xie

Abstract:

The climate issue has aroused global concern. Achieving sustainable development is a good path for countries to mitigate environmental and climatic pressures, although there are many difficulties. The first step towards sustainable development is to evaluate the environmental efficiency of the energy industry with proper methods. The power sector is a major source of CO2, SO2, and NOx emissions. Evaluating the environmental efficiency (EE) of power systems is the premise to alleviate the terrible situation of energy and the environment. Data Envelopment Analysis (DEA) has been widely used in efficiency studies. However, measuring the efficiency of a system (be it a nation, region, sector, or business) is a challenging task. The classic DEA takes the decision-making units (DMUs) as independent, which neglects the interaction between DMUs. While ignoring these inter-regional links may result in a systematic bias in the efficiency analysis; for instance, the renewable power generated in a certain region may benefit the adjacent regions while the SO2 and CO2 emissions act oppositely. This study proposes a spatial network DEA (SNDEA) with a slack measure that can capture the spatial spillover effects of inputs/outputs among DMUs to measure efficiency. This approach is used to study the EE of China's power system, which consists of generation, transmission, and distribution departments, using a panel dataset from 2014 to 2020. In the empirical example, the energy and patent inputs, the undesirable CO2 output, and the renewable energy (RE) power variables are tested for a significant spatial spillover effect. Compared with the classic network DEA, the SNDEA result shows an obvious difference tested by the global Moran' I index. From a dynamic perspective, the EE of the power system experiences a visible surge from 2015, then a sharp downtrend from 2019, which keeps the same trend with the power transmission department. This phenomenon benefits from the market-oriented reform in the Chinese power grid enacted in 2015. The rapid decline in the environmental efficiency of the transmission department in 2020 was mainly due to the Covid-19 epidemic, which hinders economic development seriously. While the EE of the power generation department witnesses a declining trend overall, this is reasonable, taking the RE power into consideration. The installed capacity of RE power in 2020 is 4.40 times that in 2014, while the power generation is 3.97 times; in other words, the power generation per installed capacity shrank. In addition, the consumption cost of renewable power increases rapidly with the increase of RE power generation. These two aspects make the EE of the power generation department show a declining trend. Incorporation of the interactions among inputs/outputs into the DEA model, this paper proposes an efficiency evaluation method on the basis of the DEA framework, which sheds some light on efficiency evaluation in regional studies. Furthermore, the SNDEA model and the spatial DEA concept can be extended to other fields, such as industry, country, and so on.

Keywords: spatial network DEA, environmental efficiency, sustainable development, power system

Procedia PDF Downloads 108
70 Teacher Training for Bilingual Education of Deaf Students in Brazil

Authors: Mara Aparecida De Castilho Lopes. Maria Eliza Mattosinho Bernardes

Abstract:

The education of deaf individuals in Brazil is grounded in the bilingual approach, which presupposes Brazilian Sign Language (Libras) as the first language for these students. In this perspective, Portuguese should be taught as a second language in its written form, ensuring that deaf students also have access to various academic subjects in sign language. Brazilian legislation (Federal Decree No. 5626 of 2005) mandates the teaching of Brazilian Sign Language in university teacher training programs, but there is no pre-established minimum workload. As a result, there is a significant disparity in the teaching and quality of teacher education across the Brazilian territory. Added to this fact is the general lack of awareness within society regarding the linguistic status of Libras, leading to a shortage of competent teachers for its use and instruction, particularly in higher education. Recently, Federal Law No. 14191 of 2021 established bilingual education for the deaf as a mode of instruction, indicating the need for adjustments in teacher training within higher education teacher preparation programs. Given this context, the objective of the present study was to analyze the teaching proposals for Brazilian Sign Language for students in teacher training programs at public universities in Brazil, presenting alternatives to overcome the current models and academic pathways of teaching and learning. In addition to analyzing Brazilian teaching models, an analysis of a continuing education model for teachers in a French institution was also conducted - considering the historical Franco-Brazilian path of deaf education in Brazil. The analysis of the current teacher training model for deaf education in Brazil revealed that initial exposure to sign language and its linguistic structure is not sufficient to provide future teachers with opportunities to reflect on bilingual teaching methods and practices, as seen in other definitions of bilingualism - bilingual education for proficient listeners in two oral languages. As a result, a training proposal was developed for an experimental interdisciplinary course, integrating the curriculum of an initial and continuing teacher training program alongside the Alfredo Bossi Chair at the University of São Paulo. This proposal is structured into three disciplines, which constitute consecutive moments in teacher education: Fundamental Aspects of Brazilian Sign Language, Bilingual Teaching Methodology, and Teaching Investigation Project - interdisciplinary engagement in the field of deafness. The last offered discipline represents an interdisciplinary supervised internship proposal, considering the multi-professional context that constitutes deaf education within a bilingual approach. In interdisciplinary work within the field of deafness, dialogue between teachers and other professionals who work with deaf students from different perspectives - teachers, speech therapists, and sign language interpreters - is frequently necessary. Through alternative avenues, these actions aim to direct the linguistic development of deaf students within their learning processes. Based on the innovative curriculum proposal described here, the intention is to contribute to the enhancement of teacher education in Brazil, with the goal of ensuring bilingual education for deaf students.

Keywords: bilingual education, teacher training, historical-cultural approach, interdisciplinary education, inclusive education

Procedia PDF Downloads 91
69 A Systemic Review and Comparison of Non-Isolated Bi-Directional Converters

Authors: Rahil Bahrami, Kaveh Ashenayi

Abstract:

This paper presents a systematic classification and comparative analysis of non-isolated bi-directional DC-DC converters. The increasing demand for efficient energy conversion in diverse applications has spurred the development of various converter topologies. In this study, we categorize bi-directional converters into three distinct classes: Inverting, Non-Inverting, and Interleaved. Each category is characterized by its unique operational characteristics and benefits. Furthermore, a practical comparison is conducted by evaluating the results of simulation of each bi-directional converter. BDCs can be classified into isolated and non-isolated topologies. Non-isolated converters share a common ground between input and output, making them suitable for applications with minimal voltage change. They are easy to integrate, lightweight, and cost-effective but have limitations like limited voltage gain, switching losses, and no protection against high voltages. Isolated converters use transformers to separate input and output, offering safety benefits, high voltage gain, and noise reduction. They are larger and more costly but are essential for automotive designs where safety is crucial. The paper focuses on non-isolated systems.The paper discusses the classification of non-isolated bidirectional converters based on several criteria. Common factors used for classification include topology, voltage conversion, control strategy, power capacity, voltage range, and application. These factors serve as a foundation for categorizing converters, although the specific scheme might vary depending on contextual, application, or system-specific requirements. The paper presents a three-category classification for non-isolated bi-directional DC-DC converters: inverting, non-inverting, and interleaved. In the inverting category, converters produce an output voltage with reversed polarity compared to the input voltage, achieved through specific circuit configurations and control strategies. This is valuable in applications such as motor control and grid-tied solar systems. The non-inverting category consists of converters maintaining the same voltage polarity, useful in scenarios like battery equalization. Lastly, the interleaved category employs parallel converter stages to enhance power delivery and reduce current ripple. This classification framework enhances comprehension and analysis of non-isolated bi-directional DC-DC converters. The findings contribute to a deeper understanding of the trade-offs and merits associated with different converter types. As a result, this work aids researchers, practitioners, and engineers in selecting appropriate bi-directional converter solutions for specific energy conversion requirements. The proposed classification framework and experimental assessment collectively enhance the comprehension of non-isolated bi-directional DC-DC converters, fostering advancements in efficient power management and utilization.The simulation process involves the utilization of PSIM to model and simulate non-isolated bi-directional converter from both inverted and non-inverted category. The aim is to conduct a comprehensive comparative analysis of these converters, considering key performance indicators such as rise time, efficiency, ripple factor, and maximum error. This systematic evaluation provides valuable insights into the dynamic response, energy efficiency, output stability, and overall precision of the converters. The results of this comparison facilitate informed decision-making and potential optimizations, ensuring that the chosen converter configuration aligns effectively with the designated operational criteria and performance goals.

Keywords: bi-directional, DC-DC converter, non-isolated, energy conversion

Procedia PDF Downloads 100
68 The Academic Experience of Vocational Training Teachers

Authors: Andréanne Gagné, Jo Anni Joncas, Éric Tendon

Abstract:

Teaching in vocational training requires an excellent mastery of the trade being taught, but also solid professional skills in pedagogy. Teachers are typically recruited on the basis of their trade expertise, and they do not necessarily have training or experience in pedagogy. In order to counter this lack, the Ministry of Education (Québec, Canada) requires them to complete a 120-credit university program to obtain their teaching certificate. They must complete this training in addition to their teaching duties. This training was rarely planned in the teacher’s life course, and each teacher approaches it differently: some are enthusiastic, but many feel reluctant discouragement and even frustration at the idea of committing to a training program lasting an average of 10 years to completion. However, Quebec is experiencing an unprecedented shortage of teachers, and the perseverance of vocational teachers in their careers requires special attention because of the conditions of their specific integration conditions. Our research examines the perceptions that vocational teachers in training have of their academic experience in pre-service teaching. It differs from previous research in that it focuses on the influence of the academic experience on the teaching employment experience. The goal is that by better understanding the university experience of teachers in vocational education, we can identify support strategies to support their school experience and their teaching. To do this, the research is based on the theoretical framework of the sociology of experience, which allows us to study the way in which these “teachers-students” give meaning to their university program in articulation with their jobs according to three logics of action. The logic of integration is based on the process of socialization, where the action is preceded by the internalization of values, norms, and cultural models associated with the training context. The logic of strategy refers to the usefulness of this experience where the individual constructs a form of rationality according to his objectives, resources, social position, and situational constraints. The logic of subjectivation refers to reflexivity activities aimed at solving problems and making choices. These logics served as a framework for the development of an online questionnaire. Three hundred respondents, newly enrolled in an undergraduate teaching program (bachelor's degree in vocational education), expressed themselves about their academic experience. This paper relates qualitative data (open-ended questions) subjected to an interpretive repertory analysis approach to descriptive data (closed-ended questions) that emerged. The results shed light on how the respondents perceive themselves as teachers and students, their perceptions of university training and the support offered, and the place that training occupies in their professional path. Indeed, their professional and academic paths are inextricably linked, and it seems essential to take them into account simultaneously to better meet their needs and foster the development of their expertise in pedagogy. The discussion focuses on the strengths and limitations of university training from the perspective of the logic of action. The results also suggest support strategies that can be implemented to better support the integration and retention of student teachers in professional education.

Keywords: teacher, vocational training, pre-service training, academic experience

Procedia PDF Downloads 115
67 Unleashing the Power of Cerebrospinal System for a Better Computer Architecture

Authors: Lakshmi N. Reddi, Akanksha Varma Sagi

Abstract:

Studies on biomimetics are largely developed, deriving inspiration from natural processes in our objective world to develop novel technologies. Recent studies are diverse in nature, making their categorization quite challenging. Based on an exhaustive survey, we developed categorizations based on either the essential elements of nature - air, water, land, fire, and space, or on form/shape, functionality, and process. Such diverse studies as aircraft wings inspired by bird wings, a self-cleaning coating inspired by a lotus petal, wetsuits inspired by beaver fur, and search algorithms inspired by arboreal ant path networks lend themselves to these categorizations. Our categorizations of biomimetic studies allowed us to define a different dimension of biomimetics. This new dimension is not restricted to inspiration from the objective world. It is based on the premise that the biological processes observed in the objective world find their reflections in our human bodies in a variety of ways. For example, the lungs provide the most efficient example for liquid-gas phase exchange, the heart exemplifies a very efficient pumping and circulatory system, and the kidneys epitomize the most effective cleaning system. The main focus of this paper is to bring out the magnificence of the cerebro-spinal system (CSS) insofar as it relates to our current computer architecture. In particular, the paper uses four key measures to analyze the differences between CSS and human- engineered computational systems. These are adaptability, sustainability, energy efficiency, and resilience. We found that the cerebrospinal system reveals some important challenges in the development and evolution of our current computer architectures. In particular, the myriad ways in which the CSS is integrated with other systems/processes (circulatory, respiration, etc) offer useful insights on how the human-engineered computational systems could be made more sustainable, energy-efficient, resilient, and adaptable. In our paper, we highlight the energy consumption differences between CSS and our current computational designs. Apart from the obvious differences in materials used between the two, the systemic nature of how CSS functions provides clues to enhance life-cycles of our current computational systems. The rapid formation and changes in the physiology of dendritic spines and their synaptic plasticity causing memory changes (ex., long-term potentiation and long-term depression) allowed us to formulate differences in the adaptability and resilience of CSS. In addition, the CSS is sustained by integrative functions of various organs, and its robustness comes from its interdependence with the circulatory system. The paper documents and analyzes quantifiable differences between the two in terms of the four measures. Our analyses point out the possibilities in the development of computational systems that are more adaptable, sustainable, energy efficient, and resilient. It concludes with the potential approaches for technological advancement through creation of more interconnected and interdependent systems to replicate the effective operation of cerebro-spinal system.

Keywords: cerebrospinal system, computer architecture, adaptability, sustainability, resilience, energy efficiency

Procedia PDF Downloads 97
66 Authenticity from the Perspective of Locals: What Prince Edward Islanders Had to Say about Authentic Tourism Experiences

Authors: Susan C. Graham

Abstract:

Authenticity has grown to be ubiquitous within the tourism vernacular. Yet, agreement regarding what authenticity means in relation to tourism remains nebulous. In its simplest form, authenticity in tourism refers to products and experiences that provide insights into the social, cultural, economic, natural, historical, and political life of a place. But this definition is unwieldy in its scope and may not help industry leaders nor tourist in identifying that which is authentic. Much of what is projected as authentic is a carefully curated and crafted message developed by marketers to appeal to visitors and bears little resemblance to the everyday lives of locals. So perhaps one way to identify authentic tourism experiences is to ask locals themselves. The purpose of this study was to explore the perspectives of locals with respect to what constituted an authentic tourism experience in Prince Edward Island (PEI), Canada. Over 600 volunteers in a tourism research panel were sent a survey asking them to describe authentic PEI experiences within ten sub-categories relevant to the local tourism industry. To make participation more manageable, each respondent was asked their perspectives on any three of the tourism sub-categories. Over 400 individuals responded, providing 1391 unique responses. The responses were grouped thematically using interpretive phenomenological analysis whereby the participants’ responses were clustered into higher order groups to extract meaning. Two interesting thematic observations emerged: first, that respondents tended to clearly articulate and differentiate between intra- versus interpersonal experiences as a means of authentically experiencing PEI; and second, while respondents explicitly valued unstaged experiences over staged, several exceptions to this general rule were expressed. Responses could clearly be grouped into those that emphasized “going off the beaten path,” “exploring pristine and untouched corners,” “lesser known,” “hidden”, “going solo,” and taking the opportunity to “slow down.” Each of these responses was “self” centered, and focused on the visitor discovering and exploring in search of greater self-awareness and inner peace. In contrast, other responses encouraged the interaction of visitors with locals as a means of experiencing the authentic place. Respondents sited “going deep-sea fishing” to learn about local fishers and their communities, stopping by “local farm stands” and speaking with farmers who worked the land for generations,” patronizing “local restaurants, pubs, and b&bs”, and partaking in performances or exhibits by local artists. These kinds of experiences, the respondents claimed, provide an authentic glimpse into a place’s character. The second set of observations focused on the distinction between staged and unstaged experiences, with respondents overwhelmingly advocating for unstaged. Responses were clear in shunning “touristy,” “packaged,” and “fake” offerings for being inauthentic and misrepresenting the place as locals view it. Yet many respondents made exceptions for certain “staged” experiences, including (quite literally) the stage production of Anne of Green Gables based on the novel of the same name, the theatrical re-enactment of the founding of Canada, and visits to PEI’s many provincial and national parks, all of which respondents considered both staged and authentic at the same time.

Keywords: authentic, local, Prince Edward Island, tourism

Procedia PDF Downloads 267
65 Agri-Food Transparency and Traceability: A Marketing Tool to Satisfy Consumer Awareness Needs

Authors: Angelo Corallo, Maria Elena Latino, Marta Menegoli

Abstract:

The link between man and food plays, in the social and economic system, a central role where cultural and multidisciplinary aspects intertwine: food is not only nutrition, but also communication, culture, politics, environment, science, ethics, fashion. This multi-dimensionality has many implications in the food economy. In recent years, the consumer became more conscious about his food choices, involving a consistent change in consumption models. This change concerns several aspects: awareness of food system issues, employment of socially and environmentally conscious decision-making, food choices based on different characteristics than nutritional ones i.e. origin of food, how it’s produced, and who’s producing it. In this frame the ‘consumption choices’ and the ‘interests of the citizen’ become one part of the others. The figure of the ‘Citizen Consumer’ is born, a responsible and ethically motivated individual to change his lifestyle, achieving the goal of sustainable consumption. Simultaneously the branding, that before was guarantee of the product quality, today is questioned. In order to meet these needs, Agri-Food companies are developing specific product lines that follow two main philosophies: ‘Back to basics’ and ‘Less is more’. However, the issue of ethical behavior does not seem to find an adequate on market offer. Most likely due to a lack of attention on the communication strategy used, very often based on market logic and rarely on ethical one. The label in its classic concept of ‘clean labeling’ can no longer be the only instrument through which to convey product information and its evolution towards a concept of ‘clear label’ is necessary to embrace ethical and transparent concepts in progress the process of democratization of the Food System. The implementation of a voluntary traceability path, relying on the technological models of the Internet of Things or Industry 4.0, would enable the Agri-Food Supply Chain to collect data that, if properly treated, could satisfy the information need of consumers. A change of approach is therefore proposed towards Agri-Food traceability that is no longer intended as a tool to be used to respond to the legislator, but rather as a promotional tool useful to tell the company in a transparent manner and then reach the slice of the market of food citizens. The use of mobile technology can also facilitate this information transfer. However, in order to guarantee maximum efficiency, an appropriate communication model based on the ethical communication principles should be used, which aims to overcome the pipeline communication model, to offer the listener a new way of telling the food product, based on real data collected through processes traceability. The Citizen Consumer is therefore placed at the center of the new model of communication in which he has the opportunity to choose what to know and how. The new label creates a virtual access point capable of telling the product according to different point of views, following the personal interests and offering the possibility to give several content modalities to support different situations and usability.

Keywords: agri food traceability, agri-food transparency, clear label, food system, internet of things

Procedia PDF Downloads 158
64 Strengthening Facility-Based Systems to Improve Access to In-Patient Care for Sick Newborns in Brong Ahafo Region, Ghana

Authors: Paulina Clara Appiah, Kofi Issah, Timothy Letsa, Kennedy Nartey, Amanua Chinbuah, Adoma Dwomo-Fokuo, Jacqeline G. Asibey

Abstract:

Background: The Every Newborn Action Plan provides evidence–based interventions to end preventable deaths in high burden countries. Brong Ahafo Region is one of ten regions in Ghana with less than half of its district hospitals having sick newborn units. Facility-based neonatal care is not prioritized and under-funded, and there is also inadequate knowledge and competence to manage the sick. The aim of this intervention was to make available in–patient care for sick newborns in all 19 district hospitals through the strengthening of facility-based systems. Methods: With the development and dissemination of the National Newborn Strategy and Action Plan 2014-2018, the country was able to attract PATH which provided the region with basic resuscitation equipment, supported hospital providers’ capacity building in Helping Babies Breathe, Essential Care of Every Baby, Infection Prevention and Management and held a symposia on managing the sick newborn. Newborn advocacy was promoted through newborn champions at the facility and community levels. Hospital management was then able to mobilize resources from communities, corporate organizations and from internally generated funds; created or expanded sick newborn care units and provided essential medicines and equipment. Kangaroo Mother Care was initiated in 6 hospitals. Pediatric specialist outreach services initiated comprised telephone consultations, teaching ward rounds and participating in perinatal death audits meetings. Newborn data capture and management was improved through the provision and training on the use of standard registers provided from the national level. Results: From February 2015 to November 2017, hospitals with sick newborn units increased from 7 to 19 (37%-100%). 180 pieces each of newborn ventilation bags and masks size 0, 1 and penguin suction bulbs were distributed to the hospitals, in addition to 20 newborn mannequin sets and 90 small clinical reminder posters. 802 providers (96.9%) were trained in resuscitation, of which 96% were successfully followed up in 6 weeks, 91% in 6 months and 80% in 12 months post-training. 53 clinicians (65%) were trained and mentored to manage sick newborns. 56 specialist teaching ward rounds were conducted. Data completeness improved from 92.6% - 99.9%. Availability of essential medicines improved from 11% to 100%. Number of hospital cots increased from 116 to 248 (214%). Cot occupancy rate increased from 57.4% to 92.5%. Hospitals with phototherapy equipment increased from 0 to 12 (63%). Hospitals with incubators increased from 1 to 12 (5%-63%). Newborn deaths among admissions reduced from 6.3% to 5.4%. Conclusion: Access to in-patient care increased significantly. Newborn advocacy successfully mobilized resources required for strengthening facility –based systems.

Keywords: facility-based systems, Ghana, in-patient care, newborn advocacy

Procedia PDF Downloads 249
63 A Vision Making Exercise for Twente Region; Development and Assesment

Authors: Gelareh Ghaderi

Abstract:

the overall objective of this study is to develop two alternative plans of spatial and infrastructural development for the Netwerkstad Twente (Twente region) until 2040 and to assess the impacts of those two alternative plans. This region is located on the eastern border of the Netherlands, and it comprises of five municipalities. Based on the strengths and opportunities of the five municipalities of the Netwerkstad Twente, and in order develop the region internationally, strengthen the job market and retain skilled and knowledgeable young population, two alternative visions have been developed; environmental oriented vision, and economical oriented vision. Environmental oriented vision is based mostly on preserving beautiful landscapes. Twente would be recognized as an educational center, driven by green technologies and environment-friendly economy. Market-oriented vision is based on attracting and developing different economic activities in the region based on visions of the five cities of Netwerkstad Twente, in order to improve the competitiveness of the region in national and international scale. On the basis of the two developed visions and strategies for achieving the visions, land use and infrastructural development are modeled and assessed. Based on the SWOT analysis, criteria were formulated and employed in modeling the two contrasting land use visions by the year 2040. Land use modeling consists of determination of future land use demand, assessment of suitability land (Suitability analysis), and allocation of land uses on suitable land. Suitability analysis aims to determine the available supply of land for future development as well as assessing their suitability for specific type of land uses on the basis of the formulated set of criteria. Suitability analysis was operated using CommunityViz, a Planning Support System application for spatially explicit land suitability and allocation. Netwerkstad Twente has highly developed transportation infrastructure, consists of highways network, national road network, regional road network, street network, local road network, railway network and bike-path network. Based on the assumptions of speed limitations on different types of roads provided, infrastructure accessibility level of predicted land use parcels by four different transport modes is investigated. For evaluation of the two development scenarios, the Multi-criteria Evaluation (MCE) method is used. The first step was to determine criteria used for evaluation of each vision. All factors were categorized as economical, ecological and social. Results of Multi-criteria Evaluation show that Environmental oriented cities scenario has higher overall score. Environment-oriented scenario has impressive scores in relation to economical and ecological factors. This is due to the fact that a large percentage of housing tends towards compact housing. Twente region has immense potential, and the success of this project will define the Eastern part of The Netherlands and create a real competitive local economy with innovations and attractive environment as its backbone.

Keywords: economical oriented vision, environmental oriented vision, infrastructure, land use, multi criteria assesment, vision

Procedia PDF Downloads 227
62 Framework Proposal on How to Use Game-Based Learning, Collaboration and Design Challenges to Teach Mechatronics

Authors: Michael Wendland

Abstract:

This paper presents a framework to teach a methodical design approach by the help of using a mixture of game-based learning, design challenges and competitions as forms of direct assessment. In today’s world, developing products is more complex than ever. Conflicting goals of product cost and quality with limited time as well as post-pandemic part shortages increase the difficulty. Common design approaches for mechatronic products mitigate some of these effects by helping the users with their methodical framework. Due to the inherent complexity of these products, the number of involved resources and the comprehensive design processes, students very rarely have enough time or motivation to experience a complete approach in one semester course. But, for students to be successful in the industrial world, it is crucial to know these methodical frameworks and to gain first-hand experience. Therefore, it is necessary to teach these design approaches in a real-world setting and keep the motivation high as well as learning to manage upcoming problems. This is achieved by using a game-based approach and a set of design challenges that are given to the students. In order to mimic industrial collaboration, they work in teams of up to six participants and are given the main development target to design a remote-controlled robot that can manipulate a specified object. By setting this clear goal without a given solution path, a constricted time-frame and limited maximal cost, the students are subjected to similar boundary conditions as in the real world. They must follow the methodical approach steps by specifying requirements, conceptualizing their ideas, drafting, designing, manufacturing and building a prototype using rapid prototyping. At the end of the course, the prototypes will be entered into a contest against the other teams. The complete design process is accompanied by theoretical input via lectures which is immediately transferred by the students to their own design problem in practical sessions. To increase motivation in these sessions, a playful learning approach has been chosen, i.e. designing the first concepts is supported by using lego construction kits. After each challenge, mandatory online quizzes help to deepen the acquired knowledge of the students and badges are awarded to those who complete a quiz, resulting in higher motivation and a level-up on a fictional leaderboard. The final contest is held in presence and involves all teams with their functional prototypes that now need to contest against each other. Prices for the best mechanical design, the most innovative approach and for the winner of the robotic contest are awarded. Each robot design gets evaluated with regards to the specified requirements and partial grades are derived from the results. This paper concludes with a critical review of the proposed framework, the game-based approach for the designed prototypes, the reality of the boundary conditions, the problems that occurred during the design and manufacturing process, the experiences and feedback of the students and the effectiveness of their collaboration as well as a discussion of the potential transfer to other educational areas.

Keywords: design challenges, game-based learning, playful learning, methodical framework, mechatronics, student assessment, constructive alignment

Procedia PDF Downloads 67
61 Variation of Warp and Binder Yarn Tension across the 3D Weaving Process and its Impact on Tow Tensile Strength

Authors: Reuben Newell, Edward Archer, Alistair McIlhagger, Calvin Ralph

Abstract:

Modern industry has developed a need for innovative 3D composite materials due to their attractive material properties. Composite materials are composed of a fibre reinforcement encased in a polymer matrix. The fibre reinforcement consists of warp, weft and binder yarns or tows woven together into a preform. The mechanical performance of composite material is largely controlled by the properties of the preform. As a result, the bulk of recent textile research has been focused on the design of high-strength preform architectures. Studies looking at optimisation of the weaving process have largely been neglected. It has been reported that yarns experience varying levels of damage during weaving, resulting in filament breakage and ultimately compromised composite mechanical performance. The weaving parameters involved in causing this yarn damage are not fully understood. Recent studies indicate that poor yarn tension control may be an influencing factor. As tension is increased, the yarn-to-yarn and yarn-to-weaving-equipment interactions are heightened, maximising damage. The correlation between yarn tension variation and weaving damage severity has never been adequately researched or quantified. A novel study is needed which accesses the influence of tension variation on the mechanical properties of woven yarns. This study has looked to quantify the variation of yarn tension throughout weaving and sought to link the impact of tension to weaving damage. Multiple yarns were randomly selected, and their tension was measured across the creel and shedding stages of weaving, using a hand-held tension meter. Sections of the same yarn were subsequently cut from the loom machine and tensile tested. A comparison study was made between the tensile strength of pristine and tensioned yarns to determine the induced weaving damage. Yarns from bobbins at the rear of the creel were under the least amount of tension (0.5-2.0N) compared to yarns positioned at the front of the creel (1.5-3.5N). This increase in tension has been linked to the sharp turn in the yarn path between bobbins at the front of the creel and creel I-board. Creel yarns under the lower tension suffered a 3% loss of tensile strength, compared to 7% for the greater tensioned yarns. During shedding, the tension on the yarns was higher than in the creel. The upper shed yarns were exposed to a decreased tension (3.0-4.5N) compared to the lower shed yarns (4.0-5.5N). Shed yarns under the lower tension suffered a 10% loss of tensile strength, compared to 14% for the greater tensioned yarns. Interestingly, the most severely damaged yarn was exposed to both the largest creel and shedding tensions. This study confirms for the first time that yarns under a greater level of tension suffer an increased amount of weaving damage. Significant variation of yarn tension has been identified across the creel and shedding stages of weaving. This leads to a variance of mechanical properties across the woven preform and ultimately the final composite part. The outcome from this study highlights the need for optimised yarn tension control during preform manufacture to minimize yarn-induced weaving damage.

Keywords: optimisation of preform manufacture, tensile testing of damaged tows, variation of yarn weaving tension, weaving damage

Procedia PDF Downloads 236
60 Sensor Network Structural Integration for Shape Reconstruction of Morphing Trailing Edge

Authors: M. Ciminello, I. Dimino, S. Ameduri, A. Concilio

Abstract:

Improving aircraft's efficiency is one of the key elements of Aeronautics. Modern aircraft possess many advanced functions, such as good transportation capability, high Mach number, high flight altitude, and increasing rate of climb. However, no aircraft has a possibility to reach all of this optimized performance in a single airframe configuration. The aircraft aerodynamic efficiency varies considerably depending on the specific mission and on environmental conditions within which the aircraft must operate. Structures that morph their shape in response to their surroundings may at first seem like the stuff of science fiction, but take a look at nature and lots of examples of plants and animals that adapt to their environment would arise. In order to ensure both the controllable and the static robustness of such complex structural systems, a monitoring network is aimed at verifying the effectiveness of the given control commands together with the elastic response. In order to achieve this kind of information, the use of FBG sensors network is, in this project, proposed. The sensor network is able to measure morphing structures shape which may show large, global displacements due to non-standard architectures and materials adopted. Chord -wise variations may allow setting and chasing the best layout as a function of the particular and transforming reference state, always targeting best aerodynamic performance. The reason why an optical sensor solution has been selected is that while keeping a few of the contraindication of the classical systems (like cabling, continuous deployment, and so on), fibre optic sensors may lead to a dramatic reduction of the wires mass and weight thanks to an extreme multiplexing capability. Furthermore, the use of the ‘light’ as ‘information carrier’, permits dealing with nimbler, non-shielded wires, and avoids any kind of interference with the on-board instrumentation. The FBG-based transducers, herein presented, aim at monitoring the actual shape of adaptive trailing edge. Compared to conventional systems, these transducers allow more fail-safe measurements, by taking advantage of a supporting structure, hosting FBG, whose properties may be tailored depending on the architectural requirements and structural constraints, acting as strain modulator. The direct strain may, in fact, be difficult because of the large deformations occurring in morphing elements. A modulation transducer is then necessary to keep the measured strain inside the allowed range. In this application, chord-wise transducer device is a cantilevered beam sliding trough the spars and copying the camber line of the ATE ribs. FBG sensors array position are dimensioned and integrated along the path. A theoretical model describing the system behavior is implemented. To validate the design, experiments are then carried out with the purpose of estimating the functions between rib rotation and measured strain.

Keywords: fiber optic sensor, morphing structures, strain sensor, shape reconstruction

Procedia PDF Downloads 329
59 Chiral Molecule Detection via Optical Rectification in Spin-Momentum Locking

Authors: Jessie Rapoza, Petr Moroshkin, Jimmy Xu

Abstract:

Chirality is omnipresent, in nature, in life, and in the field of physics. One intriguing example is the homochirality that has remained a great secret of life. Another is the pairs of mirror-image molecules – enantiomers. They are identical in atomic composition and therefore indistinguishable in the scalar physical properties. Yet, they can be either therapeutic or toxic, depending on their chirality. Recent studies suggest a potential link between abnormal levels of certain D-amino acids and some serious health impairments, including schizophrenia, amyotrophic lateral sclerosis, and potentially cancer. Although indistinguishable in their scalar properties, the chirality of a molecule reveals itself in interaction with the surrounding of a certain chirality, or more generally, a broken mirror-symmetry. In this work, we report on a system for chiral molecule detection, in which the mirror-symmetry is doubly broken, first by asymmetric structuring a nanopatterned plasmonic surface than by the incidence of circularly polarized light (CPL). In this system, the incident circularly-polarized light induces a surface plasmon polariton (SPP) wave, propagating along the asymmetric plasmonic surface. This SPP field itself is chiral, evanescently bound to a near-field zone on the surface (~10nm thick), but with an amplitude greatly intensified (by up to 104) over that of the incident light. It hence probes just the molecules on the surface instead of those in the volume. In coupling to molecules along its path on the surface, the chiral SPP wave favors one chirality over the other, allowing for chirality detection via the change in an optical rectification current measured at the edges of the sample. The asymmetrically structured surface converts the high-frequency electron plasmonic-oscillations in the SPP wave into a net DC drift current that can be measured at the edge of the sample via the mechanism of optical rectification. The measured results validate these design concepts and principles. The observed optical rectification current exhibits a clear differentiation between a pair of enantiomers. Experiments were performed by focusing a 1064nm CW laser light at the sample - a gold grating microchip submerged in an approximately 1.82M solution of either L-arabinose or D-arabinose and water. A measurement of the current output was then recorded under both rights and left circularly polarized lights. Measurements were recorded at various angles of incidence to optimize the coupling between the spin-momentums of the incident light and that of the SPP, that is, spin-momentum locking. In order to suppress the background, the values of the photocurrent for the right CPL are subtracted from those for the left CPL. Comparison between the two arabinose enantiomers reveals a preferential signal response of one enantiomer to left CPL and the other enantiomer to right CPL. In sum, this work reports on the first experimental evidence of the feasibility of chiral molecule detection via optical rectification in a metal meta-grating. This nanoscale interfaced electrical detection technology is advantageous over other detection methods due to its size, cost, ease of use, and integration ability with read-out electronic circuits for data processing and interpretation.

Keywords: Chirality, detection, molecule, spin

Procedia PDF Downloads 92
58 After Schubert’s Winterreise: Contemporary Aesthetic Journeys

Authors: Maria de Fátima Lambert

Abstract:

Following previous studies about Writing and Seeing, this paper focuses on the aesthetic assumptions within the concept of Winter Journey (Voyage d’Hiver/Winterreise) both in Georges Perec’s Saga and the Oulipo Group vis-à-vis with the creations by William Kentridge and Michael Borremans. The aesthetic and artistic connections are widespread. Nevertheless, we can identify common poetical principles shared by these different authors, not only according to the notion of ekphrasis, but also following the procedures of contemporary creation in literature and visual arts. The analysis of the ongoing process of the French writers as individuals and as group and the visual artists’ acting might contribute for another crossed definition of contemporary conception. The same title/theme was a challenge and a goal for them. Let’s wonder how deep the concept encouraged them and which symbolic upbringings were directing their poetical achievements. The idea of an inner journey became the main point, and got “over” and “across” a shared path worth to be followed. The authors were chosen due to the resilient contents of their visual and written images, and looking for the reasons that might had driven their conceptual basis to be. In Pérec’s “Winter Journey” as for the following fictions by Jacques Roubaud, Hervé le Tellier, Jacques Jouet and Hugo Vernier (that emerges from Perec’s fiction and becomes a real author) powerful aesthetic and enigmatic reflections grow connected with a poetic (and aesthetic) understanding of Walkscapes. They might be assumed as ironic fictions and poetical drifts. Outstanding from different logics, the overwhelming impact of Winterreise Lied by Schubert after Wilhelm Müller’s poems is a major reference in present authorship creations. Both Perec and Oulipo’s author’s texts are powerfully ekphrastic, although we should not forget they follow goals, frameworks and identities. When acting as a reader, they induce powerful imageries - cinematic or cinematographic - that flow in our minds. It was well-matched with William Kentridge animated video Winter Journey (2014) and the creations (sharing the same title) of Michael Borremans (2014) for the KlaraFestival, Bozar, Cité de la musique, in Belgium. Both were taken by the foremost Schubert’s Winterreise. Several metaphors fulfil new Winter Journeys (or Travels) that were achieved in contemporary art and literature, as it once succeeded in the 19th century. Maybe the contemporary authors and artists were compelled by the consciousness of nothingness, although outstanding different aesthetics and ontological sources. The unbearable knowledge of the road’s end, and also the urge of fulfilling the void might be a common element to all of them. As Schopenhauer once wrote, after all, Art is the only human subjective power that we can call upon in life. These newer aesthetic meanings, released from these winter journeys are surely open to wider approaches that might happen in other poetic makings to be.

Keywords: Aesthetic, voyage D’Hiver, George Perec & Oulipo, William Kentridge & Michael Borreman, Schubert's Winterreise

Procedia PDF Downloads 206