Search results for: accuracy assessment.
7173 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques
Authors: Gizem Eser Erdek
Abstract:
This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet
Procedia PDF Downloads 757172 Reflective and Collaborative Professional Development Program in Secondary Education to Improve Student’s Oral Language
Authors: Marta Gràcia, Ana Luisa Adam-Alcocer, Jesús M. Alvarado, Verónica Quezada, Tere Zarza, Priscila Garza
Abstract:
In secondary education, integrating linguistic content and reflection on it is a crucial challenge that should be included in course plans to enhance students' oral communication competence. In secondary education classrooms, a continuum can be identified in relation to teaching methodologies: 1) the traditional teacher-dominated transmission approach, which is described as that in which teachers transmit content to students unidirectionally; 2) dialogical, bidirectional teaching approach that encourages students to adopt a critical vision of the information provided by the teacher or that is generated through students’ discussion. In this context, the EVALOE-DSS (Assessment Scale of Oral Language Teaching in the School Context-Decision Support System) digital instrument has emerged to help teachers in transforming their classes into spaces for communication, dialogue, reflection, evaluation of the learning process, teaching linguistic contents, and to develop curricular competencies. The tool includes various resources, such as a tutorial with the objectives and an initial screen for teachers to describe the class to be evaluated. One of the main resources of the digital instrument consists of 30 items-actions with three qualitative response options (green, orange, and red face emoji) grouped in five dimensions. In the context of the participation of secondary education teachers in a professional development program using EVALOE-DSS, a digital tool resource aimed to generate more participatory, interactive, dialogic classes, the objectives of the study were: 1) understanding the changes in classrooms’ dynamics and in the teachers’ strategies during their participation in the professional developmental program; 2) analyzing the impact of these changes in students’ oral language development according to their teachers; 3) Deeping on the impact of these changes in the students’ assessment of the classes and the self-assessment of oral competence; 4) knowing teachers’ assessment and reflections about their participation in the professional developmental program. Participants were ten teachers of different subjects and 250 students of secondary education (16-18 years) schools in Spain. The principal instrument used was the digital tool EVALOE-DSS. For 6 months, teachers used the digital tool to reflect on their classes, assess them (their actions and their students’ actions), make decisions, and introduce changes in their classes to be more participatory, interactive, and reflective about linguistic contents. Other collecting data instruments and techniques used during the study were: 1) a questionnaire to assess students’ oral language competence before and at the end of the study, 2) a questionnaire for students’ assessment of the characteristics of classes, 3) teachers’ meetings during the professional developmental program to reflect collaboratively on their experience, 4) questionnaire to assess teacher’s experience during their participation in the professional developmental program, 5) focus group meetings between the teachers and two researchers at the end of the study. The results showed relevant changes in teaching strategies, in the dynamics of the classes, which were more interactive, participative, dialogic and self-managed by the students. Both teachers and students agree about the progressive classes’ transformation into spaces for communication, discussion, and reflection on the language, its development, and its use as an essential instrument to develop curricular competencies.Keywords: digital tool, individual and collaborative reflection, oral language competence, professional development program, secondary education
Procedia PDF Downloads 357171 Nutritional Quality Assessment and Safety Evaluation of Food Crops
Authors: Olawole Emmanuel Aina, Liziwe Lizbeth Mugivhisa, Joshua Oluwole Olowoyo, Chikwela Lawrence Obi
Abstract:
In sustained and consistent efforts to improve food security, numerous and different methods are proposed and used in the production of food crops, and farm produce to meet the demands of consumers. However, unregulated and indiscriminate methods of production present another problem that may expose consumers of these food crops to potential health risks. Therefore, it is imperative that a thorough assessment of farm produce is carried out due to the growing trend of health-conscious consumers preference for minimally processed or raw farm produce. This study evaluated the safety and nutritional quality of food crops. The objectives were to compare the nutritional quality of organic and inorganic farm produce in one hand and, on the other, evaluate the safety of farm produce with respect to trace metal and pathogenic contamination. We conducted a broad systematic search of peer-reviewed published literatures from databases and search engines such as science direct, web-of-science, Google scholar, and Scopus. This study concluded that there is no conclusive evidence to support the notion of nutritional superiority of organic food crops over their inorganic counterparts and there are documented reports of pathogenic and metal contaminations of food crops.Keywords: food crops, fruits and vegetables, pathogens, nutrition, trace metals
Procedia PDF Downloads 797170 Exploring Social Impact of Emerging Technologies from Futuristic Data
Authors: Heeyeul Kwon, Yongtae Park
Abstract:
Despite the highly touted benefits, emerging technologies have unleashed pervasive concerns regarding unintended and unforeseen social impacts. Thus, those wishing to create safe and socially acceptable products need to identify such side effects and mitigate them prior to the market proliferation. Various methodologies in the field of technology assessment (TA), namely Delphi, impact assessment, and scenario planning, have been widely incorporated in such a circumstance. However, literatures face a major limitation in terms of sole reliance on participatory workshop activities. They unfortunately missed out the availability of a massive untapped data source of futuristic information flooding through the Internet. This research thus seeks to gain insights into utilization of futuristic data, future-oriented documents from the Internet, as a supplementary method to generate social impact scenarios whilst capturing perspectives of experts from a wide variety of disciplines. To this end, network analysis is conducted based on the social keywords extracted from the futuristic documents by text mining, which is then used as a guide to produce a comprehensive set of detailed scenarios. Our proposed approach facilitates harmonized depictions of possible hazardous consequences of emerging technologies and thereby makes decision makers more aware of, and responsive to, broad qualitative uncertainties.Keywords: emerging technologies, futuristic data, scenario, text mining
Procedia PDF Downloads 4917169 Advantages of Computer Navigation in Knee Arthroplasty
Authors: Mohammad Ali Al Qatawneh, Bespalchuk Pavel Ivanovich
Abstract:
Computer navigation has been introduced in total knee arthroplasty to improve the accuracy of the procedure. Computer navigation improves the accuracy of bone resection in the coronal and sagittal planes. It was also noted that it normalizes the rotational alignment of the femoral component and fully assesses and balances the deformation of soft tissues in the coronal plane. The work is devoted to the advantages of using computer navigation technology in total knee arthroplasty in 62 patients (11 men and 51 women) suffering from gonarthrosis, aged 51 to 83 years, operated using a computer navigation system, followed up to 3 years from the moment of surgery. During the examination, the deformity variant was determined, and radiometric parameters of the knee joints were measured using the Knee Society Score (KSS), Functional Knee Society Score (FKSS), and Western Ontario and McMaster University Osteoarthritis Index (WOMAC) scales. Also, functional stress tests were performed to assess the stability of the knee joint in the frontal plane and functional indicators of the range of motion. After surgery, improvement was observed in all scales; firstly, the WOMAC values decreased by 5.90 times, and the median value to 11 points (p < 0.001), secondly KSS increased by 3.91 times and reached 86 points (p < 0.001), and the third one is that FKSS data increased by 2.08 times and reached 94 points (p < 0.001). After TKA, the axis deviation of the lower limbs of more than 3 degrees was observed in 4 patients at 6.5% and frontal instability of the knee joint just in 2 cases at 3.2%., The lower incidence of sagittal instability of the knee joint after the operation was 9.6%. The range of motion increased by 1.25 times; the volume of movement averaged 125 degrees (p < 0.001). Computer navigation increases the accuracy of the spatial orientation of the endoprosthesis components in all planes, reduces the variability of the axis of the lower limbs within ± 3 °, allows you to achieve the best results of surgical interventions, and can be used to solve most basic tasks, allowing you to achieve excellent and good outcomes of operations in 100% of cases according to the WOMAC scale. With diaphyseal deformities of the femur and/or tibia, as well as with obstruction of their medullary canal, the use of computer navigation is the method of choice. The use of computer navigation prevents the occurrence of flexion contracture and hyperextension of the knee joint during the distal sawing of the femur. Using the navigation system achieves high-precision implantation for the endoprosthesis; in addition, it achieves an adequate balance of the ligaments, which contributes to the stability of the joint, reduces pain, and allows for the achievement of a good functional result of the treatment.Keywords: knee joint, arthroplasty, computer navigation, advantages
Procedia PDF Downloads 897168 Computer-Aided Diagnosis System Based on Multiple Quantitative Magnetic Resonance Imaging Features in the Classification of Brain Tumor
Authors: Chih Jou Hsiao, Chung Ming Lo, Li Chun Hsieh
Abstract:
Brain tumor is not the cancer having high incidence rate, but its high mortality rate and poor prognosis still make it as a big concern. On clinical examination, the grading of brain tumors depends on pathological features. However, there are some weak points of histopathological analysis which can cause misgrading. For example, the interpretations can be various without a well-known definition. Furthermore, the heterogeneity of malignant tumors is a challenge to extract meaningful tissues under surgical biopsy. With the development of magnetic resonance imaging (MRI), tumor grading can be accomplished by a noninvasive procedure. To improve the diagnostic accuracy further, this study proposed a computer-aided diagnosis (CAD) system based on MRI features to provide suggestions of tumor grading. Gliomas are the most common type of malignant brain tumors (about 70%). This study collected 34 glioblastomas (GBMs) and 73 lower-grade gliomas (LGGs) from The Cancer Imaging Archive. After defining the region-of-interests in MRI images, multiple quantitative morphological features such as region perimeter, region area, compactness, the mean and standard deviation of the normalized radial length, and moment features were extracted from the tumors for classification. As results, two of five morphological features and three of four image moment features achieved p values of <0.001, and the remaining moment feature had p value <0.05. Performance of the CAD system using the combination of all features achieved the accuracy of 83.18% in classifying the gliomas into LGG and GBM. The sensitivity is 70.59% and the specificity is 89.04%. The proposed system can become a second viewer on clinical examinations for radiologists.Keywords: brain tumor, computer-aided diagnosis, gliomas, magnetic resonance imaging
Procedia PDF Downloads 2587167 Long-Term Subcentimeter-Accuracy Landslide Monitoring Using a Cost-Effective Global Navigation Satellite System Rover Network: Case Study
Authors: Vincent Schlageter, Maroua Mestiri, Florian Denzinger, Hugo Raetzo, Michel Demierre
Abstract:
Precise landslide monitoring with differential global navigation satellite system (GNSS) is well known, but technical or economic reasons limit its application by geotechnical companies. This study demonstrates the reliability and the usefulness of Geomon (Infrasurvey Sàrl, Switzerland), a stand-alone and cost-effective rover network. The system permits deploying up to 15 rovers, plus one reference station for differential GNSS. A dedicated radio communication links all the modules to a base station, where an embedded computer automatically provides all the relative positions (L1 phase, open-source RTKLib software) and populates an Internet server. Each measure also contains information from an internal inclinometer, battery level, and position quality indices. Contrary to standard GNSS survey systems, which suffer from a limited number of beacons that must be placed in areas with good GSM signal, Geomon offers greater flexibility and permits a real overview of the whole landslide with good spatial resolution. Each module is powered with solar panels, ensuring autonomous long-term recordings. In this study, we have tested the system on several sites in the Swiss mountains, setting up to 7 rovers per site, for an 18 month-long survey. The aim was to assess the robustness and the accuracy of the system in different environmental conditions. In one case, we ran forced blind tests (vertical movements of a given amplitude) and compared various session parameters (duration from 10 to 90 minutes). Then the other cases were a survey of real landslides sites using fixed optimized parameters. Sub centimetric-accuracy with few outliers was obtained using the best parameters (session duration of 60 minutes, baseline 1 km or less), with the noise level on the horizontal component half that of the vertical one. The performance (percent of aborting solutions, outliers) was reduced with sessions shorter than 30 minutes. The environment also had a strong influence on the percent of aborting solutions (ambiguity search problem), due to multiple reflections or satellites obstructed by trees and mountains. The length of the baseline (distance reference-rover, single baseline processing) reduced the accuracy above 1 km but had no significant effect below this limit. In critical weather conditions, the system’s robustness was limited: snow, avalanche, and frost-covered some rovers, including the antenna and vertically oriented solar panels, leading to data interruption; and strong wind damaged a reference station. The possibility of changing the sessions’ parameters remotely was very useful. In conclusion, the rover network tested provided the foreseen sub-centimetric-accuracy while providing a dense spatial resolution landslide survey. The ease of implementation and the fully automatic long-term survey were timesaving. Performance strongly depends on surrounding conditions, but short pre-measures should allow moving a rover to a better final placement. The system offers a promising hazard mitigation technique. Improvements could include data post-processing for alerts and automatic modification of the duration and numbers of sessions based on battery level and rover displacement velocity.Keywords: GNSS, GSM, landslide, long-term, network, solar, spatial resolution, sub-centimeter.
Procedia PDF Downloads 1107166 Low-Cost Parking Lot Mapping and Localization for Home Zone Parking Pilot
Authors: Hongbo Zhang, Xinlu Tang, Jiangwei Li, Chi Yan
Abstract:
Home zone parking pilot (HPP) is a fast-growing segment in low-speed autonomous driving applications. It requires the car automatically cruise around a parking lot and park itself in a range of up to 100 meters inside a recurrent home/office parking lot, which requires precise parking lot mapping and localization solution. Although Lidar is ideal for SLAM, the car OEMs favor a low-cost fish-eye camera based visual SLAM approach. Recent approaches have employed segmentation models to extract semantic features and improve mapping accuracy, but these AI models are memory unfriendly and computationally expensive, making deploying on embedded ADAS systems difficult. To address this issue, we proposed a new method that utilizes object detection models to extract robust and accurate parking lot features. The proposed method could reduce computational costs while maintaining high accuracy. Once combined with vehicles’ wheel-pulse information, the system could construct maps and locate the vehicle in real-time. This article will discuss in detail (1) the fish-eye based Around View Monitoring (AVM) with transparent chassis images as the inputs, (2) an Object Detection (OD) based feature point extraction algorithm to generate point cloud, (3) a low computational parking lot mapping algorithm and (4) the real-time localization algorithm. At last, we will demonstrate the experiment results with an embedded ADAS system installed on a real car in the underground parking lot.Keywords: ADAS, home zone parking pilot, object detection, visual SLAM
Procedia PDF Downloads 667165 Application and Utility of the Rale Score for Assessment of Clinical Severity in Covid-19 Patients
Authors: Naridchaya Aberdour, Joanna Kao, Anne Miller, Timothy Shore, Richard Maher, Zhixin Liu
Abstract:
Background: COVID-19 has and continues to be a strain on healthcare globally, with the number of patients requiring hospitalization exceeding the level of medical support available in many countries. As chest x-rays are the primary respiratory radiological investigation, the Radiological Assessment of Lung Edema (RALE) score was used to quantify the extent of pulmonary infection on baseline imaging. Assessment of RALE score's reproducibility and associations with clinical outcome parameters were then evaluated to determine implications for patient management and prognosis. Methods: A retrospective study was performed with the inclusion of patients testing positive for COVID-19 on nasopharyngeal swab within a single Local Health District in Sydney, Australia and baseline x-ray imaging acquired between January to June 2020. Two independent Radiologists viewed the studies and calculated the RALE scores. Clinical outcome parameters were collected and statistical analysis was performed to assess RALE score reproducibility and possible associations with clinical outcomes. Results: A total of 78 patients met inclusion criteria with the age range of 4 to 91 years old. RALE score concordance between the two independent Radiologists was excellent (interclass correlation coefficient = 0.93, 95% CI = 0.88-0.95, p<0.005). Binomial logistics regression identified a positive correlation with hospital admission (1.87 OR, 95% CI= 1.3-2.6, p<0.005), oxygen requirement (1.48 OR, 95% CI= 1.2-1.8, p<0.005) and invasive ventilation (1.2 OR, 95% CI= 1.0-1.3, p<0.005) for each 1-point increase in RALE score. For each one year increased in age, there was a negative correlation with recovery (0.05 OR, 95% CI= 0.92-1.0, p<0.01). RALE scores above three were positively associated with hospitalization (Youden Index 0.61, sensitivity 0.73, specificity 0.89) and above six were positively associated with ICU admission (Youden Index 0.67, sensitivity 0.91, specificity 0.78). Conclusion: The RALE score can be used as a surrogate to quantify the extent of COVID-19 infection and has an excellent inter-observer agreement. The RALE score could be used to prognosticate and identify patients at high risk of deterioration. Threshold values may also be applied to predict the likelihood of hospital and ICU admission.Keywords: chest radiography, coronavirus, COVID-19, RALE score
Procedia PDF Downloads 1777164 Forecasting Residential Water Consumption in Hamilton, New Zealand
Authors: Farnaz Farhangi
Abstract:
Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model
Procedia PDF Downloads 3367163 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data
Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao
Abstract:
Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive
Procedia PDF Downloads 1727162 Application of Federated Learning in the Health Care Sector for Malware Detection and Mitigation Using Software-Defined Networking Approach
Authors: A. Dinelka Panagoda, Bathiya Bandara, Chamod Wijetunga, Chathura Malinda, Lakmal Rupasinghe, Chethana Liyanapathirana
Abstract:
This research takes us forward with the concepts of Federated Learning and Software-Defined Networking (SDN) to introduce an efficient malware detection technique and provide a mitigation mechanism to give birth to a resilient and automated healthcare sector network system by also adding the feature of extended privacy preservation. Due to the daily transformation of new malware attacks on hospital Integrated Clinical Environment (ICEs), the healthcare industry is at an undefinable peak of never knowing its continuity direction. The state of blindness by the array of indispensable opportunities that new medical device inventions and their connected coordination offer daily, a factor that should be focused driven is not yet entirely understood by most healthcare operators and patients. This solution has the involvement of four clients in the form of hospital networks to build up the federated learning experimentation architectural structure with different geographical participation to reach the most reasonable accuracy rate with privacy preservation. While the logistic regression with cross-entropy conveys the detection, SDN comes in handy in the second half of the research to stack up the initial development phases of the system with malware mitigation based on policy implementation. The overall evaluation sums up with a system that proves the accuracy with the added privacy. It is no longer needed to continue with traditional centralized systems that offer almost everything but not privacy.Keywords: software-defined network, federated learning, privacy, integrated clinical environment, decentralized learning, malware detection, malware mitigation
Procedia PDF Downloads 1867161 NENU2PHAR: PHA-Based Materials from Micro-Algae for High-Volume Consumer Products
Authors: Enrique Moliner, Alba Lafarga, Isaac Herraiz, Evelina Castellana, Mihaela Mirea
Abstract:
NENU2PHAR (GA 887474) is an EU-funded project aimed at the development of polyhydroxyalkanoates (PHAs) from micro-algae. These biobased and biodegradable polymers are being tested and validated in different high-volume market applications including food packaging, cosmetic packaging, 3D printing filaments, agro-textiles and medical devices, counting on the support of key players like Danone, BEL Group, Sofradim or IFG. At the moment the project has achieved to produce PHAs from micro-algae with a cumulated yield around 17%, i.e. 1 kg PHAs produced from 5.8 kg micro-algae biomass, which in turn capture 11 kg CO₂ for growing up. These algae-based plastics can therefore offer the same environmental benefits than current bio-based plastics (reduction of greenhouse gas emissions and fossil resource depletion), using a 3rd generation biomass feedstock that avoids the competition with food and the environmental impacts of agricultural practices. The project is also dealing with other sustainability aspects like the ecodesign and life cycle assessment of the plastic products targeted, considering not only the use of the biobased plastics but also many other ecodesign strategies. This paper will present the main progresses and results achieved to date in the project.Keywords: NENU2PHAR, Polyhydroxyalkanoates, micro-algae, biopolymer, ecodesign, life cycle assessment
Procedia PDF Downloads 887160 Nursing Care Experience for a Patient with Type2 Diabetes Mellitus and Hyperglycemic Hyperosmolar State
Authors: Yen-Hsia Lin, Ya-Fang Cheng, Hui-Zhu Chen, Chi-Hui Tiao
Abstract:
This is a case study of a 70-year-old man suffering from Type 2 diabetes mellitus and hyperglycemia hyperosmolarity state. He was admitted into the intensive care unit from the 20th to 26th of October, 2015. After receiving relevant information through open-ended conversations, observation, and physical assessment, as well as the psychological, social and spiritual holistic nursing assessment, several clinical health problems such as unstable blood sugar, impaired skin integrity and lack of self-care management knowledge were identified by the author. During the period of care, the patient was encouraged to share and express his feelings, an active listening and initiating approach from the nursing team had led to the understanding of why the patient refused to use insulin. This knowledge enabled the nursing team to manage patient care by educating the patient with self-care management skills, such as foot wound care and insulin injection skills to slow the deterioration of complications. Also, the implementation of appropriate diet and exercise routine to improve patients’ style. By enhancing self-care ability in diabetic patients, they are able to return home with the skill to improve better quality life style.Keywords: hyperglycemia hyperosmolar state, type2 diabetes Mellitu, diabetes Mellitu foot care, intensive care
Procedia PDF Downloads 1457159 Methodology and Credibility of Unmanned Aerial Vehicle-Based Cadastral Mapping
Authors: Ajibola Isola, Shattri Mansor, Ojogbane Sani, Olugbemi Tope
Abstract:
The cadastral map is the rationale behind city management planning and development. For years, cadastral maps have been produced by ground and photogrammetry platforms. Recent evolution in photogrammetry and remote sensing sensors ignites the use of Unmanned Aerial Vehicle systems (UAVs) for cadastral mapping. Despite the time-saving and multi-dimensional cost-effectiveness of the UAV platform, issues related to cadastral map accuracy are a hindrance to the wide applicability of UAVs' cadastral mapping. This study aims to present an approach leading to the generation and assessing the credibility of UAV cadastral mapping. Different sets of Red, Green, and Blue (RGB) photos were obtained from the Tarot 680-hexacopter UAV platform flown over the Universiti Putra Malaysia campus sports complex at an altitude range of 70 m, 100 m, and 250. Before flying the UAV, twenty-eight ground control points were evenly established in the study area with a real-time kinematic differential global positioning system. The second phase of the study utilizes an image-matching algorithm for photos alignment wherein camera calibration parameters and ten of the established ground control points were used for estimating the inner, relative, and absolute orientations of the photos. The resulting orthoimages are exported to ArcGIS software for digitization. Visual, tabular, and graphical assessments of the resulting cadastral maps showed a different level of accuracy. The results of the study show a gradual approach for generating UAV cadastral mapping and that the cadastral map acquired at 70 m altitude produced better results.Keywords: aerial mapping, orthomosaic, cadastral map, flying altitude, image processing
Procedia PDF Downloads 797158 The Turkish Version of the Carer’s Assessment of Satisfaction Index (CASI-TR): Its Cultural Adaptation, Validation, and Reliability
Authors: Cemile Kütmeç Yilmaz, Güler Duru Asiret, Gulcan Bagcivan
Abstract:
The aim of this study was to evaluate the reliability and validity of the Turkish version of the Carer’s Assessment of Satisfaction Index (CASI-TR). The study was conducted between the dates of June 2016 and September 2017 at the Training and Research Hospital of Aksaray University with the caregiving family members of the inpatients with chronic diseases. For this study, the sample size was calculated as at least 10 individuals for each item (item number (30)X10=300). The study sample included 300 caregiving family members, who provided primer care for at least three months for a patient (who had at least one chronic disease and received inpatient treatment in general internal medicine and palliative care units). Data were collected by using a demographic questionnaire and CASI-TR. Descriptive statistics, and psychometric tests were used for the data analysis. Of those caregivers, 76.7% were female, 86.3% were 65 years old and below, 43.7% were primary school graduates, 87% were married, 86% were not working, 66.3% were housewives, and 60.3% defined their income status as having an income covering one’s expenses. Care recipients often had problems in terms of walking, sleep, balance, feeding and urinary incontinence. The Cronbach Alpha value calculated for the CASI-TR (30 items) was 0,949. Internal consistency coefficients calculated for subscales were: 0.922 for the subscale of ‘caregiver satisfaction related to care recipient’, 0.875 for the subscale of ‘caregiver satisfaction related to themselves’, and 0.723 for the subscale of ‘dynamics of interpersonal relations’. Factor analysis revealed that three factors accounted for 57.67% of the total variance, with an eigenvalue of >1. assessed in terms of significance, we saw that the items came together in a significant manner. The factor load of the items were between 0.311 and 0.874. These results show that the CASI-TR is a valid and reliable scale. The adoption of the translated CASI in Turkey is found reliable and valid to assessing the satisfaction of caregivers. CASI-TR can be used easily in clinics or house visits by nurses and other health professionals for assessing caregiver satisfaction from caregiving.Keywords: carer’s assessment of satisfaction index, caregiver, validity, reliability
Procedia PDF Downloads 2037157 Using GIS for Assessment and Modelling of Oil Spill Risk at Vulnerable Coastal Resources: Of Misratah Coast, Libya
Authors: Abduladim Maitieg
Abstract:
The oil manufacture is one of the main productive activities in Libya and has a massive infrastructure, including offshore drilling and exploration and wide oil export platform sites that located in coastal area. There is a threat to marine and coastal area of oil spills is greatest in those sites with a high spills comes from urban and industry, parallel to that, monitoring oil spills and risk emergency strategy is weakness, An approach for estimating a coastal resources vulnerability to oil spills is presented based on abundance, environmental and Scio-economic importance, distance to oil spill resources and oil risk likelihood. As many as 10 coastal resources were selected for oil spill assessment at the coast. This study aims to evaluate, determine and establish vulnerable coastal resource maps and estimating the rate of oil spill comes for different oil spill resources in Misratah marine environment. In the study area there are two type of oil spill resources, major oil resources come from offshore oil industries which are 96 km from the Coast and Loading/Uploading oil platform. However, the miner oil resources come from urban sewage pipes and fish ports. In order to analyse the collected database, the Geographic information system software has been used to identify oil spill location, to map oil tracks in front of study area, and developing seasonal vulnerable costal resources maps. This work shows that there is a differential distribution of the degree of vulnerability to oil spills along the coastline, with values ranging from high vulnerability and low vulnerability, and highlights the link between oil spill movement and coastal resources vulnerability. The results of assessment found most of costal freshwater spring sites are highly vulnerable to oil spill due to their location on the intertidal zone and their close to proximity to oil spills recourses such as Zreag coast. Furthermore, the Saltmarsh coastline is highly vulnerable to oil spill risk due to characterisation as it contains a nesting area of sea turtles and feeding places for migratory birds and the . Oil will reach the coast in winter season according to oil spill movement. Coastal tourist beaches in the north coast are considered as highly vulnerable to oil spill due to location and closeness to oil spill resources.Keywords: coastal recourses vulnerability, oil spill trajectory, gnome software, Misratah coast- Libya, GIS
Procedia PDF Downloads 3117156 Application of Applied Behavior Analysis Treatment to Children with Down Syndrome
Authors: Olha Yarova
Abstract:
This study is a collaborative project between the American University of Central Asia and parent association of children with Down syndrome ‘Sunterra’ that took place in Bishkek, Kyrgyzstan. The purpose of the study was to explore whether principles and techniques of applied behavior analysis (ABA) could be used to teach children with Down syndrome socially significant behaviors. ABA is considered to be one of the most effective treatment for children with autism, but little research is done on the particularity of using ABA to children with Down syndrome. The data for the study was received during clinical observations; work with children with Down syndrome and interviews with their mothers. The results show that many ABA principles make the work with children with Down syndrome more effective. Although such children very rarely demonstrate aggressive behavior, they show a lot of escape-driven and attention seeking behaviors that are reinforced by their parents and educators. Thus functional assessment can be done to assess the function of problem behavior and to determine appropriate treatment. Prompting and prompting fading should be used to develop receptive and expressive language skills, and enhance motor development. Even though many children with Down syndrome work for praise, it is still relevant to use tangible reinforcement and to know how to remove them. Based on the results of the study, the training for parents of children with Down syndrome will be developed in Kyrgyzstan, country, where children with Down syndrome are not accepted to regular kindergartens and where doctors in maternity hospitals tell parents that their child will never talk, walk and recognize themKeywords: down syndrome, applied behavior analysis, functional assessment, problem behavior, reinforcement
Procedia PDF Downloads 2737155 Satellite Based Assessment of Urban Heat Island Effects on Major Cities of Pakistan
Authors: Saad Bin Ismail, Muhammad Ateeq Qureshi, Rao Muhammad Zahid Khalil
Abstract:
In the last few decades, urbanization worldwide has been sprawled manifold, which is denunciated in the growth of urban infrastructure and transportation. Urban Heat Island (UHI) can induce deterioration of the living environment, disabilities, and rises in energy usages. In this study, the prevalence/presence of Surface Urban Heat Island (SUHI) effect in major cities of Pakistan, including Islamabad, Rawalpindi, Lahore, Karachi, Quetta, and Peshawar has been investigated. Landsat and SPOT satellite images were acquired for the assessment of urban sprawl. MODIS Land Surface Temperature product MOD11A2 was acquired between 1000-1200 hours (local time) for assessment of urban heat island. The results of urban sprawl informed that the extent of Islamabad and Rawalpindi urban area increased from 240 km2 to 624 km2 between 2000 and 2016, accounted 24 km2 per year, Lahore 29 km2, accounted 1.6 km2 per year, Karachi 261 km2, accounted for 16 km2/ per year, Peshawar 63 km2, accounted 4 km2/per year, and Quetta 76 km2/per year, accounted 5 km2/per year approximately. The average Surface Urban Heat Island (SUHI) magnitude is observed at a scale of 0.63 ᵒC for Islamabad and Rawalpindi, 1.25 ᵒC for Lahore, and 1.16 ᵒC for Karachi, which is 0.89 ᵒC for Quetta, and 1.08 ᵒC for Peshawar from 2000 to 2016. The pixel-based maximum SUHI intensity reaches up to about 11.40 ᵒC for Islamabad and Rawalpindi, 15.66 ᵒC for Lahore, 11.20 ᵒC for Karachi, 14.61 ᵒC for Quetta, and 15.22 ᵒC for Peshawar from the baseline of zero degrees Centigrade (ᵒC). The overall trend of SUHI in planned cities (e.g., Islamabad) is not found to increase significantly. Spatial and temporal patterns of SUHI for selected cities reveal heterogeneity and a unique pattern for each city. It is well recognized that SUHI intensity is modulated by land use/land cover patterns (due to their different surface properties and cooling rates), meteorological conditions, and anthropogenic activities. The study concluded that the selected cities (Islamabad, Rawalpindi, Lahore, Karachi, Quetta, and Peshawar) are examples where dense urban pockets observed about 15 ᵒC warmer than a nearby rural area.Keywords: urban heat island , surface urban heat island , urbanization, anthropogenic source
Procedia PDF Downloads 3227154 Fin Efficiency of Helical Fin with Fixed Fin Tip Temperature Boundary Condition
Authors: Richard G. Carranza, Juan Ospina
Abstract:
The fin efficiency for a helical fin with a fixed fin tip (or arbitrary) temperature boundary condition is presented. Firstly, the temperature profile throughout the fin is determined via an energy balance around the fin itself. Secondly, the fin efficiency is formulated by integrating across the entire surface of the helical fin. An analytical expression for the fin efficiency is presented and compared with the literature for accuracy.Keywords: efficiency, fin, heat, helical, transfer
Procedia PDF Downloads 6827153 National Assessment for Schools in Saudi Arabia: Score Reliability and Plausible Values
Authors: Dimiter M. Dimitrov, Abdullah Sadaawi
Abstract:
The National Assessment for Schools (NAFS) in Saudi Arabia consists of standardized tests in Mathematics, Reading, and Science for school grade levels 3, 6, and 9. One main goal is to classify students into four categories of NAFS performance (minimal, basic, proficient, and advanced) by schools and the entire national sample. The NAFS scoring and equating is performed on a bounded scale (D-scale: ranging from 0 to 1) in the framework of the recently developed “D-scoring method of measurement.” The specificity of the NAFS measurement framework and data complexity presented both challenges and opportunities to (a) the estimation of score reliability for schools, (b) setting cut-scores for the classification of students into categories of performance, and (c) generating plausible values for distributions of student performance on the D-scale. The estimation of score reliability at the school level was performed in the framework of generalizability theory (GT), with students “nested” within schools and test items “nested” within test forms. The GT design was executed via a multilevel modeling syntax code in R. Cut-scores (on the D-scale) for the classification of students into performance categories was derived via a recently developed method of standard setting, referred to as “Response Vector for Mastery” (RVM) method. For each school, the classification of students into categories of NAFS performance was based on distributions of plausible values for the students’ scores on NAFS tests by grade level (3, 6, and 9) and subject (Mathematics, Reading, and Science). Plausible values (on the D-scale) for each individual student were generated via random selection from a statistical logit-normal distribution with parameters derived from the student’s D-score and its conditional standard error, SE(D). All procedures related to D-scoring, equating, generating plausible values, and classification of students into performance levels were executed via a computer program in R developed for the purpose of NAFS data analysis.Keywords: large-scale assessment, reliability, generalizability theory, plausible values
Procedia PDF Downloads 177152 Assessment and Adaptation Strategy of Climate Change to Water Quality in the Erren River and Its Impact to Health
Authors: Pei-Chih Wu, Hsin-Chih Lai, Yung-Lung Lee, Yun-Yao Chi, Ching-Yi Horng, Hsien-Chang Wang
Abstract:
The impact of climate change to health has always been well documented. Amongst them, water-borne infectious diseases, chronic adverse effects or cancer risks due to chemical contamination in flooding or drought events are especially important in river basin. This study therefore utilizes GIS and different models to integrate demographic, land use, disaster prevention, social-economic factors, and human health assessment in the Erren River basin. Therefore, through the collecting of climatic, demographic, health surveillance, water quality and other water monitoring data, potential risks associated with the Erren River Basin are established and to understand human exposure and vulnerability in response to climate extremes. This study assesses the temporal and spatial patterns of melioidosis (2000-2015) and various cancer incidents in Tainan and Kaohsiung cities. The next step is to analyze the spatial association between diseases incidences, climatic factors, land uses, and other demographic factors by using ArcMap and GeoDa. The study results show that amongst all melioidosis cases in Taiwan, 24% cases (115) residence occurred in the Erren River basin. The relationship between the cases and in Tainan and Kaohsiung cities are associated with population density, aging indicator, and residence in Erren River basin. Risks from flooding due to heavy rainfall and fish farms in spatial lag regression are also related. Through liver cancer, the preliminary analysis in temporal and spatial pattern shows an increases pattern in annual incidence without clusters in Erren River basin. Further analysis of potential cancers connected to heavy metal contamination from water pollution in Erren River is established. The final step is to develop an assessment tool for human exposure from water contamination and vulnerability in response to climate extremes for the second year.Keywords: climate change, health impact, health adaptation, Erren River Basin
Procedia PDF Downloads 3027151 An Audit on Optimum Utilisation of Preoperative Clinic
Authors: Vidya Iyer, Suresh Babu Loganathan, Yuan Hwa Lee, Kwong Fah Koh
Abstract:
Introduction: It has been recommended that every patient undergoes careful preoperative evaluation in a preoperative clinic to improve theatre utilization, reduce bed occupancy and avoid unnecessary cancellation due to inadequate optimisation, communication and administrative errors. It also gives an opportunity to counsel patients regarding different aspects of anaesthesia. Methodology: A retrospective audit of all the patients seen in preoperative assessment clinic, referral letters of all the patients postponed / referred to other sub specialities in the perioperative period from June 2012 - June 2013 was done. In our clinic, we retrieved patient records who were awaiting surgery pending clearance by other sub specialities. Those patients, who could continue with their scheduled date of surgery after having been referred, were not included in the file. We also studied details of same day cancellations from the data base, during the same study period. The reasons for cancellation were examined and defined as avoidable and unavoidable. Results: Less than 0.5% was postponed from the scheduled day of surgery. Less than 0.5% was cancelled on the day of surgery. Conclusions: Patients who undergo pre anaesthetic evaluation in a well-established clinic results in adequate preoperative patient optimisation, avoids unnecessary preoperative admission, efficient theatre utilisation and greater patient satisfaction. The benefits are the result of guidelines and timely update of them which are used by the junior doctors and trainees who run the clinic and a dedicated specialist to supervise them.Keywords: preoperative assessment, clinic, referrals, cancellation
Procedia PDF Downloads 3307150 Application of a Universal Distortion Correction Method in Stereo-Based Digital Image Correlation Measurement
Authors: Hu Zhenxing, Gao Jianxin
Abstract:
Stereo-based digital image correlation (also referred to as three-dimensional (3D) digital image correlation (DIC)) is a technique for both 3D shape and surface deformation measurement of a component, which has found increasing applications in academia and industries. The accuracy of the reconstructed coordinate depends on many factors such as configuration of the setup, stereo-matching, distortion, etc. Most of these factors have been investigated in literature. For instance, the configuration of a binocular vision system determines the systematic errors. The stereo-matching errors depend on the speckle quality and the matching algorithm, which can only be controlled in a limited range. And the distortion is non-linear particularly in a complex imaging acquisition system. Thus, the distortion correction should be carefully considered. Moreover, the distortion function is difficult to formulate in a complex imaging acquisition system using conventional models in such cases where microscopes and other complex lenses are involved. The errors of the distortion correction will propagate to the reconstructed 3D coordinates. To address the problem, an accurate mapping method based on 2D B-spline functions is proposed in this study. The mapping functions are used to convert the distorted coordinates into an ideal plane without distortions. This approach is suitable for any image acquisition distortion models. It is used as a prior process to convert the distorted coordinate to an ideal position, which enables the camera to conform to the pin-hole model. A procedure of this approach is presented for stereo-based DIC. Using 3D speckle image generation, numerical simulations were carried out to compare the accuracy of both the conventional method and the proposed approach.Keywords: distortion, stereo-based digital image correlation, b-spline, 3D, 2D
Procedia PDF Downloads 4957149 Development and Validation of the Response to Stressful Situations Scale in the General Population
Authors: Célia Barreto Carvalho, Carolina da Motta, Marina Sousa, Joana Cabral, Ana Luísa Carvalho, Ermelindo Peixoto
Abstract:
The aim of the current study was to develop and validate a Response to Stressful Situations Scale (RSSS) for the Portuguese population. This scale assesses the degree of stress experienced in scenarios that can constitute positive, negative and more neutral stressors, and also describes the physiological, emotional and behavioral reactions to those events according to their intensity. These scenario include typical stressor scenarios relevant to patients with schizophrenia, which are currently absent from most scale, assessing specific risks that these stressors may bring on subjects, which may prove useful in non-clinical and clinical populations (i.e. patients with mood or anxiety disorders, schizophrenia). Results from Principal Components Analysis and Confirmatory Factor Analysis of on two adult samples from general population allowed to confirm a three-factor model with good fit indices: χ2 (144)= 370.211, p = 0.000; GFI = 0.928; CFI = 0.927; TLI = 0.914, RMSEA = 0.055, P( rmsea ≤ 0.005) = 0.096; PCFI = 0.781. Further data analysis on the scale revealed that RSSS is an adequate assessment tool of stress response in adults to be used in further research and clinical settings, with good psychometric characteristics, adequate divergent and convergent validity, good temporal stability and high internal consistency.Keywords: assessment, stress events, stress response, stress vulnerability
Procedia PDF Downloads 5197148 Role of Artificial Intelligence in Nano Proteomics
Authors: Mehrnaz Mostafavi
Abstract:
Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence
Procedia PDF Downloads 937147 Modeling Atmospheric Correction for Global Navigation Satellite System Signal to Improve Urban Cadastre 3D Positional Accuracy Case of: TANA and ADIS IGS Stations
Authors: Asmamaw Yehun
Abstract:
The name “TANA” is one of International Geodetic Service (IGS) Global Positioning System (GPS) station which is found in Bahir Dar University in Institute of Land Administration. The station name taken from one of big Lakes in Africa ,Lake Tana. The Institute of Land Administration (ILA) is part of Bahir Dar University, located in the capital of the Amhara National Regional State, Bahir Dar. The institute is the first of its kind in East Africa. The station is installed by cooperation of ILA and Sweden International Development Agency (SIDA) fund support. The Continues Operating Reference Station (CORS) is a network of stations that provide global satellite system navigation data to help three dimensional positioning, meteorology, space, weather, and geophysical applications throughout the globe. TANA station was as CORS since 2013 and sites are independently owned and operated by governments, research and education facilities and others. The data collected by the reference station is downloadable through Internet for post processing purpose by interested parties who carry out GNSS measurements and want to achieve a higher accuracy. We made a first observation on TANA, monitor stations on May 29th 2013. We used Leica 1200 receivers and AX1202GG antennas and made observations from 11:30 until 15:20 for about 3h 50minutes. Processing of data was done in an automatic post processing service CSRS-PPP by Natural Resources Canada (NRCan) . Post processing was done June 27th 2013 so precise ephemeris was used 30 days after observation. We found Latitude (ITRF08): 11 34 08.6573 (dms) / 0.008 (m), Longitude (ITRF08): 37 19 44.7811 (dms) / 0.018 (m) and Ellipsoidal Height (ITRF08): 1850.958 (m) / 0.037 (m). We were compared this result with GAMIT/GLOBK processed data and it was very closed and accurate. TANA station is one of the second IGS station for Ethiopia since 2015 up to now. It provides data for any civilian users, researchers, governmental and nongovernmental users. TANA station is installed with very advanced choke ring antenna and GR25 Leica receiver and also the site is very good for satellite accessibility. In order to test hydrostatic and wet zenith delay for positional data quality, we used GAMIT/GLOBK and we found that TANA station is the most accurate IGS station in East Africa. Due to lower tropospheric zenith and ionospheric delay, TANA and ADIS IGS stations has 2 and 1.9 meters 3D positional accuracy respectively.Keywords: atmosphere, GNSS, neutral atmosphere, precipitable water vapour
Procedia PDF Downloads 687146 The Environmental Impact of Sustainability Dispersion of Chlorine Releases in Coastal Zone of Alexandra: Spatial-Ecological Modeling
Authors: Mohammed El Raey, Moustafa Osman Mohammed
Abstract:
The spatial-ecological modeling is relating sustainable dispersions with social development. Sustainability with spatial-ecological model gives attention to urban environments in the design review management to comply with Earth’s System. Naturally exchange patterns of ecosystems have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. The probabilistic risk assessment (PRA) technique is utilized to assess the safety of industrial complex. The other analytical approach is the Failure-Safe Mode and Effect Analysis (FMEA) for critical components. The plant safety parameters are identified for engineering topology as employed in assessment safety of industrial ecology. In particular, the most severe accidental release of hazardous gaseous is postulated, analyzed and assessment in industrial region. The IAEA- safety assessment procedure is used to account the duration and rate of discharge of liquid chlorine. The ecological model of plume dispersion width and concentration of chlorine gas in the downwind direction is determined using Gaussian Plume Model in urban and ruler areas and presented with SURFER®. The prediction of accident consequences is traced in risk contour concentration lines. The local greenhouse effect is predicted with relevant conclusions. The spatial-ecological model is also predicted the distribution schemes from the perspective of pollutants that considered multiple factors of multi-criteria analysis. The data extends input–output analysis to evaluate the spillover effect, and conducted Monte Carlo simulations and sensitivity analysis. Their unique structure is balanced within “equilibrium patterns”, such as the biosphere and collective a composite index of many distributed feedback flows. These dynamic structures are related to have their physical and chemical properties and enable a gradual and prolonged incremental pattern. While this spatial model structure argues from ecology, resource savings, static load design, financial and other pragmatic reasons, the outcomes are not decisive in artistic/ architectural perspective. The hypothesis is an attempt to unify analytic and analogical spatial structure for development urban environments using optimization software and applied as an example of integrated industrial structure where the process is based on engineering topology as optimization approach of systems ecology.Keywords: spatial-ecological modeling, spatial structure orientation impact, composite structure, industrial ecology
Procedia PDF Downloads 797145 The Relationship between Self Concept Clarity and Need for Absolute Truth and Problem Solving and Symptoms of Stress in Homosexual Male
Authors: Gizem Akcan, Erdinc Ozturk
Abstract:
When it is examined as historically, it has caught attention that homosexual people try to behave as heterosexual or come out to have a place in community. Homosexual people have identity confusion during identity development, they have high levels of need for absolute truth and their psychological well being is affected negatively because of high levels of need for absolute truth and they have problems about self concept clarity. People who have problems about self concept clarity have problems on problem solving and show lots of symptoms of stress. People who have clear self concept use healthier coping strategies to solve problems. The purpose of this study is to show whether need for absolute truth predicts problem solving and symptoms of stress via mediator effect of self concept clarity or not on homosexual men. The participants of this study were 200 homosexual men. The ages of participants were 20-50. In addition, Demographic Information Form, Self Concept Clarity Scale, Need for Absolute Truth Scale, Stres Self-Assessment Checklist and Problem Solving Inventory were applied to the participants. The assessment of the data was made with confirmatory factor analysis and structural equation modeling analysis. According to the results of this study, need for absolute truth predicts problem solving and symptoms of stress via mediator effect of self concept clarity on homosexual men.Keywords: need for absolute truth, self concept clarity, symptoms of stress, problem solving
Procedia PDF Downloads 2237144 A Simple Model for Solar Panel Efficiency
Authors: Stefano M. Spagocci
Abstract:
The efficiency of photovoltaic panels can be calculated with such software packages as RETScreen that allow design engineers to take financial as well as technical considerations into account. RETScreen is interfaced with meteorological databases, so that efficiency calculations can be realistically carried out. The author has recently contributed to the development of solar modules with accumulation capability and an embedded water purifier, aimed at off-grid users such as users in developing countries. The software packages examined do not allow to take ancillary equipment into account, hence the decision to implement a technical and financial model of the system. The author realized that, rather than re-implementing the quite sophisticated model of RETScreen - a mathematical description of which is anyway not publicly available - it was possible to drastically simplify it, including the meteorological factors which, in RETScreen, are presented in a numerical form. The day-by-day efficiency of a photovoltaic solar panel was parametrized by the product of factors expressing, respectively, daytime duration, solar right ascension motion, solar declination motion, cloudiness, temperature. For the sun-motion-dependent factors, positional astronomy formulae, simplified by the author, were employed. Meteorology-dependent factors were fitted by simple trigonometric functions, employing numerical data supplied by RETScreen. The accuracy of our model was tested by comparing it to the predictions of RETScreen; the accuracy obtained was 11%. In conclusion, our study resulted in a model that can be easily implemented in a spreadsheet - thus being easily manageable by non-specialist personnel - or in more sophisticated software packages. The model was used in a number of design exercises, concerning photovoltaic solar panels and ancillary equipment like the above-mentioned water purifier.Keywords: clean energy, energy engineering, mathematical modelling, photovoltaic panels, solar energy
Procedia PDF Downloads 64