Search results for: S275 mild steel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2237

Search results for: S275 mild steel

257 The Relationship between Spindle Sound and Tool Performance in Turning

Authors: N. Seemuang, T. McLeay, T. Slatter

Abstract:

Worn tools have a direct effect on the surface finish and part accuracy. Tool condition monitoring systems have been developed over a long period and used to avoid a loss of productivity resulting from using a worn tool. However, the majority of tool monitoring research has applied expensive sensing systems not suitable for production. In this work, the cutting sound in turning machine was studied using microphone. Machining trials using seven cutting conditions were conducted until the observable flank wear width (FWW) on the main cutting edge exceeded 0.4 mm. The cutting inserts were removed from the tool holder and the flank wear width was measured optically. A microphone with built-in preamplifier was used to record the machining sound of EN24 steel being face turned by a CNC lathe in a wet cutting condition using constant surface speed control. The sound was sampled at 50 kS/s and all sound signals recorded from microphone were transformed into the frequency domain by FFT in order to establish the frequency content in the audio signature that could be then used for tool condition monitoring. The extracted feature from audio signal was compared to the flank wear progression on the cutting inserts. The spectrogram reveals a promising feature, named as ‘spindle noise’, which emits from the main spindle motor of turning machine. The spindle noise frequency was detected at 5.86 kHz of regardless of cutting conditions used on this particular CNC lathe. Varying cutting speed and feed rate have an influence on the magnitude of power spectrum of spindle noise. The magnitude of spindle noise frequency alters in conjunction with the tool wear progression. The magnitude increases significantly in the transition state between steady-state wear and severe wear. This could be used as a warning signal to prepare for tool replacement or adapt cutting parameters to extend tool life.

Keywords: tool wear, flank wear, condition monitoring, spindle noise

Procedia PDF Downloads 310
256 Testing Depression in Awareness Space: A Proposal to Evaluate Whether a Psychotherapeutic Method Based on Spatial Cognition and Imagination Therapy Cures Moderate Depression

Authors: Lucas Derks, Christine Beenhakker, Michiel Brandt, Gert Arts, Ruud van Langeveld

Abstract:

Background: The method Depression in Awareness Space (DAS) is a psychotherapeutic intervention technique based on the principles of spatial cognition and imagination therapy with spatial components. The basic assumptions are: mental space is the primary organizing principle in the mind, and all psychological issues can be treated by first locating and by next relocating the conceptualizations involved. The most clinical experience was gathered over the last 20 years in the area of social issues (with the social panorama model). The latter work led to the conclusion that a mental object (image) gains emotional impact when it is placed more central, closer and higher in the visual field – and vice versa. Changing the locations of mental objects in space thus alters the (socio-) emotional meaning of the relationships. The experience of depression seems always associated with darkness. Psychologists tend to see the link between depression and darkness as a metaphor. However, clinical practice hints to the existence of more literal forms of darkness. Aims: The aim of the method Depression in Awareness Space is to reduce the distress of clients with depression in the clinical counseling practice, as a reliable alternative method of psychological therapy for the treatment of depression. The method Depression in Awareness Space aims at making dark areas smaller, lighter and more transparent in order to identify the problem or the cause of the depression which lies behind the darkness. It was hypothesized that the darkness is a subjective side-effect of the neurological process of repression. After reducing the dark clouds the real problem behind the depression becomes more visible, allowing the client to work on it and in that way reduce their feelings of depression. This makes repression of the issue obsolete. Results: Clients could easily get into their 'sadness' when asked to do so and finding the location of the dark zones proved pretty easy as well. In a recent pilot study with five participants with mild depressive symptoms (measured on two different scales and tested against an untreated control group with similar symptoms), the first results were also very promising. If the mental spatial approach to depression can be proven to be really effective, this would be very good news. The Society of Mental Space Psychology is now looking for sponsoring of an up scaled experiment. Conclusions: For spatial cognition and the research into spatial psychological phenomena, the discovery of dark areas can be a step forward. Beside out of pure scientific interest, it is great to know that this discovery has a clinical implication: when darkness can be connected to depression. Also, darkness seems to be more than metaphorical expression. Progress can be monitored over measurement tools that quantify the level of depressive symptoms and by reviewing the areas of darkness.

Keywords: depression, spatial cognition, spatial imagery, social panorama

Procedia PDF Downloads 148
255 Strengths and Weaknesses of Tally, an LCA Tool for Comparative Analysis

Authors: Jacob Seddlemeyer, Tahar Messadi, Hongmei Gu, Mahboobeh Hemmati

Abstract:

The main purpose of this first tier of the study is to quantify and compare the embodied environmental impacts associated with alternative materials applied to Adohi Hall, a residence building at the University of Arkansas campus, Fayetteville, AR. This 200,000square foot building has5 stories builtwith mass timber and is compared to another scenario where the same edifice is built with a steel frame. Based on the defined goal and scope of the project, the materials respectivetothe respective to the two building options are compared in terms of Global Warming Potential (GWP), starting from cradle to the construction site, which includes the material manufacturing stage (raw material extract, process, supply, transport, and manufacture) plus transportation to the site (module A1-A4, based on standard EN 15804 definition). The consumedfossil fuels and emitted CO2 associated with the buildings are the major reason for the environmental impacts of climate change. In this study, GWP is primarily assessed to the exclusion of other environmental factors. The second tier of this work is to evaluate Tally’s performance in the decision-making process through the design phases, as well as determine its strengths and weaknesses. Tally is a Life Cycle Assessment (LCA) tool capable of conducting a cradle-to-grave analysis. As opposed to other software applications, Tally is specifically targeted at buildings LCA. As a peripheral application, this software tool is directly run within the core modeling application platform called Revit. This unique functionality causes Tally to stand out from other similar tools in the building sector LCA analysis. The results of this study also provide insights for making more environmentally efficient decisions in the building environment and help in the move forward to reduce Green House Gases (GHGs) emissions and GWP mitigation.

Keywords: comparison, GWP, LCA, materials, tally

Procedia PDF Downloads 205
254 Evaluation of Ocular Changes in Hypertensive Disorders of Pregnancy

Authors: Rajender Singh, Nidhi Sharma, Aastha Chauhan, Meenakshi Barsaul, Jyoti Deswal, Chetan Chhikara

Abstract:

Introduction: Pre-eclampsia and eclampsia are hypertensive disorders of pregnancy with multisystem involvement and are common causes of morbidity and mortality in obstetrics. It is believed that changes in retinal arterioles may indicate similar changes in the placenta. Therefore, this study was undertaken to evaluate the ocular manifestations in cases of pre-eclampsia and eclampsia and to deduce any association between the retinal changes and blood pressure, the severity of disease, gravidity, proteinuria, and other lab parameters so that a better approach could be devised to ensure maternal and fetal well-being. Materials and Methods: This was a hospital-based cross-sectional study conducted over a period of one year, from April 2021 to May 2022. 350 admitted patients with diagnosed pre-eclampsia, eclampsia, and pre-eclampsia superimposed on chronic hypertension were included in the study. A pre-structured proforma was used. After taking consent and ocular history, a bedside examination to record visual acuity, pupillary size, corneal curvature, field of vision, and intraocular pressure was done. Dilated fundus examination was done with a direct and indirect ophthalmoscope. Age, parity, BP, proteinuria, platelet count, liver and kidney function tests were noted down. The patients with positive findings only were followed up after 72 hours and 6 weeks of termination of pregnancy. Results: The mean age of patients was 26.18±4.33 years (range 18-39 years).157 (44.9%) were primigravida while 193(55.1%) were multigravida.53 (15.1%) patients had eclampsia, 128(36.5%) had mild pre-eclampsia,128(36.5%) had severe pre-eclampsia and 41(11.7%) had chronic hypertension with superimposed pre-eclampsia. Retinal changes were found in 208 patients (59.42%), and grade I changes were the most common. 82(23.14%) patients had grade I changes, 75 (21.4%) had grade II changes, 41(11.71%) had grade III changes, and 11(3.14%) had serous retinal detachment/grade IV changes. 36 patients had unaided visual acuity <6/9, of these 17 had refractive error and 19(5.4%) had varying degrees of retinal changes. 3(0.85%) out of 350 patients had an abnormal field of vision in both eyes. All 3 of them had eclampsia and bilateral exudative retinal detachment. At day 4, retinopathy in 10 patients resolved, and 3 patients had improvement in visual acuity. At 6 weeks, retinopathy in all the patients resolved spontaneously except persistence of grade II changes in 23 patients with chronic hypertension with superimposed pre-eclampsia, while visual acuity and field of vision returned to normal in all patients. Pupillary size, intraocular pressure, and corneal curvature were found to be within normal limits at all times of examination. There was a statistically significant positive association between retinal changes and mean arterial pressure. The study showed a positive correlation between fundus findings and severity of disease (p value<0.05) and mean arterial pressure (p value<0.005). Primigravida had more retinal changes than multigravida patients. A significant association was found between fundus changes and thrombocytopenia and deranged liver and kidney function tests (p value<0.005). Conclusion: As the severity of pre-eclampsia and eclampsia increases, the incidence of retinopathy also increases, and it affects visual acuity and visual fields of the patients. Thus, timely ocular examination should be done in all such cases to prevent complications.

Keywords: eclampsia, hypertensive, ocular, pre-eclampsia

Procedia PDF Downloads 58
253 Carbon Capture and Storage by Continuous Production of CO₂ Hydrates Using a Network Mixing Technology

Authors: João Costa, Francisco Albuquerque, Ricardo J. Santos, Madalena M. Dias, José Carlos B. Lopes, Marcelo Costa

Abstract:

Nowadays, it is well recognized that carbon dioxide emissions, together with other greenhouse gases, are responsible for the dramatic climate changes that have been occurring over the past decades. Gas hydrates are currently seen as a promising and disruptive set of materials that can be used as a basis for developing new technologies for CO₂ capture and storage. Its potential as a clean and safe pathway for CCS is tremendous since it requires only water and gas to be mixed under favorable temperatures and mild high pressures. However, the hydrates formation process is highly exothermic; it releases about 2 MJ per kilogram of CO₂, and it only occurs in a narrow window of operational temperatures (0 - 10 °C) and pressures (15 to 40 bar). Efficient continuous hydrate production at a specific temperature range necessitates high heat transfer rates in mixing processes. Past technologies often struggled to meet this requirement, resulting in low productivity or extended mixing/contact times due to inadequate heat transfer rates, which consistently posed a limitation. Consequently, there is a need for more effective continuous hydrate production technologies in industrial applications. In this work, a network mixing continuous production technology has been shown to be viable for producing CO₂ hydrates. The structured mixer used throughout this work consists of a network of unit cells comprising mixing chambers interconnected by transport channels. These mixing features result in enhanced heat and mass transfer rates and high interfacial surface area. The mixer capacity emerges from the fact that, under proper hydrodynamic conditions, the flow inside the mixing chambers becomes fully chaotic and self-sustained oscillatory flow, inducing intense local laminar mixing. The device presents specific heat transfer rates ranging from 107 to 108 W⋅m⁻³⋅K⁻¹. A laboratory scale pilot installation was built using a device capable of continuously capturing 1 kg⋅h⁻¹ of CO₂, in an aqueous slurry of up to 20% in mass. The strong mixing intensity has proven to be sufficient to enhance dissolution and initiate hydrate crystallization without the need for external seeding mechanisms and to achieve, at the device outlet, conversions of 99% in CO₂. CO₂ dissolution experiments revealed that the overall liquid mass transfer coefficient is orders of magnitude larger than in similar devices with the same purpose, ranging from 1 000 to 12 000 h⁻¹. The present technology has shown itself to be capable of continuously producing CO₂ hydrates. Furthermore, the modular characteristics of the technology, where scalability is straightforward, underline the potential development of a modular hydrate-based CO₂ capture process for large-scale applications.

Keywords: network, mixing, hydrates, continuous process, carbon dioxide

Procedia PDF Downloads 28
252 Effect of Impact Angle on Erosive Abrasive Wear of Ductile and Brittle Materials

Authors: Ergin Kosa, Ali Göksenli

Abstract:

Erosion and abrasion are wear mechanisms reducing the lifetime of machine elements like valves, pump and pipe systems. Both wear mechanisms are acting at the same time, causing a “Synergy” effect, which leads to a rapid damage of the surface. Different parameters are effective on erosive abrasive wear rate. In this study effect of particle impact angle on wear rate and wear mechanism of ductile and brittle materials was investigated. A new slurry pot was designed for experimental investigation. As abrasive particle, silica sand was used. Particle size was ranking between 200-500 µm. All tests were carried out in a sand-water mixture of 20% concentration for four hours. Impact velocities of the particles were 4,76 m/s. As ductile material steel St 37 with Brinell Hardness Number (BHN) of 245 and quenched St 37 with 510 BHN was used as brittle material. After wear tests, morphology of the eroded surfaces were investigated for better understanding of the wear mechanisms acting at different impact angles by using optical microscopy and Scanning Electron Microscope. The results indicated that wear rate of ductile material was higher than brittle material. Maximum wear was observed by ductile material at a particle impact angle of 300. On the contrary wear rate increased by brittle materials by an increase in impact angle and reached maximum value at 450. High amount of craters were detected after observation on ductile material surface Also plastic deformation zones were detected, which are typical failure modes for ductile materials. Craters formed by particles were deeper according to brittle material worn surface. Amount of craters decreased on brittle material surface. Microcracks around craters were detected which are typical failure modes of brittle materials. Deformation wear was the dominant wear mechanism on brittle material. At the end it is concluded that wear rate could not be directly related to impact angle of the hard particle due to the different responses of ductile and brittle materials.

Keywords: erosive wear, particle impact angle, silica sand, wear rate, ductile-brittle material

Procedia PDF Downloads 361
251 Pediatric Drug Resistance Tuberculosis Pattern, Side Effect Profile and Treatment Outcome: North India Experience

Authors: Sarika Gupta, Harshika Khanna, Ajay K Verma, Surya Kant

Abstract:

Background: Drug-resistant tuberculosis (DR-TB) is a growing health challenge to global TB control efforts. Pediatric DR-TB is one of the neglected infectious diseases. In our previously published report, we have notified an increased prevalence of DR-TB in the pediatric population at a tertiary health care centre in North India which was estimated as 17.4%, 15.1%, 18.4%, and 20.3% in (%) in the year 2018, 2019, 2020, and 2021. Limited evidence exists about a pattern of drug resistance, side effect profile and programmatic outcomes of Paediatric DR-TB treatment. Therefore, this study was done to find out the pattern of resistance, side effect profile and treatment outcome. Methodology: This was a prospective cohort study conducted at the nodal drug-resistant tuberculosis centre of a tertiary care hospital in North India from January 2021 to December 2022. Subjects included children aged between 0-18 years of age with a diagnosis of DR-TB, on the basis of GeneXpert (rifampicin [RIF] resistance detected), line probe assay and drug sensitivity testing (DST) of M. tuberculosis (MTB) grown on a culture of body fluids. Children were classified as monoresistant TB, polyresistant TB (resistance to more than 1 first-line anti-TB drug, other than both INH and RIF), MDR-TB, pre-XDR-TB and XDR-TB, as per the WHO classification. All the patients were prescribed DR TB treatment as per the standard guidelines, either shorter oral DR-TB regimen or a longer all-oral MDR/XDR-TB regimen (age below five years needed modification). All the patients were followed up for side effects of treatment once per month. The patient outcomes were categorized as good outcomes if they had completed treatment and cured or were improving during the course of treatment, while bad outcomes included death or not improving during the course of treatment. Results: Of the 50 pediatric patients included in the study, 34 were females (66.7%) and 16 were male (31.4%). Around 33 patients (64.7%) were suffering from pulmonary TB, while 17 (33.3%) were suffering from extrapulmonary TB. The proportions of monoresistant TB, polyresistant TB, MDR-TB, pre-XDR-TB and XDR-TB were 2.0%, 0%, 50.0%, 30.0% and 18.0%, respectively. Good outcome was reported in 40 patients (80.0%). The 10 bad outcomes were 7 deaths (14%) and 3 (6.0%) children who were not improving. Adverse events (single or multiple) were reported in all the patients, most of which were mild in nature. The most common adverse events were metallic taste 16(31.4%), rash and allergic reaction 15(29.4%), nausea and vomiting 13(26.0%), arthralgia 11 (21.6%) and alopecia 11 (21.6%). Serious adverse event of QTc prolongation was reported in 4 cases (7.8%), but neither arrhythmias nor symptomatic cardiac side effects occurred. Vestibular toxicity was reported in 2(3.9%), and psychotic symptoms in 4(7.8%). Hepatotoxicity, hypothyroidism, peripheral neuropathy, gynaecomastia, and amenorrhea were reported in 2 (4.0%), 4 (7.8%), 2 (3.9%), 1(2.0%), and 2 (3.9%) respectively. None of the drugs needed to be withdrawn due to uncontrolled adverse events. Conclusion: Paediatric DR TB treatment achieved favorable outcomes in a large proportion of children. DR TB treatment regimen drugs were overall well tolerated in this cohort.

Keywords: pediatric, drug-resistant, tuberculosis, adverse events, treatment

Procedia PDF Downloads 43
250 Determination of Mechanical Properties of Adhesives via Digital Image Correlation (DIC) Method

Authors: Murat Demir Aydin, Elanur Celebi

Abstract:

Adhesively bonded joints are used as an alternative to traditional joining methods due to the important advantages they provide. The most important consideration in the use of adhesively bonded joints is that these joints have appropriate requirements for their use in terms of safety. In order to ensure control of this condition, damage analysis of the adhesively bonded joints should be performed by determining the mechanical properties of the adhesives. When the literature is investigated; it is generally seen that the mechanical properties of adhesives are determined by traditional measurement methods. In this study, to determine the mechanical properties of adhesives, the Digital Image Correlation (DIC) method, which can be an alternative to traditional measurement methods, has been used. The DIC method is a new optical measurement method which is used to determine the parameters of displacement and strain in an appropriate and correct way. In this study, tensile tests of Thick Adherent Shear Test (TAST) samples formed using DP410 liquid structural adhesive and steel materials and bulk tensile specimens formed using and DP410 liquid structural adhesive was performed. The displacement and strain values of the samples were determined by DIC method and the shear stress-strain curves of the adhesive for TAST specimens and the tensile strain curves of the bulk adhesive specimens were obtained. Various methods such as numerical methods are required as conventional measurement methods (strain gauge, mechanic extensometer, etc.) are not sufficient in determining the strain and displacement values of the very thin adhesive layer such as TAST samples. As a result, the DIC method removes these requirements and easily achieves displacement measurements with sufficient accuracy.

Keywords: structural adhesive, adhesively bonded joints, digital image correlation, thick adhered shear test (TAST)

Procedia PDF Downloads 298
249 Removal of Cr (VI) from Water through Adsorption Process Using GO/PVA as Nanosorbent

Authors: Syed Hadi Hasan, Devendra Kumar Singh, Viyaj Kumar

Abstract:

Cr (VI) is a known toxic heavy metal and has been considered as a priority pollutant in water. The effluent of various industries including electroplating, anodizing baths, leather tanning, steel industries and chromium based catalyst are the major source of Cr (VI) contamination in the aquatic environment. Cr (VI) show high mobility in the environment and can easily penetrate cell membrane of the living tissues to exert noxious effects. The Cr (VI) contamination in drinking water causes various hazardous health effects to the human health such as cancer, skin and stomach irritation or ulceration, dermatitis, damage to liver, kidney circulation and nerve tissue damage. Herein, an attempt has been done to develop an efficient adsorbent for the removal of Cr (VI) from water. For this purpose nanosorbent composed of polyvinyl alcohol functionalized graphene oxide (GO/PVA) was prepared. Thus, obtained GO/PVA was characterized through FTIR, XRD, SEM, and Raman Spectroscopy. As prepared nanosorbent of GO/PVA was utilized for the removal Cr (VI) in batch mode experiment. The process variables such as contact time, initial Cr (VI) concentration, pH, and temperature were optimized. The maximum 99.8 % removal of Cr (VI) was achieved at initial Cr (VI) concentration 60 mg/L, pH 2, temperature 35 °C and equilibrium was achieved within 50 min. The two widely used isotherm models viz. Langmuir and Freundlich were analyzed using linear correlation coefficient (R2) and it was found that Langmuir model gives best fit with high value of R2 for the data of present adsorption system which indicate the monolayer adsorption of Cr (VI) on the GO/PVA. Kinetic studies were also conducted using pseudo-first order and pseudo-second order models and it was observed that chemosorptive pseudo-second order model described the kinetics of current adsorption system in better way with high value of correlation coefficient. Thermodynamic studies were also conducted and results showed that the adsorption was spontaneous and endothermic in nature.

Keywords: adsorption, GO/PVA, isotherm, kinetics, nanosorbent, thermodynamics

Procedia PDF Downloads 374
248 A Case of Myelofibrosis-Related Arthropathy: A Rare and Underrecognized Entity

Authors: Geum Yeon Sim, Jasal Patel, Anand Kumthekar, Stanley Wainapel

Abstract:

A 65-year-old right-hand dominant African-American man, formerly employed as a security guard, was referred to Rehabilitation Medicine with bilateral hand stiffness and weakness. His past medical history was only significant for myelofibrosis, diagnosed 4 years earlier, for which he was receiving scheduled blood transfusions. Approximately 2 years ago, he began to notice stiffness and swelling in his non-dominant hand that progressed to pain and decreased strength, limiting his hand function. Similar but milder symptoms developed in his right hand several months later. There was no history of prior injury or exposure to cold. Physical examination showed enlargement of metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints with finger flexion contractures, Swan-neck and Boutonniere deformities, and associated joint tenderness. Changes were more prominent in the left hand. X-rays showed mild osteoarthritis of several bilateral PIP joints. Anti-nuclear antibodies, rheumatoid factor, and cyclic citrullinated peptide antibodies were negative. MRI of the hand showed no erosions or synovitis. A rheumatology consultation was obtained, and the cause of his symptoms was attributed to myelofibrosis-related arthropathy with secondary osteoarthritis. The patient was tried on diclofenac cream and received a few courses of Occupational Therapy with limited functional improvement. Primary myelofibrosis (PMF) is a rare myeloproliferative neoplasm characterized by clonal proliferation of myeloid cells with variable morphologic maturity and hematopoietic efficiency. Rheumatic manifestations of malignancies include direct invasion, paraneoplastic presentations, secondary gout, or hypertrophic osteoarthropathy. PMF causes gradual bone marrow fibrosis with extramedullary metaplastic hematopoiesis in the liver, spleen, or lymph nodes. Musculoskeletal symptoms are not common and are not well described in the literature. The first reported case of myelofibrosis related arthritis was seronegative arthritis due to synovial invasion of myeloproliferative elements. Myelofibrosis has been associated with autoimmune diseases such as systemic lupus erythematosus, progressive systemic sclerosis, and rheumatoid arthritis. Gout has been reported in patients with myelofibrosis, and the underlying mechanism is thought to be related to the high turnover of nucleic acids that is greatly augmented in this disease. X-ray findings in these patients usually include erosive arthritis with synovitis. Treatment of underlying PMF is the treatment of choice, along with anti-inflammatory medications. Physicians should be cognizant of recognizing this rare entity in patients with PMF while maintaining clinical suspicion for more common causes of joint deformities, such as rheumatic diseases.

Keywords: myelofibrosis, arthritis, arthralgia, malignancy

Procedia PDF Downloads 77
247 Cognitive Mechanisms of Mindfulness-Based Cognitive Therapy on Depressed Older Adults: The Mediating Role of Rumination and Autobiographical Memory Specificity

Authors: Wai Yan Shih, Sau Man Wong, Wing Chung Chang, Wai Chi Chan

Abstract:

Background: Late-life depression is associated with significant consequences. Although symptomatic reduction is achievable through pharmacological interventions, older adults are more vulnerable to the side effects than their younger counterparts. In addition, drugs do not address underlying cognitive dysfunctions such as rumination and reduced autobiographical memory specificity (AMS), both shown to be maladaptive coping styles that are associated with a poorer prognosis in depression. Considering how aging is accompanied by cognitive, psychological and physical changes, the interplay of these age-related factors may potentially aggravate and interfere with these depressive cognitive dysfunctions in late-life depression. Special care should, therefore, be drawn to ensure these cognitive dysfunctions are adequately addressed. Aim: This randomized controlled trial aims to examine the effect of mindfulness-based cognitive therapy (MBCT) on depressed older adults, and whether the potential benefits of MBCT are mediated by improvements in rumination and AMS. Method: Fifty-seven participants with an average age of 70 years old were recruited from multiple elderly centers and online mailing lists. Participants were assessed with: (1) Hamilton depression scale, (2) ruminative response scale, (3) autobiographical memory test, (4) mindful attention awareness scale, and (5) Montreal cognitive assessment. Eligible participants with mild to moderate depressive symptoms and normal cognitive functioning were randomly allocated to an 8-week MBCT group or active control group consisting of a low-intensity exercise program and health education. Post-intervention assessments were conducted after the 8-week program. Ethics approval was given by the Institutional Review Board of the University of Hong Kong/Hospital Authority. Results: Mixed-factorials ANOVAs demonstrated significant time x group interaction effects for depressive symptoms, AMS, and dispositional mindfulness. A marginally significant interaction effect was found for rumination. Simple effect analyses revealed a significant reduction in depressive symptoms for the both the MBCT group (mean difference = 7.1, p = .000), and control group (mean difference = 2.7, p = .023). However, only participants in the MBCT group demonstrated improvements in rumination, AMS, and dispositional mindfulness. Bootstrapping-based mediation analyses showed that the effect of MBCT in alleviating depressive symptoms was only mediated by the reduction in rumination. Conclusions: The findings support the use of MBCT as an effective intervention for depressed older adults, considering the improvements in depressive symptoms, rumination, AMS and dispositional mindfulness despite their age. Reduction in ruminative tendencies plays a major role in the cognitive mechanism of MBCT.

Keywords: mindfulness-based cognitive therapy, depression, older adults, rumination, autobiographical memory specificity

Procedia PDF Downloads 189
246 Life Cycle Assessment of Mass Timber Structure, Construction Process as System Boundary

Authors: Mahboobeh Hemmati, Tahar Messadi, Hongmei Gu

Abstract:

Today, life cycle assessment (LCA) is a leading method in mitigating the environmental impacts emerging from the building sector. In this paper, LCA is used to quantify the Green House Gas (GHG) emissions during the construction phase of the largest mass timber residential structure in the United States, Adohi Hall. This building is a 200,000 square foot 708-bed complex located on the campus of the University of Arkansas. The energy used for buildings’ operation is the most dominant source of emissions in the building industry. Lately, however, the efforts were successful at increasing the efficiency of building operation in terms of emissions. As a result, the attention is now shifted to the embodied carbon, which is more noticeable in the building life cycle. Unfortunately, most of the studies have, however, focused on the manufacturing stage, and only a few have addressed to date the construction process. Specifically, less data is available about environmental impacts associated with the construction of mass timber. This study presents, therefore, an assessment of the environmental impact of the construction processes based on the real and newly built mass timber building mentioned above. The system boundary of this study covers modules A4 and A5 based on building LCA standard EN 15978. Module A4 includes material and equipment transportation. Module A5 covers the construction and installation process. This research evolves through 2 stages: first, to quantify materials and equipment deployed in the building, and second, to determine the embodied carbon associated with running equipment for construction materials, both transported to, and installed on, the site where the edifice is built. The Global Warming Potential (GWP) of the building is the primary metric considered in this research. The outcomes of this study bring to the front a better understanding of hotspots in terms of emission during the construction process. Moreover, the comparative analysis of the mass timber construction process with that of a theoretically similar steel building will enable an effective assessment of the environmental efficiency of mass timber.

Keywords: construction process, GWP, LCA, mass timber

Procedia PDF Downloads 148
245 The Effect of Composite Hybridization on the Back Face Deformation of Armor Plates

Authors: Attef Kouadria, Yehya Bouteghrine, Amar Manaa, Tarek Mouats, Djalel Eddine Tria, Hamid Abdelhafid Ghouti

Abstract:

Personal protection systems have been used in several forms for centuries. The need for light-weight composite structures has been in great demand due to their weight and high mechanical properties ratios in comparison to heavy and cumbersome steel plates. In this regard, lighter ceramic plates with a backing plate made of high strength polymeric fibers, mostly aramids, are widely used for protection against ballistic threats. This study aims to improve the ballistic performance of ceramic/composite plates subjected to ballistic impact by reducing the back face deformation (BFD) measured after each test. A new hybridization technique was developed in this investigation to increase the energy absorption capabilities of the backing plates. The hybridization consists of combining different types of aramid fabrics with different linear densities of aramid fibers (Dtex) and areal densities with an epoxy resin to form the backing plate. Therefore, several composite structures architectures were prepared and tested. For better understanding the effect of the hybridization, a serial of tensile, compression, and shear tests were conducted to determine the mechanical properties of the homogeneous composite materials prepared from different fabrics. It was found that the hybridization allows the backing plate to combine between the mechanical properties of the used fabrics. Aramid fabrics with higher Dtex were found to increase the mechanical strength of the backing plate, while those with lower Dtex found to enhance the lateral wave dispersion ratio due to their lower areal density. Therefore, the back face deformation was significantly reduced in comparison to a homogeneous composite plate.

Keywords: aramid fabric, ballistic impact, back face deformation, body armor, composite, mechanical testing

Procedia PDF Downloads 124
244 Improvement of Fixed Offshore Structures' Boat Landing Performance Using Practicable Design Criteria

Authors: A. Hamadelnil, Z. Razak, E. Matsoom

Abstract:

Boat landings on fixed offshore structure are designed to absorb the impact energy from the boats approaching the platform for crew transfer. As the size and speed of operating boats vary, the design and maintenance of the boat landings become more challenging. Different oil and gas operators adopting different design criteria for the boat landing design in the region of South East Asia. Rubber strip is used to increase the capacity of the boat landing in absorbing bigger impact energy. Recently, it has been reported that all the rubber strips peel off the boat landing frame within one to two years, and replacement is required to avoid puncturing of the boat’s hull by the exposed sharp edges and bolts used to secure the rubber strip. The capacity of the boat landing in absorbing the impact energy is reduced after the failure of the rubber strip and results in failure of the steel members. The replacement of the rubber strip is costly as it requires a diving spread. The objective of this study is to propose the most practicable criteria to be adopted by oil and gas operators in the design of the boat landings in the region of South East Asia to improve the performance of the boat landing and assure safe operation and cheaper maintenance. This study explores the current design and maintenance challenges of boat landing and compares between the criteria adopted by different operators. In addition, this study explains the reasons behind the denting of many of the boat landing. It also evaluates the effect of grout and rubber strip in the capacity of the boat landing and jacket legs and highlight. Boat landing model and analysis using USFOS and SACS software are carried out and presented in this study considering different design criteria. This study proposes the most practicable criteria to be used in designing the boat landing in South East Asia region to save cost and achieve better performance, safe operation and less cost and maintenance.

Keywords: boat landing, grout, plastic hinge, rubber strip

Procedia PDF Downloads 271
243 Clinical Response of Nuberol Forte® (Paracetamol 650 MG+Orphenadrine 50 MG) For Pain Management with Musculoskeletal Conditions in Routine Pakistani Practice (NFORTE-EFFECT)

Authors: Shahid Noor, Kazim Najjad, Muhammad Nasir, Irshad Bhutto, Abdul Samad Memon, Khurram Anwar, Tehseen Riaz, Mian Muhammad Hanif, Nauman A. Mallik, Saeed Ahmed, Israr Ahmed, Ali Yasir

Abstract:

Background: Musculoskeletal pain is the most common complaint presented to the health practitioner. It is well known that untreated or under-treated pain can have a significant negative impact on an individual’s quality of life (QoL). Objectives: This study was conducted across 10 sites in six (6) major cities of Pakistan to evaluate the tolerability, safety, and the clinical response of Nuberol Forte® (Paracetamol 650 mg + Orphenadrine 50 mg) to musculoskeletal pain in routine Pakistani practice and its impact on improving the patient’s QoL. Design & Methods: This NFORT-EFFECT observational, prospective multicenter study was conducted in compliance with Good Clinical Practice guidelines and local regulatory requirements. The study sponsor was "The Searle Company Limited, Pakistan. To maintain the GCP compliances, the sponsor assigned the CRO for the site and data management. Ethical approval was obtained from an independent ethics committee. The IEC reviewed the progress of the study. Written informed consent was obtained from the study participants, and their confidentiality was maintained throughout the study. A total of 399 patients with known prescreened musculoskeletal conditions and pain who attended the study sites were recruited, as per the inclusion/exclusion criteria (clinicaltrials.gov ID# NCT04765787). The recruited patients were then prescribed Paracetamol (650 mg) and Orphenadrine (50 mg) combination (Nuberol Forte®) for 7 to 14 days as per the investigator's discretion based on the pain intensity. After the initial screening (visit 1), a follow-up visit was conducted after 1-2 weeks of the treatment (visit 2). Study Endpoints: The primary objective was to assess the pain management response of Nuberol Forte treatment and the overall safety of the drug. The Visual Analogue Scale (VAS) scale was used to measure pain severity. Secondary to pain, the patients' health-related quality of life (HRQoL) was also assessed using the Muscle, Joint Measure (MJM) scale. The safety was monitored on the first dose by the patients. These assessments were done on each study visit. Results: Out of 399 enrolled patients, 49.4% were males, and 50.6% were females with a mean age of 47.24 ± 14.20 years. Most patients were presented with Knee Osteoarthritis (OA), i.e., 148(38%), followed by backache 70(18.2%). A significant reduction in the mean pain score was observed after the treatment with the combination of Paracetamol and Orphenadrine (p<0.05). Furthermore, an overall improvement in the patient’s QoL was also observed. During the study, only ten patients reported mild adverse events (AEs). Conclusion: The combination of Paracetamol and Orphenadrine (Nuberol Forte®) exhibited effective pain management among patients with musculoskeletal conditions and also improved their QoL.

Keywords: musculoskeletal pain, orphenadrine/paracetamol combination, pain management, quality of life, Pakistani population

Procedia PDF Downloads 144
242 Modern Seismic Design Approach for Buildings with Hysteretic Dampers

Authors: Vanessa A. Segovia, Sonia E. Ruiz

Abstract:

The use of energy dissipation systems for seismic applications has increased worldwide, thus it is necessary to develop practical and modern criteria for their optimal design. Here, a direct displacement-based seismic design approach for frame buildings with hysteretic energy dissipation systems (HEDS) is applied. The building is constituted by two individual structural systems consisting of: 1) A main elastic structural frame designed for service loads and 2) A secondary system, corresponding to the HEDS, that controls the effects of lateral loads. The procedure implies to control two design parameters: A) The stiffness ratio (α=K_frame/K_(total system)), and B) The strength ratio (γ= V_damper / V_(total system)). The proposed damage-controlled approach contributes to the design of a more sustainable and resilient building because the structural damage is concentrated on the HEDS. The reduction of the design displacement spectrum is done by means of a damping factor (recently published) for elastic structural systems with HEDS, located in Mexico City. Two limit states are verified: Serviceability and near collapse. Instead of the traditional trial-error approach, a procedure that allows the designer to establish the preliminary sizes of the structural elements of both systems is proposed. The design methodology is applied to an 8-story steel building with buckling restrained braces, located in soft soil of Mexico City. With the aim of choosing the optimal design parameters, a parametric study is developed considering different values of α and γ. The simplified methodology is for preliminary sizing, design, and evaluation of the effectiveness of HEDS, and it constitutes a modern and practical tool that enables the structural designer to select the best design parameters.

Keywords: damage-controlled buildings, direct displacement-based seismic design, optimal hysteretic energy dissipation systems, hysteretic dampers

Procedia PDF Downloads 463
241 Shape Management Method of Large Structure Based on Octree Space Partitioning

Authors: Gichun Cha, Changgil Lee, Seunghee Park

Abstract:

The objective of the study is to construct the shape management method contributing to the safety of the large structure. In Korea, the research of the shape management is lack because of the new attempted technology. Terrestrial Laser Scanning (TLS) is used for measurements of large structures. TLS provides an efficient way to actively acquire accurate the point clouds of object surfaces or environments. The point clouds provide a basis for rapid modeling in the industrial automation, architecture, construction or maintenance of the civil infrastructures. TLS produce a huge amount of point clouds. Registration, Extraction and Visualization of data require the processing of a massive amount of scan data. The octree can be applied to the shape management of the large structure because the scan data is reduced in the size but, the data attributes are maintained. The octree space partitioning generates the voxel of 3D space, and the voxel is recursively subdivided into eight sub-voxels. The point cloud of scan data was converted to voxel and sampled. The experimental site is located at Sungkyunkwan University. The scanned structure is the steel-frame bridge. The used TLS is Leica ScanStation C10/C5. The scan data was condensed 92%, and the octree model was constructed with 2 millimeter in resolution. This study presents octree space partitioning for handling the point clouds. The basis is created by shape management of the large structures such as double-deck tunnel, building and bridge. The research will be expected to improve the efficiency of structural health monitoring and maintenance. "This work is financially supported by 'U-City Master and Doctor Course Grant Program' and the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (NRF- 2015R1D1A1A01059291)."

Keywords: 3D scan data, octree space partitioning, shape management, structural health monitoring, terrestrial laser scanning

Procedia PDF Downloads 278
240 Failure Analysis of Recoiler Mandrel Shaft Used for Coiling of Rolled Steel Sheet

Authors: Sachin Pawar, Suman Patra, Goutam Mukhopadhyay

Abstract:

The primary function of a shaft is to transfer power. The shaft can be cast or forged and then machined to the final shape. Manufacturing of ~5 m length and 0.6 m diameter shaft is very critical. More difficult is to maintain its straightness during heat treatment and machining operations, which involve thermal and mechanical loads, respectively. During the machining operation of a such forged mandrel shaft, a deflection of 3-4mm was observed. To remove this deflection shaft was pressed at both ends which led to the development of cracks in it. To investigate the root cause of the deflection and cracking, the sample was cut from the failed shaft. Possible causes were identified with the help of a cause and effect diagram. Chemical composition analysis, microstructural analysis, and hardness measurement were done to confirm whether the shaft meets the required specifications or not. Chemical composition analysis confirmed that the material grade was 42CrMo4. Microstructural analysis revealed the presence of untempered martensite, indicating improper heat treatment. Due to this, ductility and impact toughness values were considerably lower than the specification of the mentioned grade. Residual stress measurement of one more bent shaft manufactured by a similar route was done by portable X-ray diffraction(XRD) technique. For better understanding, measurements were done at twelve different locations along the length of the shaft. The occurrence of a high amount of undesirable tensile residual stresses close to the Ultimate Tensile Strength(UTS) of the material was observed. Untempered martensitic structure, lower ductility, lower impact strength, and presence of a high amount of residual stresses all confirmed the improper tempering heat treatment of the shaft. Tempering relieves the residual stresses. Based on the findings of this study, stress-relieving heat treatment was done to remove the residual stresses and deflection in the shaft successfully.

Keywords: residual stress, mandrel shaft, untempered martensite, portable XRD

Procedia PDF Downloads 97
239 Predictors of Motor and Cognitive Domains of Functional Performance after Rehabilitation of Individuals with Acute Stroke

Authors: A. F. Jaber, E. Dean, M. Liu, J. He, D. Sabata, J. Radel

Abstract:

Background: Stroke is a serious health care concern and a major cause of disability in the United States. This condition impacts the individual’s functional ability to perform daily activities. Predicting functional performance of people with stroke assists health care professionals in optimizing the delivery of health services to the affected individuals. The purpose of this study was to identify significant predictors of Motor FIM and of Cognitive FIM subscores among individuals with stroke after discharge from inpatient rehabilitation (typically 4-6 weeks after stroke onset). A second purpose is to explore the relation among personal characteristics, health status, and functional performance of daily activities within 2 weeks of stroke onset. Methods: This study used a retrospective chart review to conduct a secondary analysis of data obtained from the Healthcare Enterprise Repository for Ontological Narration (HERON) database. The HERON database integrates de-identified clinical data from seven different regional sources including hospital electronic medical record systems of the University of Kansas Health System. The initial HERON data extract encompassed 1192 records and the final sample consisted of 207 participants who were mostly white (74%) males (55%) with a diagnosis of ischemic stroke (77%). The outcome measures collected from HERON included performance scores on the National Institute of Health Stroke Scale (NIHSS), the Glasgow Coma Scale (GCS), and the Functional Independence Measure (FIM). The data analysis plan included descriptive statistics, Pearson correlation analysis, and Stepwise regression analysis. Results: significant predictors of discharge Motor FIM subscores included age, baseline Motor FIM subscores, discharge NIHSS scores, and comorbid electrolyte disorder (R2 = 0.57, p <0.026). Significant predictors of discharge Cognitive FIM subscores were age, baseline cognitive FIM subscores, client cooperative behavior, comorbid obesity, and the total number of comorbidities (R2 = 0.67, p <0.020). Functional performance on admission was significantly associated with age (p < 0.01), stroke severity (p < 0.01), and length of hospital stay (p < 0.05). Conclusions: our findings show that younger age, good motor and cognitive abilities on admission, mild stroke severity, fewer comorbidities, and positive client attitude all predict favorable functional outcomes after inpatient stroke rehabilitation. This study provides health care professionals with evidence to evaluate predictors of favorable functional outcomes early at stroke rehabilitation, to tailor individualized interventions based on their client’s anticipated prognosis, and to educate clients about the benefits of making lifestyle changes to improve their anticipated rate of functional recovery.

Keywords: functional performance, predictors, stroke, recovery

Procedia PDF Downloads 126
238 Industrial Prototype for Hydrogen Separation and Purification: Graphene Based-Materials Application

Authors: Juan Alfredo Guevara Carrio, Swamy Toolahalli Thipperudra, Riddhi Naik Dharmeshbhai, Sergio Graniero Echeverrigaray, Jose Vitorio Emiliano, Antonio Helio Castro

Abstract:

In order to advance the hydrogen economy, several industrial sectors can potentially benefit from the trillions of stimulus spending for post-coronavirus. Blending hydrogen into natural gas pipeline networks has been proposed as a means of delivering it during the early market development phase, using separation and purification technologies downstream to extract the pure H₂ close to the point of end-use. This first step has been mentioned around the world as an opportunity to use existing infrastructures for immediate decarbonisation pathways. Among current technologies used to extract hydrogen from mixtures in pipelines or liquid carriers, membrane separation can achieve the highest selectivity. The most efficient approach for the separation of H₂ from other substances by membranes is offered from the research of 2D layered materials due to their exceptional physical and chemical properties. Graphene-based membranes, with their distribution of pore sizes in nanometers and angstrom range, have shown fundamental and economic advantages over other materials. Their combination with the structure of ceramic and geopolymeric materials enabled the synthesis of nanocomposites and the fabrication of membranes with long-term stability and robustness in a relevant range of physical and chemical conditions. Versatile separation modules have been developed for hydrogen separation, which adaptability allows their integration in industrial prototypes for applications in heavy transport, steel, and cement production, as well as small installations at end-user stations of pipeline networks. The developed membranes and prototypes are a practical contribution to the technological challenge of supply pure H₂ for the mentioned industries as well as hydrogen energy-based fuel cells.

Keywords: graphene nano-composite membranes, hydrogen separation and purification, separation modules, indsutrial prototype

Procedia PDF Downloads 136
237 Safety and Maternal Anxiety in Mother's and Baby's Sleep: Cross-sectional Study

Authors: Rayanne Branco Dos Santos Lima, Lorena Pinheiro Barbosa, Kamila Ferreira Lima, Victor Manuel Tegoma Ruiz, Monyka Brito Lima Dos Santos, Maria Wendiane Gueiros Gaspar, Luzia Camila Coelho Ferreira, Leandro Cardozo Dos Santos Brito, Deyse Maria Alves Rocha

Abstract:

Introduction: The lack of regulation of the baby's sleep-wake pattern in the first years of life affects the health of thousands of women. Maternal sleep deprivation can trigger or aggravate psychosomatic problems such as depression, anxiety and stress that can directly influence maternal safety, with consequences for the baby's and mother's sleep. Such conditions can affect the family's quality of life and child development. Objective: To correlate maternal security with maternal state anxiety scores and the mother's and baby's total sleep time. Method: Cross-sectional study carried out with 96 mothers of babies aged 10 to 24 months, accompanied by nursing professionals linked to a Federal University in Northeast Brazil. Study variables were maternal security, maternal state anxiety scores, infant latency and sleep time, and total nocturnal sleep time of mother and infant. Maternal safety was calculated using a four-point Likert scale (1=not at all safe, 2=somewhat safe, 3=very safe, 4=completely safe). Maternal anxiety was measured by State-Trait Anxiety Inventory, state-anxiety subscale whose scores vary from 20 to 80 points, and the higher the score, the higher the anxiety levels. Scores below 33 are considered mild; from 33 to 49, moderate and above 49, high. As for the total nocturnal sleep time, values between 7-9 hours of sleep were considered adequate for mothers, and values between 9-12 hours for the baby, according to the guidelines of the National Sleep Foundation. For the sleep latency time, a time equal to or less than 20 min was considered adequate. It is noteworthy that the latency time and the time of night sleep of the mother and the baby were obtained by the mother's subjective report. To correlate the data, Spearman's correlation was used in the statistical package R version 3.6.3. Results: 96 women and babies participated, aged 22 to 38 years (mean 30.8) and 10 to 24 months (mean 14.7), respectively. The average of maternal security was 2.89 (unsafe); Mean maternal state anxiety scores were 43.75 (moderate anxiety). The babies' average sleep latency time was 39.6 min (>20 min). The mean sleep times of the mother and baby were, respectively, 6h and 42min and 8h and 19min, both less than the recommended nocturnal sleep time. Maternal security was positively correlated with maternal state anxiety scores (rh=266, p=0.009) and negatively correlated with infant sleep latency (rh= -0.30. P=0.003). Baby sleep time was positively correlated with maternal sleep time. (rh 0.46, p<0.001). Conclusion: The more secure the mothers considered themselves, the higher the anxiety scores and the shorter the baby's sleep latency. Also, the longer the baby sleeps, the longer the mother sleeps. Thus, interventions are needed to promote the quality and efficiency of sleep for both mother and baby.

Keywords: sleep, anxiety, infant, mother-child relations

Procedia PDF Downloads 76
236 Influence of Dietary Boron on Gut Absorption of Nutrients, Blood Metabolites and Tissue Pathology

Authors: T. Vijay Bhasker, N. K. S Gowda, P. Krishnamoorthy, D. T. Pal, A. K. Pattanaik, A. K. Verma

Abstract:

Boron (B) is a newer trace element and its biological importance and dietary essentiality is unclear in animals. The available literature suggests its putative role in bone mineralization, antioxidant status and steroid hormone synthesis. A feeding trial was conducted in Wister strain (Rattus norvegicus) albino rats for duration of 90 days. A total of 84 healthy weaned (3-4 weeks) experimental rats were randomly divided into 7 dietary groups (4 replicates of three each) viz., A (Basal diet/ Control), B (Basal diet + 5 ppm B), C (Basal diet + 10 ppm B), D (Basal diet + 20 ppm B), E (Basal diet + 40 ppm B), F (Basal diet-Ca 50%), G (Basal diet-Ca 50% + 40 ppm B). Dietary level of calcium (Ca) was maintained at two levels, 100% and 50% of requirement. Sodium borate was used as source of boron along with other ingredients of basal diet while preparing the pelletized diets. All the rats were kept in proper ventilated laboratory animal house maintained at temperature (23±2º C) and humidity (50 to 70%). At the end of experiment digestibility trial was conducted for 5 days to estimate nutrient digestibility and gut absorption of minerals. Eight rats from each group were sacrificed to collect the vital organs (liver, kidney and spleen) to study histopathology. Blood sample was drawn by heart puncture to determine biochemical profile. The average daily feed intake (g/rat/day), water intake (ml/rat/day) and body weight gain (g/rat/day) were similar among the dietary groups. The digestibility (%) of organic matter and crude fat were significantly improved (P < 0.05) was by B supplementation. The gut absorption (%) Ca was significantly increased (P < 0.01) in B supplemented groups compared to control. However, digestibility of dry matter and crude protein, gut absorption of magnesium and phosphorus showed a non-significant increasing trend with B supplementation. The gut absorption (%) of B (P < 0.01) was significantly lowered (P<0.05) in supplemented groups compared to un-supplemented ones. The serum level of triglycerides (mg/dL), HDL-cholesterol (mg/dL) and alanine transaminase (IU/L) were significantly lowered (P < 0.05) in B supplemented groups. While serum level of glucose (mg/dL) and alkaline phosphatase (KA units) showed a non-significant decreasing trend with B supplementation. However the serum levels of total cholesterol (mg/dL) and aspartate transaminase (IU/L) were similar among dietary groups. The histology sections of kidney and spleen revealed no significant changes among the dietary groups and were observed to be normal in anatomical architecture. However, the liver histology revealed cell degenerative changes with vacuolar degeneration and nuclear condensation in Ca deficient groups. But the comparative degenerative changes were mild in 40 ppm B supplemented Ca deficient group. In conclusion, dietary supplementation of graded levels of boron in rats had a positive effect on metabolism and health by improving nutrient digestibility and gut absorption of Ca. This indicates the beneficial role of dietary boron supplementation.

Keywords: boron, calcium, nutrient utilization, histopathology

Procedia PDF Downloads 301
235 The Effectiveness of Therapeutic Exercise on Motor Skills and Attention of Male Students with Autism Spectrum Disorder

Authors: Masoume Pourmohamadreza-Tajrishi, Parviz Azadfallah

Abstract:

Autism spectrum disorders (ASD) involve myriad aberrant perceptual, cognitive, linguistic, and social behaviors. The term spectrum emphasizes that the disabilities associated with ASD fall on a continuum from relatively mild to severe. People with ASD may display stereotyped behaviors such as twirling, spinning objects, flapping the hands, and rocking. The individuals with ASD exhibit communication problems due to repetitive/restricted behaviors. Children with ASD who lack the motivation to learn, who do not enjoy physical challenges, or whose sensory perception results in confusing or unpleasant feedback from movement may not become sufficiently motivated to practice motor activities. As a result, they may show both a delay in developing certain motor skills. Additionally, attention is an important component of learning. As far as children with ASD have problems in joint attention, many education-based programs are needed to consider some aspects of attention and motor activities development for students with ASD. These programs focus on the basic movement skills that are crucial for the future development of the more complex skills needed in games, dance, sports, gymnastics, active play, and recreational physical activities. The purpose of the present research was to determine the effectiveness of therapeutic exercise on motor skills and attention of male students with ASD. This was an experimental study with a control group. The population consisted of 8-10 year-old male students with ASD and 30 subjects were selected randomly from an available center suitable for the children with ASD. They were evaluated by the Basic Motor Ability Test (BMAT) and Persian version of computerized Stroop color-word test and randomly assigned to an experimental and control group (15 students in per group). The experimental group participated in 16 therapeutic exercise sessions and received therapeutic exercise program (twice a week; each lasting for 45 minutes) designed based on the Spark motor program while the control group did not. All subjects were evaluated by BMAT and Stroop color-word test after the last session again. The collected data were analyzed by using multivariate analysis of covariance (MANCOVA). The results of MANCOVA showed that experimental and control groups had a significant difference in motor skills and at least one of the components of attention (correct responses, incorrect responses, no responses, the reaction time of congruent words and reaction time of incongruent words in the Stroop test). The findings showed that the therapeutic exercise had a significant effect on motor skills and all components of attention in students with ASD. We can conclude that the therapeutic exercise led to promote the motor skills and attention of students with ASD, so it is necessary to design or plan such programs for ASD students to prevent their communication or academic problems.

Keywords: Attention, autism spectrum disorder, motor skills, therapeutic exercise

Procedia PDF Downloads 100
234 Verification of a Simple Model for Rolling Isolation System Response

Authors: Aarthi Sridhar, Henri Gavin, Karah Kelly

Abstract:

Rolling Isolation Systems (RISs) are simple and effective means to mitigate earthquake hazards to equipment in critical and precious facilities, such as hospitals, network collocation facilities, supercomputer centers, and museums. The RIS works by isolating components acceleration the inertial forces felt by the subsystem. The RIS consists of two platforms with counter-facing concave surfaces (dishes) in each corner. Steel balls lie inside the dishes and allow the relative motion between the top and bottom platform. Formerly, a mathematical model for the dynamics of RISs was developed using Lagrange’s equations (LE) and experimentally validated. A new mathematical model was developed using Gauss’s Principle of Least Constraint (GPLC) and verified by comparing impulse response trajectories of the GPLC model and the LE model in terms of the peak displacements and accelerations of the top platform. Mathematical models for the RIS are tedious to derive because of the non-holonomic rolling constraints imposed on the system. However, using Gauss’s Principle of Least constraint to find the equations of motion removes some of the obscurity and yields a system that can be easily extended. Though the GPLC model requires more state variables, the equations of motion are far simpler. The non-holonomic constraint is enforced in terms of accelerations and therefore requires additional constraint stabilization methods in order to avoid the possibility that numerical integration methods can cause the system to go unstable. The GPLC model allows the incorporation of more physical aspects related to the RIS, such as contribution of the vertical velocity of the platform to the kinetic energy and the mass of the balls. This mathematical model for the RIS is a tool to predict the motion of the isolation platform. The ability to statistically quantify the expected responses of the RIS is critical in the implementation of earthquake hazard mitigation.

Keywords: earthquake hazard mitigation, earthquake isolation, Gauss’s Principle of Least Constraint, nonlinear dynamics, rolling isolation system

Procedia PDF Downloads 227
233 Improvement in Blast Furnace Performance Using Softening - Melting Zone Profile Prediction Model at G Blast Furnace, Tata Steel Jamshedpur

Authors: Shoumodip Roy, Ankit Singhania, K. R. K. Rao, Ravi Shankar, M. K. Agarwal, R. V. Ramna, Uttam Singh

Abstract:

The productivity of a blast furnace and the quality of the hot metal produced are significantly dependent on the smoothness and stability of furnace operation. The permeability of the furnace bed, as well as the gas flow pattern, influences the steady control of process parameters. The softening – melting zone that is formed inside the furnace contributes largely in distribution of the gas flow and the bed permeability. A better shape of softening-melting zone enhances the performance of blast furnace, thereby reducing the fuel rates and improving furnace life. Therefore, predictive model of the softening- melting zone profile can be utilized to control and improve the furnace operation. The shape of softening-melting zone depends upon the physical and chemical properties of the agglomerates and iron ore charged in the furnace. The variations in the agglomerate proportion in the burden at G Blast furnace disturbed the furnace stability. During such circumstances, it was analyzed that a w-shape softening-melting zone profile was formed inside the furnace. The formation of w-shape zone resulted in poor bed permeability and non-uniform gas flow. There was a significant increase in the heat loss at the lower zone of the furnace. The fuel demand increased, and the huge production loss was incurred. Therefore, visibility of softening-melting zone profile was necessary in order to pro-actively optimize the process parameters and thereby to operate the furnace smoothly. Using stave temperatures, a model was developed that predicted the shape of the softening-melting zone inside the furnace. It was observed that furnace operated smoothly during inverse V-shape of the zone and vice-versa during w-shape. This model helped to control the heat loss, optimize the burden distribution and lower the fuel rate at G Blast Furnace, TSL Jamshedpur. As a result of furnace stabilization productivity increased by 10% and fuel rate reduced by 80 kg/thm. Details of the process have been discussed in this paper.

Keywords: agglomerate, blast furnace, permeability, softening-melting

Procedia PDF Downloads 227
232 Cost-Effective Materials for Hydrocarbons Recovery from Produced Water

Authors: Fahd I. Alghunaimi, Hind S. Dossary, Norah W. Aljuryyed, Tawfik A. Saleh

Abstract:

Produced water (PW) is one of the largest by-volume waste streams and one of the most challenging effluents in the oil and gas industry. This is due to the variation of contaminants that make up PW. Severalmaterialshavebeen developed, studied, and implemented to remove hydrocarbonsfrom PW. Adsorption is one of the most effective ways ofremoving oil fromPW. In this work, three new and cost-effective hydrophobic adsorbentmaterials based on 9-octadecenoic acid grafted graphene (POG) were synthesized for oil/water separation. Graphene derived from graphite was modified with 9-octadecenoic acid to yield 9-octadecenoic acid grafted graphene (OG). The newsynthesized materials which called POG25, POG50, and POG75 were characterized by using N₂-physisorption (BET) and Fourier transform infrared (FTIR). The BET surface area of POG75 was the highest with 288 m²/g, whereas POG50 was 225 m²/g and POG25 was lowest 79 m²/g. These three materials were also evaluated for their oil-water separation efficiency using a model mixture, whichdemonstrated that POG-75 has the highest oil removal efficiency and the faster rate of the adsorption (Figure-1). POG75 was regenerated, and its performance was verified again with a little reduced adsorption rate compared to the fresh material. The mixtures that used in the performance test were prepared by mixing nonpolar organic liquids such as heptane, dodecane, or hexadecane into the colored water. In general, the new materials showed fast uptake of the certain quantity of the oildue to the high hydrophobicity nature of the materials, which repel water as confirmed by the contact angle of approximately 150˚. Besides that, novel superhydrophobic material was also synthesized by introducing hydrophobic branches of laurate on the surface of the stainless steel mesh (SSM). This novel mesh could help to hold the novel adsorbent materials in a column to remove oil from PW. Both BOG-75 and the novel mesh have the potential to remove oil contaminants from produced water, which will help to provide an opportunity to recover useful components, in addition, to reduce the environmental impact and reuse produced water in several applications such as fracturing.

Keywords: graphite to graphene, oleophilic, produced water, separation

Procedia PDF Downloads 109
231 Random Vertical Seismic Vibrations of the Long Span Cantilever Beams

Authors: Sergo Esadze

Abstract:

Seismic resistance norms require calculation of cantilevers on vertical components of the base seismic acceleration. Long span cantilevers, as a rule, must be calculated as a separate construction element. According to the architectural-planning solution, functional purposes and environmental condition of a designing buildings/structures, long span cantilever construction may be of very different types: both by main bearing element (beam, truss, slab), and by material (reinforced concrete, steel). A choice from these is always linked with bearing construction system of the building. Research of vertical seismic vibration of these constructions requires individual approach for each (which is not specified in the norms) in correlation with model of seismic load. The latest may be given both as deterministic load and as a random process. Loading model as a random process is more adequate to this problem. In presented paper, two types of long span (from 6m – up to 12m) reinforcement concrete cantilever beams have been considered: a) bearing elements of cantilevers, i.e., elements in which they fixed, have cross-sections with large sizes and cantilevers are made with haunch; b) cantilever beam with load-bearing rod element. Calculation models are suggested, separately for a) and b) types. They are presented as systems with finite quantity degree (concentrated masses) of freedom. Conditions for fixing ends are corresponding with its types. Vertical acceleration and vertical component of the angular acceleration affect masses. Model is based on assumption translator-rotational motion of the building in the vertical plane, caused by vertical seismic acceleration. Seismic accelerations are considered as random processes and presented by multiplication of the deterministic envelope function on stationary random process. Problem is solved within the framework of the correlation theory of random process. Solved numerical examples are given. The method is effective for solving the specific problems.

Keywords: cantilever, random process, seismic load, vertical acceleration

Procedia PDF Downloads 165
230 Structural Design of a Relief Valve Considering Strength

Authors: Nam-Hee Kim, Jang-Hoon Ko, Kwon-Hee Lee

Abstract:

A relief valve is a mechanical element to keep safety by controlling high pressure. Usually, the high pressure is relieved by using the spring force and letting the fluid to flow from another way out of system. When its normal pressure is reached, the relief valve can return to initial state. The relief valve in this study has been applied for pressure vessel, evaporator, piping line, etc. The relief valve should be designed for smooth operation and should satisfy the structural safety requirement under operating condition. In general, the structural analysis is performed by following fluid flow analysis. In this process, the FSI (Fluid-Structure Interaction) is required to input the force obtained from the output of the flow analysis. Firstly, this study predicts the velocity profile and the pressure distribution in the given system. In this study, the assumptions for flow analysis are as follows: • The flow is steady-state and three-dimensional. • The fluid is Newtonian and incompressible. • The walls of the pipe and valve are smooth. The flow characteristics in this relief valve does not induce any problem. The commercial software ANSYS/CFX is utilized for flow analysis. On the contrary, very high pressure may cause structural problem due to severe stress. The relief valve is made of body, bonnet, guide, piston and nozzle, and its material is stainless steel. To investigate its structural safety, the worst case loading is considered as the pressure of 700 bar. The load is applied to inside the valve, which is greater than the load obtained from FSI. The maximum stress is calculated as 378 MPa by performing the finite element analysis. However, the value is greater than its allowable value. Thus, an alternative design is suggested to improve the structural performance through case study. We found that the sensitive design variable to the strength is the shape of the nozzle. The case study is to vary the size of the nozzle. Finally, it can be seen that the suggested design satisfy the structural design requirement. The FE analysis is performed by using the commercial software ANSYS/Workbench.

Keywords: relief valve, structural analysis, structural design, strength, safety factor

Procedia PDF Downloads 280
229 Impact Location From Instrumented Mouthguard Kinematic Data In Rugby

Authors: Jazim Sohail, Filipe Teixeira-Dias

Abstract:

Mild traumatic brain injury (mTBI) within non-helmeted contact sports is a growing concern due to the serious risk of potential injury. Extensive research is being conducted looking into head kinematics in non-helmeted contact sports utilizing instrumented mouthguards that allow researchers to record accelerations and velocities of the head during and after an impact. This does not, however, allow the location of the impact on the head, and its magnitude and orientation, to be determined. This research proposes and validates two methods to quantify impact locations from instrumented mouthguard kinematic data, one using rigid body dynamics, the other utilizing machine learning. The rigid body dynamics technique focuses on establishing and matching moments from Euler’s and torque equations in order to find the impact location on the head. The methodology is validated with impact data collected from a lab test with the dummy head fitted with an instrumented mouthguard. Additionally, a Hybrid III Dummy head finite element model was utilized to create synthetic kinematic data sets for impacts from varying locations to validate the impact location algorithm. The algorithm calculates accurate impact locations; however, it will require preprocessing of live data, which is currently being done by cross-referencing data timestamps to video footage. The machine learning technique focuses on eliminating the preprocessing aspect by establishing trends within time-series signals from instrumented mouthguards to determine the impact location on the head. An unsupervised learning technique is used to cluster together impacts within similar regions from an entire time-series signal. The kinematic signals established from mouthguards are converted to the frequency domain before using a clustering algorithm to cluster together similar signals within a time series that may span the length of a game. Impacts are clustered within predetermined location bins. The same Hybrid III Dummy finite element model is used to create impacts that closely replicate on-field impacts in order to create synthetic time-series datasets consisting of impacts in varying locations. These time-series data sets are used to validate the machine learning technique. The rigid body dynamics technique provides a good method to establish accurate impact location of impact signals that have already been labeled as true impacts and filtered out of the entire time series. However, the machine learning technique provides a method that can be implemented with long time series signal data but will provide impact location within predetermined regions on the head. Additionally, the machine learning technique can be used to eliminate false impacts captured by sensors saving additional time for data scientists using instrumented mouthguard kinematic data as validating true impacts with video footage would not be required.

Keywords: head impacts, impact location, instrumented mouthguard, machine learning, mTBI

Procedia PDF Downloads 198
228 A Preliminary Study on the Effects of Equestrian and Basketball Exercises in Children with Autism

Authors: Li Shuping, Shu Huaping, Yi Chaofan, Tao Jiang

Abstract:

Equestrian practice is often considered having a unique effect on improving symptoms in children with autism. This study evaluated and measured the changes in daily behavior, morphological, physical function, and fitness indexes of two group children with autism by means of 12 weeks of equestrian and basketball exercises. 19 clinically diagnosed children with moderate/mild autism were randomly divided into equestrian group (9 children, age=10.11±1.90y) and basketball group (10 children, age=10.70±2.16y). Both the equestrian and basketball groups practiced twice a week for 45 to 60 minutes each time. Three scales, the Autism Behavior Checklist (ABC), the Childhood Autism Rating Scale (CARS) and the Clancy Autism Behavior Scale (CABS) were used to assess their human behavior and psychology. Four morphological, seven physical function and fitness indicators were measured to evaluate the effects of the two exercises on the children’s body. The evaluations were taken by every four weeks ( pre-exercise, the 4th week, the 8th week and 12th week (post exercise). The result showed that the total scores of ABC, CARS and CABS, the dimension scores of ABC on the somatic motor, language and life self-care obtained after exercise were significantly lower than those obtained before 12 week exercises in both groups. The ABC feeling dimension scores of equestrian group and ABC communication dimension score of basketball group were significantly lower,and The upper arm circumference, sitting forward flexion, 40 second sit-up, 15s lateral jump, vital capacity, and single foot standing of both groups were significantly higher than that of before exercise.. The BMI of equestrian group was significantly reduced. The handgrip strength of basketball group was significantly increased. In conclusion, both types of exercises could improve daily behavior, morphological, physical function, and fitness indexes of the children with autism. However, the behavioral psychological scores, body morphology and function indicators and time points were different in the middle and back of the two interventions.But the indicators and the timing of the improvement were different. To the group of equestrian, the improvement of the flexibility occurred at week 4, the improvement of the sensory perception, control and use their own body, and promote the development of core strength endurance, coordination and cardiopulmonary function occurred at week 8,and the improvement of core strength endurance, coordination and cardiopulmonary function occurred at week 12. To the group of basketball, the improvement of the hand strength, balance, flexibility and cardiopulmonary function occurred at week 4, the improvement of the self-care ability and language expression ability, and core strength endurance and coordination occurred at week 8, the improvement of the control and use of their own body and social interaction ability occurred at week 12. In comparison of the exercise effects, the equestrian exercise improved the physical control and application ability appeared earlier than that of basketball group. Basketball exercise improved the language expression ability, self-care ability, balance ability and cardiopulmonary function of autistic children appeared earlier than that of equestrian group.

Keywords: intervention, children with autism, equestrain, basketball

Procedia PDF Downloads 45