Search results for: crusher plants
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2546

Search results for: crusher plants

566 Steady and Spatio-Temporal Monitoring of Water Quality Feeding Area Southwest of Great Casablanca (Morocco)

Authors: Hicham Maklache, Rajae Delhi, Fatiha Benzha, Mohamed Tahiri

Abstract:

In Morocco, where semi-arid climate is dominant, the supply of industrial and drink water is provided primarily by surface water. Morocco has currently 118 multi-purpose dams. If the construction of these works was a necessity to ensure in all seasons, the water essential to our country, it is impartial to control and protect the quality of running water. -Most dam reservoir used are threatened by eutrophication due to increased terrigenous and anthropogenic pollutants, coming from an over-fertilization of water by phosphorus and nitrogen nutrients and accelerated by uncontrolled development of microalgae aging. It should also be noted that the daily practices of citizens with respect to the resource, an essential component involved in almost all human activities (agriculture, agro-industries, hydropower, ...), has contributed significantly to the deterioration of water quality despite its treatment in several plants. Therefore, the treated water, provides a legacy of bad tastes and odors unacceptable to the consumer. -The present work exhibits results of water quality watershed Oum Erbia used to supply drinking water to the whole terraced area connecting the city of Khenifra to the city of Azemmour. The area south west of Great Casablanca (metropolis of the kingdom with about 4 million inhabitants) supplied 50% of its water needs by sourcing Dam Sidi Said Maachou located, last anchor point of the watershed before the spill in the Atlantic Ocean. The results were performed in a spatio-temporal scale and helped to establish a history of monitoring water quality during the 2009-2011 cycles, the study also presents the development of quality according to the seasonal rhythmicity and rainfall. It gives also an overview on the concept of watershed stewardship.

Keywords: crude surface water quality, Oum Er Rbia hydraulic basin, spatio-temporal monitoring, Great Casablanca drink water quality, Morocco

Procedia PDF Downloads 441
565 Microstructure and Mechanical Properties of Low Alloy Steel with Double Austenitizing Tempering Heat Treatment

Authors: Jae-Ho Jang, Jung-Soo Kim, Byung-Jun Kim, Dae-Geun Nam, Uoo-Chang Jung, Yoon-Suk Choi

Abstract:

Low alloy steels are widely used for pressure vessels, spent fuel storage, and steam generators required to withstand the internal pressure and prevent unexpected failure in nuclear power plants, which these may suffer embrittlement by high levels of radiation and heat for a long period. Therefore, it is important to improve mechanical properties of low alloy steels for the integrity of structure materials at an early stage of fabrication. Recently, it showed that a double austenitizing and tempering (DTA) process resulted in a significant improvement of strength and toughness by refinement of prior austenite grains. In this study, it was investigated that the mechanism of improving mechanical properties according to the change of microstructure by the second fully austenitizing temperature of the DAT process for low alloy steel required the structural integrity. Compared to conventional single austenitizing and tempering (SAT) process, the tensile elongation properties have improved about 5%, DBTTs have obtained result in reduction of about -65℃, and grain size has decreased by about 50% in the DAT process conditions. Grain refinement has crack propagation interference effect due to an increase of the grain boundaries and amount of energy absorption at low temperatures. The higher first austenitizing temperature in the DAT process, the more increase the spheroidized carbides and strengthening the effect of fine precipitates in the ferrite grain. The area ratio of the dimple in the transition area has increased by proportion to the effect of spheroidized carbides. This may the primary mechanisms that can improve low-temperature toughness and elongation while maintaining a similar hardness and strength.

Keywords: double austenitizing, Ductile Brittle transition temperature, grain refinement, heat treatment, low alloy steel, low-temperature toughness

Procedia PDF Downloads 509
564 Numerical Response of Coaxial HPGe Detector for Skull and Knee Measurement

Authors: Pabitra Sahu, M. Manohari, S. Priyadharshini, R. Santhanam, S. Chandrasekaran, B. Venkatraman

Abstract:

Radiation workers of reprocessing plants have a potential for internal exposure due to actinides and fission products. Radionuclides like Americium, lead, Polonium and Europium are bone seekers and get accumulated in the skeletal part. As the major skeletal content is in the skull (13%) and knee (22%), measurements of old intake have to be carried out in the skull and knee. At the Indira Gandhi Centre for Atomic Research, a twin HPGe-based actinide monitor is used for the measurement of actinides present in bone. Efficiency estimation, which is one of the prerequisites for the quantification of radionuclides, requires anthropomorphic phantoms. Such phantoms are very limited. Hence, in this study, efficiency curves for a Twin HPGe-based actinide monitoring system are established theoretically using the FLUKA Monte Carlo method and ICRP adult male voxel phantom. In the case of skull measurement, the detector is placed over the forehead, and for knee measurement, one detector is placed over each knee. The efficiency values of radionuclides present in the knee and skull vary from 3.72E-04 to 4.19E-04 CPS/photon and 5.22E-04 to 7.07E-04 CPS/photon, respectively, for the energy range 17 to 3000keV. The efficiency curves for the measurement are established, and it is found that initially, the efficiency value increases up to 100 keV and then starts decreasing. It is found that the skull efficiency values are 4% to 63% higher than that of the knee, depending on the energy for all the energies except 17.74 keV. The reason is the closeness of the detector to the skull compared to the knee. But for 17.74 keV the efficiency of the knee is more than the skull due to the higher attenuation caused in the skull bones because of its greater thickness. The Minimum Detectable Activity (MDA) for 241Am present in the skull and knee is 9 Bq. 239Pu has a MDA of 950 Bq and 1270 Bq for knee and skull, respectively, for a counting time of 1800 sec. This paper discusses the simulation method and the results obtained in the study.

Keywords: FLUKA Monte Carlo Method, ICRP adult male voxel phantom, knee, Skull.

Procedia PDF Downloads 50
563 Encapsulated Western Red Cedar (Thuja Plicata) Essential Oil as a Prospective Biopesticide against Phytophthora Pathogens

Authors: Aleksandar M. Radojković, Jovana M. Ćirković, Sanja Z. Perać, Jelena N. Jovanović, Zorica M. Branković, Slobodan D. Milanović, Ivan Lj. Milenković, Jovan N. Dobrosavljević, Nemanja V. Simović, Vanja M. Tadić, Ana R. Žugić, Goran O. Branković

Abstract:

In many parts of the world, various Phytophthora species pose a serious threat to forests and crops. With the rapidly growing international trade in plants and the ongoing impacts of climate change, the harmful effects of plant pathogens of the genus Phytophthora are increasing, damaging the biodiversity and sustainability of forest ecosystems. This genus is one of the most destructive plant pathogens, causing the majority of fine root (66%) and collar rot diseases (90%) of woody plant species worldwide. Eco-friendly biopesticides, based on plant-derived products, such as essential oils (EOs), are one of the promising solutions to this problem. In this study, among three different EOs investigated (Chamaecyparis lawsoniana (A. Murr.) Parl., Thuja plicata Donn ex D.Don and Juniperus communis L.), western red cedar (Thuja plicata) essential oil almost completely inhibited the growth of three Phytophthora species (P. plurivora Jung and Burgess, P. quercina Jung, and P. ×cambivora (Petri) Buisman) during seven days of exposure for the EO concentrations of 0.1% and 0.5% (v/v). To prolong the inhibiting effect, Thuja plicata EO was encapsulated into a biopolymer matrix consisting of a chitosan-gelatin mixture to form a water-in-oil emulsion. This approach allowed the prolonged effect of the essential oil by its slow release from the biopolymer matrix and protection of the active components from atmospheric influences. Thus, it was demonstrated that encapsulated Thuja plicata EO consisting of sustainable bioproducts is efficient in controlling of Phytophthora species and can be considered a means of protection in natural and semi-natural ecosystems.

Keywords: emulsions, essential oils, phytophthora, thuja plicata

Procedia PDF Downloads 89
562 Bioconversion of Capsaicin Using the Optimized Culture Broth of Lipase Producing Bacterium of Stenotrophomonas maltophilia

Authors: Doostishoar Farzad, Forootanfar Hamid, Hasan-Bikdashti Morvarid, Faramarzi Mohammad Ali, Ameri Atefe

Abstract:

Introduction: Chili peppers and related plants in the family of capsaicum produce a mixture of capsaicins represent anticarcinogenic, antimutagenic, and chemopreventive properties. Vanillylamine, the main product of capsaicin hydrolysis is applied as a precursor for manufacturing of natural vanillin (a famous flavor). It is also used in the production of synthetic capsaicins harboring a wide variety of physiological and biological activities such as antibacterial and anti-inflammatory effects as well as enhancing of adrenal catecholamine secretion, analgesic, and antioxidative activities. The ability of some lipases, such as Novozym 677 BG and Novozym 435 and also some proteases e.g. trypsine and penicillin acylase, in capsaicin hydrolysis and green synthesis of vanillylamine has been investigated. In the present study the optimized culture broth of a newly isolated lipase-producing bacterial strain (Stenotrophomonas maltophilia) applied for the hydrolysis of capsaicin. Materials and methods: In order to compare hydrolytic activity of optimized and basal culture broth through capsaicin 2 mL of each culture broth (as sources of lipase) was introduced to capsaicin solution (500 mg/L) and then the reaction mixture (total volume of 3 mL) was incubated at 40 °C and 120 rpm. Samples were taken every 2 h and analyzed for vanillylamine formation using HPLC. Same reaction mixture containing boiled supernatant (to inactivate lipase) designed as blank and each experiment was done in triplicate. Results: 215 mg/L of vanillylamine was produced after the treatment of capsaicin using the optimized medium for 18 h, while only 61 mg/L of vanillylamine was detected in presence of the basal medium under the same conditions. No capsaicin conversion was observed in the blank sample, in which lipase activity was suppressed by boiling of the sample for 10 min. Conclusion: The application of optimized broth culture for the hydrolysis of capsaicin led to a 43% conversion of that pungent compound to vanillylamine.

Keywords: Capsaicin, green synthesis, lipase, stenotrophomonas maltophilia

Procedia PDF Downloads 479
561 Antimicrobial Activity of Endophytes on some Selected Clinical Isolates (Escherichia coli, Staphylococcus aureus, Salmonella Typhi, Bacillus subtilis, Klebsiella pneumoniae, Aspergillus fumigatus, Pseudomomonas aeruginosa and Penicillium chryysogenum)

Authors: Dawang D. N., Dasat G. S., Nden D.

Abstract:

Endophyte means “in the plant” are referred to all microorganisms that live in the internal tissues of stems, petioles, roots and leaves of plants causing no apparent symptoms of disease. Secondary metabolites from fungal endophytes have an enormous potential applications as antioxidant, antimicrobial, anticancer and antidiabeties. Thus, this study aimed to determine the antimicrobial activity of these metabolites against some clinical isolates. The fungi were subjected to fermentation medium and the metabolites were extracted using ethyl acetate. The fungal extracts showed both antibacterial and antifungal activities with maximum zone of inhibition diameter of 10.5mm against Aspergillus fumigatus. Staphylococcus aureus was inhibited by all the five crude extracts with inhibition zone diameter of 4mm. Endophytic fungal crude extract2 (EDF2) exhibited antimicrobial effect against all the test organisms used, EDF4 was active against all test organisms except on Penicillium chrysogenum and Klebsiella pneumoniae. Antibacterial standard of ciprofloxacin which is 15mm is comparable to the effect of endophytic extract of EDF1 and EDF2. Klebsiella pneumoniae was resistant to EDF4 and EDF5. EDF3 showed a wide range of antimicrobial activity against all the test organisms used. The highest inhibition zone diameter of 10.50mm recorded against Aspergillus fumigatus is comparable to antifungal standard of fluconazole (15.5mm). The result of this study suggests that endophytic fungi associated with the roots of Irish potato could be a promising source of novel bioactive compounds of pharmaceutical and industrial importance.

Keywords: endophyte, fungal extract, antimicrobial, potato

Procedia PDF Downloads 122
560 Effects of Irrigation Scheduling and Soil Management on Maize (Zea mays L.) Yield in Guinea Savannah Zone of Nigeria

Authors: I. Alhassan, A. M. Saddiq, A. G. Gashua, K. K. Gwio-Kura

Abstract:

The main objective of any irrigation program is the development of an efficient water management system to sustain crop growth and development and avoid physiological water stress in the growing plants. Field experiment to evaluate the effects of some soil moisture conservation practices on yield and water use efficiency (WUE) of maize was carried out in three locations (i.e. Mubi and Yola in the northern Guinea Savannah and Ganye in the southern Guinea Savannah of Adamawa State, Nigeria) during the dry seasons of 2013 and 2014. The experiment consisted of three different irrigation levels (7, 10 and 12 day irrigation intervals), two levels of mulch (mulch and un-mulched) and two tillage practices (no tillage and minimum tillage) arranged in a randomized complete block design with split-split plot arrangement and replicated three times. The Blaney-Criddle method was used for measuring crop evapotranspiration. The results indicated that seven-day irrigation intervals and mulched treatment were found to have significant effect (P>0.05) on grain yield and water use efficiency in all the locations. The main effect of tillage was non-significant (P<0.05) on grain yield and WUE. The interaction effects of irrigation and mulch were significant (P>0.05) on grain yield and WUE at Mubi and Yola. Generally, higher grain yield and WUE were recorded on mulched and seven-day irrigation intervals, whereas lower values were recorded on un-mulched with 12-day irrigation intervals. Tillage exerts little influence on the yield and WUE. Results from Ganye were found to be generally higher than those recorded in Mubi and Yola; it also showed that an irrigation interval of 10 days with mulching could be adopted for the Ganye area, while seven days interval is more appropriate for Mubi and Yola.

Keywords: irrigation, maize, mulching, tillage, savanna

Procedia PDF Downloads 213
559 A Structuring and Classification Method for Assigning Application Areas to Suitable Digital Factory Models

Authors: R. Hellmuth

Abstract:

The method of factory planning has changed a lot, especially when it is about planning the factory building itself. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity and Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Furthermore, digital building models are increasingly being used in factories to support facility management and manufacturing processes. The main research question of this paper is, therefore: What kind of digital factory model is suitable for the different areas of application during the operation of a factory? First, different types of digital factory models are investigated, and their properties and usabilities for use cases are analysed. Within the scope of investigation are point cloud models, building information models, photogrammetry models, and these enriched with sensor data are examined. It is investigated which digital models allow a simple integration of sensor data and where the differences are. Subsequently, possible application areas of digital factory models are determined by means of a survey and the respective digital factory models are assigned to the application areas. Finally, an application case from maintenance is selected and implemented with the help of the appropriate digital factory model. It is shown how a completely digitalized maintenance process can be supported by a digital factory model by providing information. Among other purposes, the digital factory model is used for indoor navigation, information provision, and display of sensor data. In summary, the paper shows a structuring of digital factory models that concentrates on the geometric representation of a factory building and its technical facilities. A practical application case is shown and implemented. Thus, the systematic selection of digital factory models with the corresponding application cases is evaluated.

Keywords: building information modeling, digital factory model, factory planning, maintenance

Procedia PDF Downloads 109
558 Olive-Mill Wastewater and Organo-Mineral Fertlizers Application for the Control of Parasitic Weed Phelipanche ramosa L. Pomel in Tomato

Authors: Grazia Disciglio, Francesco Lops, Annalisa Tarantino, Emanuele Tarantino

Abstract:

The parasitic weed specie Phelipanche ramosa (L) Pomel is one of the major constraints in tomato crop in Apulia region (southern Italy). The experimental was considered to investigate the effect of six organic compounds (Olive miller wastewater, Allil isothiocyanate®, Alfa plus K®, Radicon®, Rizosum Max®, Kendal Nem®) on the naturally infested field of tomato growing season in 2016. The randomized block design with 3 replicates was adopted. Tomato seedling were transplant on 19 May 2016. During the growing cycle of the tomato at 74, 81, 93 and 103 days after transplantation (DAT), the number of parasitic shoots (branched plants) that had emerged in each plot was determined. At harvesting on 13 September 2016 the major quanti-qualitative yield parameters were determined, including marketable yield, mean weight, dry matter, soluble solids, fruit colour, pH and titratable acidity. The treatments provided the results show that none of treatments provided complete control against P. ramosa. However, among the products tested Olive miller wastewater, Alfa plus K®, Rizosum Max® and Kendal Nem® products applied to the soil show the number of emerged shoots significantly lower than Radicon® and especially than the Allil isothiocyanate® treatment and the untreated control. Regarding the effect of different treatments on the tomato productive parameters, the marketable yield resulted significantly higher in the same mentioned treatments which gave the lower P. ramosa infestation. No significative differences for the other fruit characteristics were observed.

Keywords: processing tomato crop, Phelipanche ramosa, olive-mill wastewater, organic fertilizers

Procedia PDF Downloads 322
557 Determination of Vinpocetine in Tablets with the Vinpocetine-Selective Electrode and Possibilities of Application in Pharmaceutical Analysis

Authors: Faisal A. Salih

Abstract:

Vinpocetine (Vin) is an ethyl ester of apovincamic acid and is a semisynthetic derivative of vincamine, an alkaloid from plants of the genus Periwinkle (plant) vinca minor. It was found that this compound stimulates cerebral metabolism: it increases the uptake of glucose and oxygen, as well as the consumption of these substances by the brain tissue. Vinpocetine enhances the flow of blood in the brain and has a vasodilating, antihypertensive, and antiplatelet effect. Vinpocetine seems to improve the human ability to acquire new memories and restore memories that have been lost. This drug has been clinically used for the treatment of cerebrovascular disorders such as stroke and dementia memory disorders, as well as in ophthalmology and otorhinolaryngology. It has no side effects, and no toxicity has been reported when using vinpocetine for a long time. For the quantitative determination of Vin in dosage forms, the HPLC methods are generally used. A promising alternative is potentiometry with Vin- selective electrode, which does not require expensive equipment and materials. Another advantage of the potentiometric method is that the pills and solutions for injections can be used directly without separation from matrix components, which reduces both analysis time and cost. In this study, it was found that the choice of a good plasticizer an electrode with the following membrane composition: PVC (32.8 wt.%), ortho-nitrophenyl octyl ether (66.6 wt.%), tetrakis-4-chlorophenyl borate (0.6 wt.%) exhibits excellent analytical performance: lower detection limit (LDL) 1.2•10⁻⁷ M, linear response range (LRR) 1∙10⁻³–3.9∙10⁻⁶ M, the slope of the electrode function 56.2±0.2 mV/decade). Vin masses per average tablet weight determined by direct potentiometry (DP) and potentiometric titration (PT) methods for the two different sets of 10 tablets were (100.35±0.2–100.36±0.1) mg for two sets of blister packs. The mass fraction of Vin in individual tablets, determined using DP, was (9.87 ± 0.02–10.16 ±0.02) mg, while the RSD was (0.13–0.35%). The procedure has very good reproducibility, and excellent compliance with the declared amounts was observed.

Keywords: vinpocetine, potentiometry, ion selective electrode, pharmaceutical analysis

Procedia PDF Downloads 70
556 Flexible Feedstock Concept in Gasification Process for Carbon-Negative Energy Technology: A Case Study in Malaysia

Authors: Zahrul Faizi M. S., Ali A., Norhuda A. M.

Abstract:

Emission of greenhouse gases (GHG) from solid waste treatment and dependency on fossil fuel to produce electricity are the major concern in Malaysia as well as global. Innovation in downdraft gasification with combined heat and power (CHP) systems has the potential to minimize solid waste and reduce the emission of anthropogenic GHG from conventional fossil fuel power plants. However, the efficiency and capability of downdraft gasification to generate electricity from various alternative fuels, for instance, agriculture residues (i.e., woodchip, coconut shell) and municipal solid waste (MSW), are still controversial, on top of the toxicity level from the produced bottom ash. Thus this study evaluates the adaptability and reliability of the 20 kW downdraft gasification system to generate electricity (while considering environmental sustainability from the bottom ash) using flexible local feedstock at 20, 40, and 60% mixed ratio of MSW: agriculture residues. Feedstock properties such as feed particle size, moisture, and ash contents are also analyzed to identify optimal characteristics for the combination of feedstock (feedstock flexibility) to obtain maximum energy generation. Results show that the gasification system is capable to flexibly accommodate different feedstock compositions subjected to specific particle size (less than 2 inches) at a moisture content between 15 to 20%. These values exhibit enhance gasifier performance and provide a significant effect to the syngas composition utilizes by the internal combustion engine, which reflects energy production. The result obtained in this study is able to provide a new perspective on the transition of the conventional gasification system to a future reliable carbon-negative energy technology. Subsequently, promoting commercial scale-up of the downdraft gasification system.

Keywords: carbon-negative energy, feedstock flexibility, gasification, renewable energy

Procedia PDF Downloads 133
555 Biostimulant and Abiotic Plant Stress Interactions in Malting Barley: A Glasshouse Study

Authors: Conor Blunt, Mariluz del Pino-de Elias, Grace Cott, Saoirse Tracy, Rainer Melzer

Abstract:

The European Green Deal announced in 2021 details agricultural chemical pesticide use and synthetic fertilizer application to be reduced by 50% and 20% by 2030. Increasing and maintaining expected yields under these ambitious goals has strained the agricultural sector. This intergovernmental plan has identified plant biostimulants as one potential input to facilitate this new phase of sustainable agriculture; these products are defined as microorganisms or substances that can stimulate soil and plant functioning to enhance crop nutrient use efficiency, quality and tolerance to abiotic stresses. Spring barley is Ireland’s most widely sown tillage crop, and grain destined for malting commands the most significant market price. Heavy erratic rainfall is forecasted in Ireland’s climate future, and barley is particularly susceptible to waterlogging. Recent findings suggest that plant receptivity to biostimulants may depend on the level of stress inflicted on crops to elicit an assisted plant response. In this study, three biostimulants of different genesis (seaweed, protein hydrolysate and bacteria) are applied to ‘RGT Planet’ malting barley fertilized at three different rates (0 kg/ha, 40 kg/ha, 75 kg/ha) of calcium ammonium nitrogen (27% N) under non-stressed and waterlogged conditions. This 4x3x2 factorial trial design was planted in a completed randomized block with one plant per experimental unit. Leaf gas exchange data and key agronomic and grain quality parameters were analyzed via ANOVA. No penalty on productivity was evident on plants receiving 40 kg/ha of N and bio stimulant compared to 75 kg/ha of N treatments. The main effects of nitrogen application and waterlogging provided the most significant variation in the dataset.

Keywords: biostimulant, Barley, malting, NUE, waterlogging

Procedia PDF Downloads 73
554 Evaluation of the Shelf Life of Horsetail Stems Stored in Ecological Packaging

Authors: Rosana Goncalves Das Dores, Maira Fonseca, Fernando Finger, Vicente Casali

Abstract:

Equisetum hyemale L. (horsetail, Equisetaceae) is a medicinal plant used and commercialized in simple paper bags or non-ecological packaging in Brazil. The aim of this work was to evaluate the relation between the bioactive compounds of horsetail stems stored in ecological packages (multi-ply paper sacks) at room temperature. Stems in primary and secondary stage were harvested from an organic estate, on December 2016, selected, measured (length from the soil to the apex (cm), stem diameter at ground level (DGL mm) and breast height (DBH mm) and cut into 10 cm. For the post-harvest evaluations, stems were stored in multi-ply paper sacks and evaluated daily to the respiratory rate, fresh weight loss, pH, presence of fungi / mold, phenolic compounds and antioxidant activity. The analyses were done with four replicates, over time (regression) and compared at 1% significance (Tukey test). The measured heights were 103.7 cm and 143.5 cm, DGL was 2.5mm and 8.4 mm and DBH of 2.59 and 6.15 mm, respectively for primary and secondary stems stage. At both stages of development, in storage in multi-ply paper sacks, the greatest mass loss occurred at 48 h, decaying up to 120 hours, stabilizing at 192 hours. The peak respiratory rate increase occurred in 24 hours, coinciding with a change in pH (temperature and mean humidity was 23.5°C and 55%). No fungi or mold were detected, however, there was loss of color of the stems. The average yields of ethanolic extracts were equivalent (approximately 30%). Phenolic compounds and antioxidant activity were higher in secondary stems stage in up to 120 hours (AATt0 = 20%, AATt30 = 45%), decreasing at the end of the experiment (240 hours). The packaging used allows the commercialization of fresh stems of Equisetum for up to five days.

Keywords: paper sacks, phenolic content, antioxidant activity, medicinal plants, post-harvest, ecological packages, Equisetum

Procedia PDF Downloads 166
553 Semi-Automatic Segmentation of Mitochondria on Transmission Electron Microscopy Images Using Live-Wire and Surface Dragging Methods

Authors: Mahdieh Farzin Asanjan, Erkan Unal Mumcuoglu

Abstract:

Mitochondria are cytoplasmic organelles of the cell, which have a significant role in the variety of cellular metabolic functions. Mitochondria act as the power plants of the cell and are surrounded by two membranes. Significant morphological alterations are often due to changes in mitochondrial functions. A powerful technique in order to study the three-dimensional (3D) structure of mitochondria and its alterations in disease states is Electron microscope tomography. Detection of mitochondria in electron microscopy images due to the presence of various subcellular structures and imaging artifacts is a challenging problem. Another challenge is that each image typically contains more than one mitochondrion. Hand segmentation of mitochondria is tedious and time-consuming and also special knowledge about the mitochondria is needed. Fully automatic segmentation methods lead to over-segmentation and mitochondria are not segmented properly. Therefore, semi-automatic segmentation methods with minimum manual effort are required to edit the results of fully automatic segmentation methods. Here two editing tools were implemented by applying spline surface dragging and interactive live-wire segmentation tools. These editing tools were applied separately to the results of fully automatic segmentation. 3D extension of these tools was also studied and tested. Dice coefficients of 2D and 3D for surface dragging using splines were 0.93 and 0.92. This metric for 2D and 3D for live-wire method were 0.94 and 0.91 respectively. The root mean square symmetric surface distance values of 2D and 3D for surface dragging was measured as 0.69, 0.93. The same metrics for live-wire tool were 0.60 and 2.11. Comparing the results of these editing tools with the results of automatic segmentation method, it shows that these editing tools, led to better results and these results were more similar to ground truth image but the required time was higher than hand-segmentation time

Keywords: medical image segmentation, semi-automatic methods, transmission electron microscopy, surface dragging using splines, live-wire

Procedia PDF Downloads 168
552 Potentialities of Onopordum Tauricum (Willd.) as Milk Clotting Agent

Authors: Massimo Mozzon, Nadia Raffaelli

Abstract:

Proteases from herbs, woody plants, and trees are exploited for cheesemaking in several countries, especially in South Europe and West Africa. Particularly, “thistles” belonging to several genera within the Asteraceae family (Cynara, Silybum, Centaurea, Carlina, Cirsium, Onopordum) are traditionally used in Mediterranean countries for clotting raw ewe’s and goat’s milk. For the first time, the clotting performance of an aqueous extract from flowers of Onopordum tauricum Willd. (Taurian thistle, bull cottonthistle) were tested in milk of different origin (cow, goat, ewe). The vegetable material was collected in the Central Apennines range, between the Marche and Umbria regions. A response surface methodology (RSM) approach was used to study the effect of the curdling variables (temperature, pH, amount of enzymatic extract) on the technological performance of the thistle extract. A three-step procedure for the purification of the enzyme (ammonium sulphate precipitation, gel filtration and ion-exchange chromatography) was also carried out. The milk clotting activity (MCA) of O. tauricum crude extracts was strongly affected by temperature, pH and by the interaction between these two variables, according to a second-order response surface model, while the milk/coagulant ratio did not affect in a significant way the clotting properties. Experimental data showed that the addition of 10 mM CaCl2 reduced the clotting time of ewe’s, goat’s, and cow’s milk by about 3-fold, 8-fold, and 14-fold, respectively, at 35°C and pH 6.7-6.8. After purification, an enzymatic preparation very close to homogeneity was obtained, which showed a major band at about 30 kDa when analyzed by SDS-PAGE. The identity of the enzyme as an aspartic protease was confirmed by inhibition studies. Cheese-making trials were carried out to check the scale-up (1 to 5 L of milk; 37 °C; 10 mM CaCl2 fortification) and set the recipe: 35-45% of curd yields were recorded, according to curd cutting and pressing.

Keywords: milk clotting activity, Onopordum tauricum, plant proteases, vegetable rennet

Procedia PDF Downloads 157
551 Growth, Yield and Pest Infestation Response of Maize (Zea mays Linn.) to Biopesticide

Authors: Udomporn Pangnakorn, Settawut Prasatporn, Sombat Chuenchooklin

Abstract:

The effect of biopesticide on growth, yield and pest infestation of maize (Zea mays Linn.) (variety DK 6818) was evaluated during the drought season. The experimental plots were located at research station of Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand. The extracted substance from plants was evaluated in the plots in 4 treatments: 1) water as control; 2) bitter bush (Chromolaena odorata L.); 3) neem (Azadirachta indica A. Juss), 4) golden shower (Cassia fistula Linn.). The experiment was followed a Randomized Complete Block Design (RCBD) with 4 treatments and 4 replications per treatment. The results showed that golden shower gave the highest growth of maize in term of height (203.29 cm), followed by neem and bitter bush with average height of 202.66 cm and 191.66 cm respectively with significance different. But neem treatment given significantly higher average of yield component in term of length, width, and weight of pod corn with 18.89 cm 13.91 cm and 166.46 g respectively. Also, treatment of neem showed the highest harvested yield at 284.06 kg/ha followed by the golden shower and bitter bush with harvested yield at 245.86 kg/ha and 235.52 kg/ha respectively. Additionally, treatment of neem and golden shower were the highest effectiveness for reducing insects pest infestation of maize: corn leaf aphid Rhopalosiphum maidis Fitch, corn borer Ostrinia fumacalis Guenee and corn armyworm Mythimna separata Walker. The treatment of neem, golden shower, and bitter bush given reduction insect infestation on maize with leaves area were infested at 5,412 mm², 6,827 mm² and 8,910 mm² respectively with significance different when compared to control.

Keywords: maize, Zea mays Linn., biopesticide, bitter bush, Chromolaena odorata L.), neem, Azadirachta indica A. Juss, golden shower, Cassia fistula Linn.

Procedia PDF Downloads 320
550 The Effect of Season, Fire and Slope Position on Seriphium plumosum L. Forage Quality in South African Grassland Communities

Authors: Hosia T. Pule, Julius T. Tjelele, Michelle J. Tedder, Dawood Hattas

Abstract:

Acceptability of plant material to herbivores is influenced by, among other factors; nutrients, plant secondary metabolites and growth stage of the plants. However, the effect of these factors on Seriphium plumosum L. acceptability to livestock is still not clearly understood, despite its importance in managing its encroachment in grassland communities. The study used 2 x 2 x 2 factorial analysis of variance to investigate the effect of season (wet and dry), fire, slope position (top and bottom) and their interaction on Seriphium plumosum chemistry. We tested the hypothesis that S. plumosum chemistry varies temporally, spatially and pre- and post-fire treatment. Seriphium plumosum edible material was collected during the wet and dry season from burned and unburned areas on both top and bottom slopes before being analysed for protein (CP) content, neutral detergent fibre (NDF), total phenolics (TP) and condensed tannins (CT). Season had a significant effect on S. plumosum protein content, neutral detergent fibre, total phenolics and condensed tannins. Fire had a significant effect on CP. Interaction of season x fire had a significant effect on NDF and CP (p < 0.05). Seriphium plumosum in the wet season (6.69% ± 0.20 (SE)) had significantly higher CP than in the dry season (5.22% ± 0.13). NDF was significantly higher (58.01% ± 0.41) in the dry season than in the wet season (53.17% ± 0.34), while TP were significantly higher in the dry season (14.44 mg/gDw ± 1.03) than in the wet season (11.08 mg/gDw ± 1.07). CT in the wet season were significantly higher (1.56 mg/gDw ± 0.13) than in the dry season (1 mg/gDw ± 0.03). CP was significantly higher in burned (6. 31 % ± 0.22) than in unburned S. plumosum edible material (5.60 % ± 0.15). Seriphium plumosum CP was significantly higher in wet season x burned (7.34 % ± 0.31) than wet season x unburned (6.08 % ± 0.20) material and dry season x burned (5.34 % ± 0.18) and unburned (5.09 % ± 0.18) material were similar. NDF was similar in dry season x burned (58.31% ± 0.54) and dry season x unburned (57.69 % ± 0.62) material and significantly higher than similar wet season x burned (52.43% ± 0.45) and wet season x post-unburned (53.88% ± 0.47) material. This study suggests integrating fire, browsers, and supplements as encroacher S. plumosum control agents, especially in the wet season, following fire due to high S. plumosum CP content.

Keywords: acceptability, chemistry, edible material, encroachment, phenolics, tannins

Procedia PDF Downloads 156
549 Micropropagation and in vitro Conservation via Slow Growth Techniques of Prunus webbii (Spach) Vierh: An Endangered Plant Species in Albania

Authors: Valbona Sota, Efigjeni Kongjika

Abstract:

Wild almond is a woody species, which is difficult to propagate either generatively by seed or by vegetative methods (grafting or cuttings) and also considered as Endangered (EN) in Albania based on IUCN criteria. As a wild relative of cultivated fruit trees, this species represents a source of genetic variability and can be very important in breeding programs and cultivation. For this reason, it would be of interest to use an effective method of in vitro mid-term conservation, which involves strategies to slow plant growth through physicochemical alterations of in vitro growth conditions. Multiplication of wild almond was carried out using zygotic embryos, as primary explants, with the purpose to develop a successful propagation protocol. Results showed that zygotic embryos can proliferate through direct or indirect organogenesis. During subculture, stage was obtained a great number of new plantlets identical to mother plants derived from the zygotic embryos. All in vitro plantlets obtained from subcultures underwent in vitro conservation by minimal growth in low temperature (4ºC) and darkness. The efficiency of this technique was evaluated for 3, 6, and 10 months of conservation period. Maintenance in these conditions reduced micro cuttings growth. Survival and regeneration rates for each period were evaluated and resulted that the maximal time of conservation without subculture on 4ºC was 10 months, but survival and regeneration rates were significantly reduced, specifically 15.6% and 7.6%. An optimal period of conservation in these conditions can be considered the 5-6 months storage, which can lead to 60-50% of survival and regeneration rates. This protocol may be beneficial for mass propagation, mid-term conservation, and for genetic manipulation of wild almond.

Keywords: micropropagation, minimal growth, storage, wild almond

Procedia PDF Downloads 126
548 The LNG Paradox: The Role of Gas in the Energy Transition

Authors: Ira Joseph

Abstract:

The LNG paradox addresses the issue of how the most expensive form of gas supply, which is LNG, will grow in an end user market where demand is most competitive, which is power generation. In this case, LNG demand growth is under siege from two entirely different directions. At one end is price; it will be extremely difficult for gas to replace coal in Asia due to the low price of coal and the age of the generation plants. Asia's coal fleet, on average, is less than two decades old and will need significant financial incentives to retire before its state lifespan. While gas would cut emissions in half relative to coal, it would also more than double the price of the fuel source for power generation, which puts it in a precarious position. In most countries in Asia other than China, this cost increase, particularly from imports, is simply not realistic when it is also necessary to focus on economic growth and social welfare. On the other end, renewables are growing at an exponential rate for three reasons. One is that prices are dropping. Two is that policy incentives are driving deployment, and three is that China is forcing renewables infrastructure into the market to take a political seat at the global energy table with Saudi Arabia, the US, and Russia. Plus, more renewables will lower import growth of oil and gas in China, if not end it altogether. Renewables are the predator at the gate of gas demand in power generation and in every year that passes, renewables cut into demand growth projections for gas; in particular, the type of gas that is most expensive, which is LNG. Gas does have a role in the future, particularly within a domestic market. Once it crosses borders in the form of LNG or even pipeline gas, it quickly becomes a premium fuel and must be marketed and used this way. Our research shows that gas will be able to compete with batteries as an intermittency and storage tool and does offer a method to harmonize with renewables as part of the energy transition. As a baseload fuel, however, the role of gas, particularly, will be limited by cost once it needs to cross a border. Gas converted into blue or green hydrogen or ammonia is also an option for storage depending on the location. While this role is much reduced from the primary baseload role that gas once aspired to land, it still offers a credible option for decades to come.

Keywords: natural gas, LNG, demand, price, intermittency, storage, renewables

Procedia PDF Downloads 60
547 Reduction of Plants Biodiversity in Hyrcanian Forest by Coal Mining Activities

Authors: Mahsa Tavakoli, Seyed Mohammad Hojjati, Yahya Kooch

Abstract:

Considering that coal mining is one of the important industrial activities, it may cause damages to environment. According to the author’s best knowledge, the effect of traditional coal mining activities on plant biodiversity has not been investigated in the Hyrcanian forests. Therefore, in this study, the effect of coal mining activities on vegetation and tree diversity was investigated in Hyrcanian forest, North Iran. After filed visiting and determining the mine, 16 plots (20×20 m2) were established by systematic-randomly (60×60 m2) in an area of 4 ha (200×200 m2-mine entrance placed at center). An area adjacent to the mine was not affected by the mining activity, and it is considered as the control area. In each plot, the data about trees such as number and type of species were recorded. The biodiversity of vegetation cover was considered 5 square sub-plots (1 m2) in each plot. PAST software and Ecological Methodology were used to calculate Biodiversity indices. The value of Shannon Wiener and Simpson diversity indices for tree cover in control area (1.04±0.34 and 0.62±0.20) was significantly higher than mining area (0.78±0.27 and 0.45±0.14). The value of evenness indices for tree cover in the mining area was significantly lower than that of the control area. The value of Shannon Wiener and Simpson diversity indices for vegetation cover in the control area (1.37±0.06 and 0.69±0.02) was significantly higher than the mining area (1.02±0.13 and 0.50±0.07). The value of evenness index in the control area was significantly higher than the mining area. Plant communities are a good indicator of the changes in the site. Study about changes in vegetation biodiversity and plant dynamics in the degraded land can provide necessary information for forest management and reforestation of these areas.

Keywords: vegetation biodiversity, species composition, traditional coal mining, Caspian forest

Procedia PDF Downloads 182
546 Power Generation and Treatment potential of Microbial Fuel Cell (MFC) from Landfill Leachate

Authors: Beenish Saba, Ann D. Christy

Abstract:

Modern day municipal solid waste landfills are operated and controlled to protect the environment from contaminants during the biological stabilization and degradation of the solid waste. They are equipped with liners, caps, gas and leachate collection systems. Landfill gas is passively or actively collected and can be used as bio fuel after necessary purification, but leachate treatment is the more difficult challenge. Leachate, if not recirculated in a bioreactor landfill system, is typically transported to a local wastewater treatment plant for treatment. These plants are designed for sewage treatment, and often charge additional fees for higher strength wastewaters such as leachate if they accept them at all. Different biological, chemical, physical and integrated techniques can be used to treat the leachate. Treating that leachate with simultaneous power production using microbial fuel cells (MFC) technology has been a recent innovation, reported its application in its earliest starting phase. High chemical oxygen demand (COD), ionic strength and salt concentration are some of the characteristics which make leachate an excellent substrate for power production in MFCs. Different materials of electrodes, microbial communities, carbon co-substrates and temperature conditions are some factors that can be optimized to achieve simultaneous power production and treatment. The advantage of the MFC is its dual functionality but lower power production and high costs are the hurdles in its commercialization and more widespread application. The studies so far suggest that landfill leachate MFCs can produce 1.8 mW/m2 with 79% COD removal, while amendment with food leachate or domestic wastewater can increase performance up to 18W/m3 with 90% COD removal. The columbic efficiency is reported to vary between 2-60%. However efforts towards biofilm optimization, efficient electron transport system studies and use of genetic tools can increase the efficiency of the MFC and can determine its future potential in treating landfill leachate.

Keywords: microbial fuel cell, landfill leachate, power generation, MFC

Procedia PDF Downloads 314
545 Impact of Water Storage Structures on Groundwater Recharge in Jeloula Basin, Central Tunisia

Authors: I. Farid, K. Zouari

Abstract:

An attempt has been made to examine the effect of water storage structures on groundwater recharge in a semi-arid agroclimatic setting in Jeloula Basin (Central Tunisia). In this area, surface water in rivers is seasonal, and therefore groundwater is the perennial source of water supply for domestic and agricultural purposes. Three pumped storage water power plants (PSWPP) have been built to increase the overall water availability in the basin and support agricultural livelihoods of rural smallholders. The scale and geographical dispersion of these multiple lakes restrict the understanding of these coupled human-water systems and the identification of adequate strategies to support riparian farmers. In the present review, hydrochemistry and isotopic tools were combined to get an insight into the processes controlling mineralization and recharge conditions in the investigated aquifer system. This study showed a slight increase in the groundwater level, especially after the artificial recharge operations and a decline when the water volume moves down during drought periods. Chemical data indicate that the main sources of salinity in the waters are related to water-rock interactions. Data inferred from stable isotopes in groundwater samples indicated recharge with modern rainfall. The investigated surface water samples collected from the PSWPP are affected by a significant evaporation and reveal large seasonal variations, which could be controlled by the water volume changes in the open surface reservoirs and the meteorological conditions during evaporation, condensation, and precipitation. The geochemical information is comparable to the isotopic results and illustrates that the chemical and isotopic signatures of reservoir waters differ clearly from those of groundwaters. These data confirm that the contribution of the artificial recharge operations from the PSWPP is very limited.

Keywords: Jeloula basin, recharge, hydrochemistry, isotopes

Procedia PDF Downloads 150
544 Development of Innovative Nuclear Fuel Pellets Using Additive Manufacturing

Authors: Paul Lemarignier, Olivier Fiquet, Vincent Pateloup

Abstract:

In line with the strong desire of nuclear energy players to have ever more effective products in terms of safety, research programs on E-ATF (Enhanced-Accident Tolerant Fuels) that are more resilient, particularly to the loss of coolant, have been launched in all countries with nuclear power plants. Among the multitude of solutions being developed internationally, carcinoembryonic antigen (CEA) and its partners are investigating a promising solution, which is the realization of CERMET (CERamic-METal) type fuel pellets made of a matrix of fissile material, uranium dioxide UO2, which has a low thermal conductivity, and a metallic phase with a high thermal conductivity to improve heat evacuation. Work has focused on the development by powder metallurgy of micro-structured CERMETs, characterized by networks of metallic phase embedded in the UO₂ matrix. Other types of macro-structured CERMETs, based on concepts proposed by thermal simulation studies, have been developed with a metallic phase with a specific geometry to optimize heat evacuation. This solution could not be developed using traditional processes, so additive manufacturing, which revolutionizes traditional design principles, is used to produce these innovative prototype concepts. At CEA Cadarache, work is first carried out on a non-radioactive surrogate material, alumina, in order to acquire skills and to develop the equipment, in particular the robocasting machine, an additive manufacturing technique selected for its simplicity and the possibility of optimizing the paste formulations. A manufacturing chain was set up, with the pastes production, the 3D printing of pellets, and the associated thermal post-treatment. The work leading to the first elaborations of macro-structured alumina/molybdenum CERMETs will be presented. This work was carried out with the support of Framatome and EdF.

Keywords: additive manufacturing, alumina, CERMET, molybdenum, nuclear safety

Procedia PDF Downloads 77
543 Using Hyperspectral Sensor and Machine Learning to Predict Water Potentials of Wild Blueberries during Drought Treatment

Authors: Yongjiang Zhang, Kallol Barai, Umesh R. Hodeghatta, Trang Tran, Vikas Dhiman

Abstract:

Detecting water stress on crops early and accurately is crucial to minimize its impact. This study aims to measure water stress in wild blueberry crops non-destructively by analyzing proximal hyperspectral data. The data collection took place in the summer growing season of 2022. A drought experiment was conducted on wild blueberries in the randomized block design in the greenhouse, incorporating various genotypes and irrigation treatments. Hyperspectral data ( spectral range: 400-1000 nm) using a handheld spectroradiometer and leaf water potential data using a pressure chamber were collected from wild blueberry plants. Machine learning techniques, including multiple regression analysis and random forest models, were employed to predict leaf water potential (MPa). We explored the optimal wavelength bands for simple differences (RY1-R Y2), simple ratios (RY1/RY2), and normalized differences (|RY1-R Y2|/ (RY1-R Y2)). NDWI ((R857 - R1241)/(R857 + R1241)), SD (R2188 – R2245), and SR (R1752 / R1756) emerged as top predictors for predicting leaf water potential, significantly contributing to the highest model performance. The base learner models achieved an R-squared value of approximately 0.81, indicating their capacity to explain 81% of the variance. Research is underway to develop a neural vegetation index (NVI) that automates the process of index development by searching for specific wavelengths in the space ratio of linear functions of reflectance. The NVI framework could work across species and predict different physiological parameters.

Keywords: hyperspectral reflectance, water potential, spectral indices, machine learning, wild blueberries, optimal bands

Procedia PDF Downloads 66
542 Use of an Insecticidal-Iridovirus Kinase towards the Development of Aphid-Resistant Plants

Authors: Saranya Ganapathy, Megha N. Parajulee, Michael San Francisco, Hong Zhang

Abstract:

Insect pests are a serious threat to agricultural productivity. Use of chemical pesticides, the predominant control method thus far, has resulted in environmental damage, pest resurgence, and negative effects on non-target species. Genetically modified (GM) crops offer a promising alternative, and Bacillus thuringiensis endotoxin genes have played a major role in this respect. However, to overcome insect tolerance issues and to broaden the target range, it is critical to identify alternative-insecticidal toxins working through novel mechanisms. Our research group has identified a kinase from Chilo iridescent virus (CIV; Family Iridoviridae) that has insecticidal activity and designated it as ISTK (Iridovirus Serine/Threonine Kinase). A 35 kDa truncated form of ISTK, designated iridoptin, was obtained during expression and purification of ISTK in the yeast system. This yeast-expressed CIV toxin induced 50% mortality in cotton aphids and 100% mortality in green peach aphids (GPA). Optimized viral genes (o-ISTK and o-IRI) were stably transformed into the model plant, Arabidopsis. PCR analysis of genomic DNA confirmed the presence of the gene insert (oISTK/oIRI) in selected transgenic lines. The further screening was performed to identify the PCR positive lines that showed expression of respective toxins at the polypeptide level using Western blot analysis. The stable lines expressing either of these two toxins induced moderate to very high mortality in GPAs and significantly affected GPA development and fecundity. The aphicidal potential of these transgenic Arabidopsis lines will be presented.

Keywords: Chilo iridescent virus, insecticidal toxin, iridoviruses, plant-incorporated protectants, serine/threonine kinase

Procedia PDF Downloads 286
541 Hot Cracking Susceptibility Evaluation of the Advanced UNS S31035 Austenitic Stainless Steel by Varestraint Weldability Testing

Authors: Mikael M. Johansson, Peter Stenvall, Leif Karlsson, Joel Andersson

Abstract:

Sandvik Sanicro 25, UNS S31035, is an advanced high temperature austenitic stainless steel that potentially can be used in super-heaters and reheaters in the next generation of advanced ultra-super critical power plants. The material possesses both high creep strength and good corrosion resistance at temperatures up to 700°C. Its high temperature properties are positioned between other commercially available high temperature austenitic stainless steels and nickel-based alloys. It is, however, well known that an austenitic solidification mode combined with a fully austenitic microstructure exacerbate susceptibility towards hot cracking. The problem increases even more for thick walled material in multipass welding and could compromise the integrity of the welded component. Varestraint weldability testing is commonly used to evaluate susceptibility towards hot cracking of materials. In this paper, Varestraint test results are evaluated for base material of both UNS S31035 steel and are compared to those of the well-known and well-characterized UNS S31008 grade. The more creep resistant alloy, UNS S31035, is metallurgically more complicated than the UNS S31008 grade and has additions of several alloying elements to improve its high temperature properties. It benefits from both solid solution hardening as well as precipitation hardening. This investigation therefore attempts, based on the Varestraint weldability test, to understand if there are any differences in cracking mechanisms between these two grades due to the additional alloying elements used in UNS S31035. Results from Varestraint testing and crack type investigations will be presented and discussed in some detail. It is shown that hot cracking susceptibility of the UNS S31035 steel is only slightly higher than that of UNS S31008 despite the more complicated metallurgy. Weldability of the two alloys is therefore judged to be comparable making the newer alloy well suited also for critical applications.

Keywords: austenitic stainless steel, hot cracking susceptibility, UNS S31035, UNS S31008, varestraint weldability testing

Procedia PDF Downloads 129
540 A Constructed Wetland as a Reliable Method for Grey Wastewater Treatment in Rwanda

Authors: Hussein Bizimana, Osman Sönmez

Abstract:

Constructed wetlands are current the most widely recognized waste water treatment option, especially in developing countries where they have the potential for improving water quality and creating valuable wildlife habitat in ecosystem with treatment requirement relatively simple for operation and maintenance cost. Lack of grey waste water treatment facilities in Kigali İnstitute of Science and Technology in Rwanda, causes pollution in the surrounding localities of Rugunga sector, where already a problem of poor sanitation is found. In order to treat grey water produced at Kigali İnstitute of Science and Technology, with high BOD concentration, high nutrients concentration and high alkalinity; a Horizontal Sub-surface Flow pilot-scale constructed wetland was designed and can operate in Kigali İnstitute of Science and Technology. The study was carried out in a sedimentation tank of 5.5 m x 1.42 m x 1.2 m deep and a Horizontal Sub-surface constructed wetland of 4.5 m x 2.5 m x 1.42 m deep. The grey waste water flow rate of 2.5 m3/d flew through vegetated wetland and sandy pilot plant. The filter media consisted of 0.6 to 2 mm of coarse sand, 0.00003472 m/s of hydraulic conductivity and cattails (Typha latifolia spp) were used as plants species. The effluent flow rate of the plant is designed to be 1.5 m3/ day and the retention time will be 24 hrs. 72% to 79% of BOD, COD, and TSS removals are estimated to be achieved, while the nutrients (Nitrogen and Phosphate) removal is estimated to be in the range of 34% to 53%. Every effluent characteristic will meet exactly the Rwanda Utility Regulatory Agency guidelines primarily because the retention time allowed is enough to make the reduction of contaminants within effluent raw waste water. Treated water reuse system was developed where water will be used in the campus irrigation system again.

Keywords: constructed wetlands, hydraulic conductivity, grey waste water, cattails

Procedia PDF Downloads 606
539 A Levelized Cost Analysis for Solar Energy Powered Sea Water Desalination in the Arabian Gulf Region

Authors: Abdullah Kaya, Muammer Koc

Abstract:

A levelized cost analysis of solar energy powered seawater desalination in The Emirate of Abu Dhabi is conducted to show that clean and renewable desalination is economically viable. The Emirate heavily relies on seawater desalination for its freshwater needs due to limited freshwater resources available. This trend is expected to increase further due to growing population and economic activity, rapid decline in limited freshwater reserves, and aggravating effects of climate change. Seawater desalination in Abu Dhabi is currently done through thermal desalination technologies such as multi-stage flash (MSF) and multi-effect distillation (MED) which are coupled with thermal power plants known as co-generation. Our analysis indicates that these thermal desalination methods are inefficient regarding energy consumption and harmful to the environment due to CO₂ emissions and other dangerous byproducts. Therefore, utilization of clean and renewable desalination options has become a must for The Emirate for the transition to a sustainable future. The rapid decline in the cost of solar PV system for energy production and RO technology for desalination makes the combination of these two an ideal option for a future of sustainable desalination in the Emirate of Abu Dhabi. A Levelized cost analysis for water produced by solar PV + RO system indicates that Abu Dhabi is well positioned to utilize this technological combination for cheap and clean desalination for the coming years. It has been shown that cap-ex cost of solar PV powered RO system has potential to go as low as to 101 million US $ (1111 $/m³) at best case considering the recent technological developments. The levelized cost of water (LCW) values fluctuate between 0.34 $/m³ for the baseline case and 0.27 $/m³ for the best case. Even the highly conservative case yields LCW cheaper than 100% from all thermal desalination methods currently employed in the Emirate. Exponential cost decreases in both solar PV and RO sectors along with increasing economic scale globally signal the fact that a cheap and clean desalination can be achieved by the combination of these technologies.

Keywords: solar PV, RO desalination, sustainable desalination, levelized cost of analysis, Emirate of Abu Dhabi

Procedia PDF Downloads 162
538 Effects of pH, Load Capacity and Contact Time in the Sulphate Sorption onto a Functionalized Mesoporous Structure

Authors: Jaime Pizarro, Ximena Castillo

Abstract:

The intensive use of water in agriculture, industry, human consumption and increasing pollution are factors that reduce the availability of water for future generations; the challenge is to advance in sustainable and low-cost solutions to reuse water and to facilitate the availability of the resource in quality and quantity. The use of new low-cost materials with sorbent capacity for pollutants is a solution that contributes to the improvement and expansion of water treatment and reuse systems. Fly ash, a residue from the combustion of coal in power plants that is produced in large quantities in newly industrialized countries, contains a high amount of silicon oxides and aluminum oxides, whose properties can be used for the synthesis of mesoporous materials. Properly functionalized, this material allows obtaining matrixes with high sorption capacity. The mesoporous materials have a large surface area, thermal and mechanical stability, uniform porous structure, and high sorption and functionalization capacities. The goal of this study was to develop hexagonal mesoporous siliceous material (HMS) for the adsorption of sulphate from industrial and mining waters. The silica was extracted from fly ash after calcination at 850 ° C, followed by the addition of water. The mesoporous structure has a surface area of 282 m2 g-1 and a size of 5.7 nm and was functionalized with ethylene diamine through of a self-assembly method. The material was characterized by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The capacity of sulphate sorption was evaluated according to pH, maximum load capacity and contact time. The sulphate maximum adsorption capacity was 146.1 mg g-1, which is three times higher than commercial sorbents. The kinetic data were fitted according to a pseudo-second order model with a high coefficient of linear regression at different initial concentrations. The adsorption isotherm that best fitted the experimental data was the Freundlich model.

Keywords: fly ash, mesoporous siliceous, sorption, sulphate

Procedia PDF Downloads 154
537 A Critical Review on Temperature Affecting the Morpho-Physiological, Hormonal and Genetic Control of Branching in Chrysanthemum

Authors: S. Ahmad, C. Yuan, Q. Zhang

Abstract:

The assorted architectural plasticity of a plant is majorly specified by stooling, a phenomenon tackled by a combination of developmental, environmental and hormonal accelerators of lateral buds. Chrysanthemums (Chrysanthemum morifolium) are one of the most economically important ornamental plants worldwide on the account of having plentiful architectural patterns, diverse shapes and attractive colors. Side branching is the major determinant guaranteeing the consistent demand of cut chrysanthemum in flower industry. Presence of immense number of axillary branches devalues the economic importance of this imperative plant and is a major challenge for mum growers to hold a stake in the cut flower market. Restricting branches to a minimum level, or no branches at all, is the dire need of the day in order to introducing novelty in cut chrysanthemums. Temperature is a potent factor which affects largely the escalation, development of chrysanthemum, and also the genetic expression of various vegetative traits like branching. It affects differently the developmental characteristics and phenotypic expressions of inherent qualities, thereby playing a significant role in differentiating the developmental responses in different cultivars of chrysanthemum. A detailed study pertaining to the affect of temperature on branching in chrysanthemum is a clear lacking throughout the literature on mums. Therefore, searching with temperature as an effective means of reducing side branching to a desired level could be an influencing extension of struggles about how to nullify stooling. This requires plenty of research in order to reveal the extended penetration of temperature in manipulating the genetic control of various important traits like branching, which is a burning issue now a days in producing cut flowers in chrysanthemum. The present review will highlight the impact of temperature on branching control mechanism in chrysanthemum at morpho-physiological, hormonal and molecular levels.

Keywords: branching, chrysanthemum, genetic control, hormonal, morpho-physiological, temperature

Procedia PDF Downloads 282