Search results for: transfer pricing
1099 Limitation of Parallel Flow in Three-Dimensional Elongated Porous Domain Subjected to Cross Heat and Mass Flux
Authors: Najwa Mimouni, Omar Rahli, Rachid Bennacer, Salah Chikh
Abstract:
In the present work 2D and 3D numerical simulations of double diffusion natural convection in an elongated enclosure filled with a binary fluid saturating a porous medium are carried out. In the formulation of the problem, the Boussinesq approximation is considered and cross Neumann boundary conditions are specified for heat and mass walls conditions. The numerical method is based on the control volume approach with the third order QUICK scheme. Full approximation storage (FAS) with full multigrid (FMG) method is used to solve the problem. For the explored large range of the controlling parameters, we clearly evidenced that the increase in the depth of the cavity i.e. the lateral aspect ratio has an important effect on the flow patterns. The 2D perfect parallel flows obtained for a small lateral aspect ratio are drastically destabilized by increasing the cavity lateral dimension. This yields a 3D fluid motion with a much more complicated flow pattern and the classically studied 2D parallel flows are impossible.Keywords: bifurcation, natural convection, heat and mass transfer, parallel flow, porous media
Procedia PDF Downloads 4731098 Determination of Weld Seam Thickness in Welded Connection Subjected to Local Buckling Effects
Authors: Tugrul Tulunay, Iyas Devran Celik
Abstract:
When the materials used in structural steel industry are evaluated, box beam profiles are considerably preferred. As a result of the cross-sectional properties that these profiles possess, the connection of these profiles to each other and to profiles having different types of cross sections is becoming viable by means of additional measures. An important point to note in such combinations is continuous transfer of internal forces from element to element. At the beginning to ensure this continuity, header plate is needed to use. The connection of the plates to the elements works mainly through welds. In this study, it is aimed to determine the ideal welding thickness in box beam under bending effect and the joints exposed to local buckles that will form in the column. The connection with box column and box beam designed in this context was made by means of corner and circular filler welds. Corner welds of different thickness and analysis by types with different lengths depending on plate dimensions in numerical models were made with the help of ANSYS Workbench program and examined behaviours.Keywords: welding thickness, box beam-column joints, design of steel structures, calculation and construction principles 2016, welded joints under local buckling
Procedia PDF Downloads 1671097 The X-Ray Response Team: Building a National Health Pre-Hospital Service
Authors: Julian Donovan, Jessica Brealey, Matthew Bowker, Marianne Feghali, Gregory Smith, Lee Thompson, Deborah Henderson
Abstract:
This article details the development of the X-ray response team (XRT), a service that utilises innovative technology to safely deliver acute and elective imaging and medical assessment service in the pre-hospital and community setting. This involves a partnership between Northumbria Healthcare NHS Foundation Trust’s Radiology and Emergency Medicine departments and the North East Ambulance Service to create a multidisciplinary prehospital team. The team committed to the delivery of a two-day acute service every week, alongside elective referrals, starting in November 2020. The service was originally made available to a 15-mile radius surrounding the Northumbria Hospital. Due to demand, this was expanded to include the North Tyneside and Northumberland regions. The target population was specified as frail and vulnerable patients, as well as those deemed to benefit from staying in their own environment. Within the first two months, thirty-six percent of patients assessed were able to stay at home due to the provision of off-site imaging. In the future, this service aims to allow patient transfer directly to an appropriate ward or clinic, bypassing the emergency department to improve the patient journey and reduce emergency care pressures.Keywords: frailty, imaging, pre-hospital, X-ray
Procedia PDF Downloads 2011096 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network
Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar
Abstract:
Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network
Procedia PDF Downloads 5171095 Green Innovation and Artificial Intelligence in Service
Authors: Fatemeh Khalili Varnamkhasti
Abstract:
Numerous nations have recognized the critical ought to address natural issues, such as discuss contamination, squander transfer, worldwide warming, and common asset consumption, through the application of green innovation. The rise of cleverly advances has driven mechanical basic changes that will offer assistance accomplish carbon decrease. Manufactured insights (AI) innovation is an imperative portion of digitalization, giving unused mechanical apparatuses and bearings for the moo carbon advancement of endeavors. Quickening the brilliantly change of fabricating industry is an critical vital choice to realize the green advancement change. The reason why fabricating insights can advance the advancement of green advancement execution is that fabricating insights is conducive to the generation of "innovation advancement impact" and "fetched decrease impact" so as to advance green innovation advancement, at that point viably increment the alluring yields and essentially diminish the undesirable yields. AI improvement will boost GTI as it were when the escalated of natural direction and organization environment is over a certain edge esteem. In any case, the AI improvement spoken to by mechanical robot applications still has no self-evident impact on GTI, indeed, when the R&D venture surpasses a certain edge.Keywords: greenhouse gas emissions, green infrastructure, artificial intelligence, environmental protection
Procedia PDF Downloads 701094 Knowledge Transfer in Industrial Clusters
Authors: Ana Paula Lisboa Sohn, Filipa Dionísio Vieria, Nelson Casarotto, Idaulo José Cunha
Abstract:
This paper aims at identifying and analyzing the knowledge transmission channels in textile and clothing clusters located in Brazil and in Europe. Primary data was obtained through interviews with key individuals. The collection of primary data was carried out based on a questionnaire with ten categories of indicators of knowledge transmission. Secondary data was also collected through a literature review and through international organizations sites. Similarities related to the use of the main transmission channels of knowledge are observed in all cases. The main similarities are: influence of suppliers of machinery, equipment and raw materials; imitation of products and best practices; training promoted by technical institutions and businesses; and cluster companies being open to acquire new knowledge. The main differences lie in the relationship between companies, where in Europe the intensity of this relationship is bigger when compared to Brazil. The differences also occur in importance and frequency of the relationship with the government, with the cultural environment, and with the activities of research and development. It is also found factors that reduce the importance of geographical proximity in transmission of knowledge, and in generating trust and the establishment of collaborative behavior.Keywords: industrial clusters, interorganizational learning, knowledge transmission channels, textile and clothing industry
Procedia PDF Downloads 3661093 Local Female Dresses of Yuruk Community in Günaydin Village of Balikesir Region
Authors: Melek Tufan, Filiz Erden, E. Elhan Özus
Abstract:
Apparel is a fact that has assigned wide cultural functions in development process even if it basically aims at protection during mankind's cultural development and course of live. It is an important cultural element that has been shaped by ecological conditions, social and personal values, traditions, cultural and economic conditions, at the same time it is a bearer of culture. Customs and traditions that maintain culture create differences in dressing styles of the region. These differences create traditional clothing forms specific to each region, which are different from each other or show close similarities. Differences which have dominant features create sense of dress specific to community owned. Samples of a kind of dress worn over salwar, long shirt, jacket, salwar and underpants that are types of local female dresses available in houses of yuruk community in Günaydın village of Balıkesir region have been found. By examining local dresses in terms of material, color, cutting, sewing, ornamentation technique and ornamentation subject and it has been aimed to record them with observation forms and transfer them to the next generations.Keywords: women, traditional, Turkish Culture, art, fashion
Procedia PDF Downloads 3401092 Destination Management Organization in the Digital Era: A Data Framework to Leverage Collective Intelligence
Authors: Alfredo Fortunato, Carmelofrancesco Origlia, Sara Laurita, Rossella Nicoletti
Abstract:
In the post-pandemic recovery phase of tourism, the role of a Destination Management Organization (DMO) as a coordinated management system of all the elements that make up a destination (attractions, access, marketing, human resources, brand, pricing, etc.) is also becoming relevant for local territories. The objective of a DMO is to maximize the visitor's perception of value and quality while ensuring the competitiveness and sustainability of the destination, as well as the long-term preservation of its natural and cultural assets, and to catalyze benefits for the local economy and residents. In carrying out the multiple functions to which it is called, the DMO can leverage a collective intelligence that comes from the ability to pool information, explicit and tacit knowledge, and relationships of the various stakeholders: policymakers, public managers and officials, entrepreneurs in the tourism supply chain, researchers, data journalists, schools, associations and committees, citizens, etc. The DMO potentially has at its disposal large volumes of data and many of them at low cost, that need to be properly processed to produce value. Based on these assumptions, the paper presents a conceptual framework for building an information system to support the DMO in the intelligent management of a tourist destination tested in an area of southern Italy. The approach adopted is data-informed and consists of four phases: (1) formulation of the knowledge problem (analysis of policy documents and industry reports; focus groups and co-design with stakeholders; definition of information needs and key questions); (2) research and metadatation of relevant sources (reconnaissance of official sources, administrative archives and internal DMO sources); (3) gap analysis and identification of unconventional information sources (evaluation of traditional sources with respect to the level of consistency with information needs, the freshness of information and granularity of data; enrichment of the information base by identifying and studying web sources such as Wikipedia, Google Trends, Booking.com, Tripadvisor, websites of accommodation facilities and online newspapers); (4) definition of the set of indicators and construction of the information base (specific definition of indicators and procedures for data acquisition, transformation, and analysis). The framework derived consists of 6 thematic areas (accommodation supply, cultural heritage, flows, value, sustainability, and enabling factors), each of which is divided into three domains that gather a specific information need to be represented by a scheme of questions to be answered through the analysis of available indicators. The framework is characterized by a high degree of flexibility in the European context, given that it can be customized for each destination by adapting the part related to internal sources. Application to the case study led to the creation of a decision support system that allows: •integration of data from heterogeneous sources, including through the execution of automated web crawling procedures for data ingestion of social and web information; •reading and interpretation of data and metadata through guided navigation paths in the key of digital story-telling; •implementation of complex analysis capabilities through the use of data mining algorithms such as for the prediction of tourist flows.Keywords: collective intelligence, data framework, destination management, smart tourism
Procedia PDF Downloads 1211091 Analytic Solutions of Solitary Waves in Three-Level Unbalanced Dense Media
Authors: Sofiane Grira, Hichem Eleuch
Abstract:
We explore the analytical soliton-pair solutions for unbalanced coupling between the two coherent lights and the atomic transitions in a dissipative three-level system in lambda configuration. The two allowed atomic transitions are interacting resonantly with two laser fields. For unbalanced coupling, it is possible to derive an explicit solution for non-linear differential equations describing the soliton-pair propagation in this three-level system with the same velocity. We suppose that the spontaneous emission rates from the excited state to both ground states are the same. In this work, we focus on such case where we consider the coupling between the transitions and the optical fields are unbalanced. The existence conditions for the soliton-pair propagations are determined. We will show that there are four possible configurations of the soliton-pair pulses. Two of them can be interpreted as a couple of solitons with same directions of polarization and the other two as soliton-pair with opposite directions of polarization. Due to the fact that solitons have stable shapes while propagating in the considered media, they are insensitive to noise and dispersion. Our results have potential applications in data transfer with the soliton-pair pulses, where a dissipative three-level medium could be a realistic model for the optical communication media.Keywords: non-linear differential equations, solitons, wave propagations, optical fiber
Procedia PDF Downloads 1361090 Efficiency Improvement for Conventional Rectangular Horn Antenna by Using EBG Technique
Authors: S. Kampeephat, P. Krachodnok, R. Wongsan
Abstract:
The conventional rectangular horn has been used for microwave antenna a long time. Its gain can be increased by enlarging the construction of horn to flare exponentially. This paper presents a study of the shaped woodpile Electromagnetic Band Gap (EBG) to improve its gain for conventional horn without construction enlargement. The gain enhancement synthesis method for shaped woodpile EBG that has to transfer the electromagnetic fields from aperture of a horn antenna through woodpile EBG is presented by using the variety of shaped woodpile EBGs such as planar, triangular, quadratic, circular, gaussian, cosine, and squared cosine structures. The proposed technique has the advantages of low profile, low cost for fabrication and light weight. The antenna characteristics such as reflection coefficient (S11), radiation patterns and gain are simulated by utilized A Computer Simulation Technology (CST) software. With the proposed concept, an antenna prototype was fabricated and experimented. The S11 and radiation patterns obtained from measurements show a good impedance matching and a gain enhancement of the proposed antenna. The gain at dominant frequency of 10 GHz is 25.6 dB, application for X- and Ku-Band Radar, that higher than the gain of the basic rectangular horn antenna around 8 dB with adding only one appropriated EBG structures.Keywords: conventional rectangular horn antenna, electromagnetic band gap, gain enhancement, X- and Ku-band radar
Procedia PDF Downloads 2781089 Investigation on Phase Change Device for Satellite Thermal Control
Authors: Meng-Hao Chen, Jeng-Der Huang, Chia-Ray Chen
Abstract:
With the new space mission need of high power dissipation, low thermal inertia and cyclical operation unit, such as high power amplifier (HPA) for synthetic aperture radar (SAR) satellite, the development of phase change material (PCM) technology seems to be a proper solution. Generally, the expected benefit of PCM solution is to eliminate temperature variation and maintain the stability of electronic units by using the latent heat during phase change process. It can also result in advantages of decreased radiator area and heater power. However, the PCMs have a drawback of low thermal conductivity that leads to large temperature gradient between the heat source and PCM. This paper thus presents both experimental and simplified numerical investigations on configuration design of PCM’s container. A comparison was carried out between the container with and without internal pin-fins structure. The results showed the benefit of pin-fins that act as the heat transfer enhancer to improve the temperature uniformity during phase transition. Furthermore, thermal testing and measurements were presented for four PCM candidates (i.e. n-octadecane, n-eicosane, glycerin and gallium). The solidification and supercooling behaviors on different PCMs were compared with available literature data and discussed in this studyKeywords: phase change material (PCM), thermal control, solidification, supercooling
Procedia PDF Downloads 3851088 Identification of the Interior Noise Sources of Rail Vehicles
Authors: Hyo-In Koh, Anders Nordborg, Alex Sievi, Chun-Kwon Park
Abstract:
The noise source for the interior room of the high speed train is constituted by the rolling contact between the wheel and the rail, aerodynamic noise and structure-borne sound generated through the vibrations of bogie, connection points to the carbody. Air-borne sound is radiated through the panels and structures into the interior room of the trains. The high-speed lines are constructed with slab track systems and many tunnels. The interior noise level and the frequency characteristics vary according to types of the track structure and the infrastructure. In this paper the main sound sources and the transfer paths are studied to find out the contribution characteristics of the sources to the interior noise of a high-speed rail vehicle. For the identification of the acoustic power of each parts of the rolling noise sources a calculation model of wheel/rail noise is developed and used. For the analysis of the transmission of the sources to the interior noise noise and vibration are measured during the operation of the vehicle. According to operation speeds, the mainly contributed sources and the paths could be analyzed. Results of the calculations on the source generation and the results of the measurement with a high-speed train are shown and discussed.Keywords: rail vehicle, high-speed, interior noise, noise source
Procedia PDF Downloads 4001087 Mechanically Strong and Highly Thermal Conductive Polymer Composites Enabled by Three-Dimensional Interconnected Graphite Network
Authors: Jian Zheng
Abstract:
Three-dimensional (3D) network structure has been recognized as an effective approach to enhance the mechanical and thermal conductive properties of polymeric composites. However, it has not been applied in energetic materials. In this work, a fluoropolymer based composite with vertically oriented and interconnected 3D graphite network was fabricated for polymer bonded explosives (PBXs). Here, the graphite and graphene oxide platelets were mixed, and self-assembled via rapid freezing and using crystallized ice as the template. The 3D structure was finally obtained by freezing-dry and infiltrating with the polymer. With the increasing of filler fraction and cooling rate, the thermal conductivity of the polymer composite was significantly improved to 2.15 W m⁻¹ K⁻¹ by 1094% than that of pure polymer. Moreover, the mechanical properties, such as tensile strength and elastic modulus, were enhanced by 82% and 310%, respectively, when the highly ordered structure was embedded in the polymer. We attribute the increased thermal and mechanical properties to this 3D network, which is beneficial to the effective heat conduction and force transfer. This study supports a desirable way to fabricate the strong and thermal conductive fluoropolymer composites used for the high-performance polymer bonded explosives (PBXs).Keywords: mechanical properties, oriented network, graphite polymer composite, thermal conductivity
Procedia PDF Downloads 1611086 Increase Daily Production Rate of Methane Through Pasteurization Cow Dung
Authors: Khalid Elbadawi Elshafea, Mahmoud Hassan Onsa
Abstract:
This paper presents the results of the experiments to measure the impact of pasteurization cows dung on important parameter of anaerobic digestion (retention time) and measure the effect in daily production rate of biogas, were used local materials in these experiments, two experiments were carried out in two bio-digesters (1 and 2) (18.0 L), volume of the mixture 16.0-litre and the mass of dry matter in the mixture 4.0 Kg of cow dung. Pasteurization process has been conducted on the mixture into the digester 2, and put two digesters under room temperature. Digester (1) produced 268.5 liter of methane in period of 49 days with daily methane production rate 1.37L/Kg/day, and digester (2) produced 302.7-liter of methane in period of 26 days with daily methane production rate 2.91 L/Kg/day. This study concluded that the use of system pasteurization cows dung speed up hydrolysis in anaerobic process, because heat to certain temperature in certain time lead to speed up chemical reactions (transfer Protein to Amino acids, Carbohydrate to Sugars and Fat to Long chain fatty acids), this lead to reduce the retention time an therefore increase the daily methane production rate with 212%.Keywords: methane, cow dung, daily production, pasteurization, increase
Procedia PDF Downloads 3091085 Evaluation of Response Modification Factor and Behavior of Seismic Base-Isolated RC Structures
Authors: Mohammad Parsaeimaram, Fang Congqi
Abstract:
In this paper, one of the significant seismic design parameter as response modification factor in reinforced concrete (RC) buildings with base isolation system was evaluated. The seismic isolation system is a capable approach to absorbing seismic energy at the base and transfer to the substructure with lower response modification factor as compared to non-isolated structures. A response spectrum method and static nonlinear pushover analysis in according to Uniform Building Code (UBC-97), have been performed on building models involve 5, 8, 12 and 15 stories building with fixed and isolated bases consist of identical moment resisting configurations. The isolation system is composed of lead rubber bearing (LRB) was designed with help UBC-97 parameters. The force-deformation behavior of isolators was modeled as bi-linear hysteretic behavior which can be effectively used to create the isolation systems. The obtained analytical results highlight the response modification factor of considered base isolation system with higher values than recommended in the codes. The response modification factor is used in modern seismic codes to scale down the elastic response of structures.Keywords: response modification factor, base isolation system, pushover analysis, lead rubber bearing, bi-linear hysteretic
Procedia PDF Downloads 3241084 Eradication of Gram-Positive Bacteria by Photosensitizers Immobilized in Polymers
Authors: Marina Nisnevitch, Anton Valkov, Faina Nakonechny, Kate Adar Raik, Yamit Mualem
Abstract:
Photosensitizers are dye compounds belonging to various chemical groups that in all the cases have a developed structure of conjugated double bonds. Under illumination with visible light, the photosensitizers are excited and transfer the absorbed energy to the oxygen dissolved in an aqueous phase, leading to production of a reactive oxygen species which cause irreversible damage to bacterial cells. When immobilized onto a solid phase, photosensitizers preserve their antibacterial properties. In the present study, photosensitizers were immobilized in polyethylene or propylene and tested for antimicrobial activity against Gram-positive S. aureus, S. epidermidis and Streptococcus sp. For this purpose, water-soluble photosensitizers, Rose Bengal sodium salt, and methylene blue as well as water-insoluble hematoporphyrin and Rose Bengal lactone, were immobilized by dissolution in melted polymers to yield 3 mm diameter rods and 3-5 mm beads. All four photosensitizers were found to be effective in the eradication of Gram-positive bacteria under illumination by a white luminescent lamp or sunlight. The immobilized photosensitizers can be applied for continuous water disinfection; they can be easily removed at the end of the treatment and reused.Keywords: antimicrobial polymers, gram-positive bacteria, immobilization of photosensitizers, photodynamic antibacterial activity
Procedia PDF Downloads 2421083 Interfacial Investigation and Chemical Bonding in Graphene Reinforced Alumina Ceramic Nanocomposites
Authors: Iftikhar Ahmad, Mohammad Islam
Abstract:
Thermally exfoliated graphene nanomaterial was reinforced into Al2O3 ceramic and the nanocomposites were consolidated using rapid high-frequency induction heat sintering route. The resulting nanocomposites demonstrated higher mechanical properties due to efficient GNS incorporation and chemical interaction with the Al2O3 matrix grains. The enhancement in mechanical properties is attributed to (i) uniformly-dispersed GNS in the consolidated structure (ii) ability of GNS to decorate Al2O3 nanoparticles and (iii) strong GNS/Al2O3 chemical interaction during colloidal mixing and pullout/crack bridging toughening mechanisms during mechanical testing. The GNS/Al2O3 interaction during different processing stages was thoroughly examined by thermal and structural investigation of the interfacial area. The formation of an intermediate aluminum oxycarbide phase (Al2OC) via a confined carbothermal reduction reaction at the GNS/Al2O3 interface was observed using advanced electron microscopes. The GNS surface roughness improves GNS/Al2O3 mechanical locking and chemical compatibility. The sturdy interface phase facilitates efficient load transfer and delayed failure through impediment of crack propagation. The resulting nanocomposites, therefore, offer superior toughness.Keywords: ceramics, nanocomposites, interfaces, nanostructures, electron microscopy, Al2O3
Procedia PDF Downloads 3581082 Estimating the Government Consumption and Investment Multipliers Using Local Projection Method on the US Data from 1966 to 2020
Authors: Mustofa Mahmud Al Mamun
Abstract:
Government spending, one of the major components of gross domestic product (GDP), is composed of government consumption, investment, and transfer payments. A change in government spending during recessionary periods can generate an increase in GDP greater than the increase in spending. This is called the "multiplier effect". Accurate estimation of government spending multiplier is important because fiscal policy has been used to stimulate a flagging economy. Many recent studies have focused on identifying parts of the economy that responds more to a stimulus under a variety of circumstances. This paper used the US dataset from 1966 to 2020 and local projection method assuming standard identification strategy to estimate the multipliers. The model includes important macroaggregates and controls for forecasted government spending, interest rate, consumer price index (CPI), export, import, and level of public debt. Investment multipliers are found to be positive and larger than the consumption multipliers. Consumption multipliers are either negative or not significantly different than zero. Results do not vary across the business cycle. However, the consumption multiplier estimated from pre-1980 data is positive.Keywords: business cycle, consumption multipliers, forecasted government spending, investment multipliers, local projection method, zero lower bound
Procedia PDF Downloads 2321081 Combining Chiller and Variable Frequency Drives
Authors: Nasir Khalid, S. Thirumalaichelvam
Abstract:
In most buildings, according to US Department of Energy Data Book, the electrical consumption attributable to centralized heating and ventilation of air- condition (HVAC) component can be as high as 40-60% of the total electricity consumption for an entire building. To provide efficient energy management for the market today, researchers are finding new ways to develop a system that can save electrical consumption of buildings even more. In this concept paper, a system known as Intelligent Chiller Energy Efficiency (iCEE) System is being developed that is capable of saving up to 25% from the chiller’s existing electrical energy consumption. In variable frequency drives (VFDs), research has found significant savings up to 30% of electrical energy consumption. Together with the VFDs at specific Air Handling Unit (AHU) of HVAC component, this system will save even more electrical energy consumption. The iCEE System is compatible with any make, model or age of centrifugal, rotary or reciprocating chiller air-conditioning systems which are electrically driven. The iCEE system uses engineering principles of efficiency analysis, enthalpy analysis, heat transfer, mathematical prediction, modified genetic algorithm, psychometrics analysis, and optimization formulation to achieve true and tangible energy savings for consumers.Keywords: variable frequency drives, adjustable speed drives, ac drives, chiller energy system
Procedia PDF Downloads 5581080 The Influence of Swirl Burner Geometry on the Sugar-Cane Bagasse Injection and Burning
Authors: Juan Harold Sosa-Arnao, Daniel José de Oliveira Ferreira, Caice Guarato Santos, Justo Emílio Alvarez, Leonardo Paes Rangel, Song Won Park
Abstract:
A comprehensive CFD model is developed to represent heterogeneous combustion and two burner designs of supply sugar-cane bagasse into a furnace. The objective of this work is to compare the insertion and burning of a Brazilian south-eastern sugar-cane bagasse using a new swirl burner design against an actual geometry under operation. The new design allows control the particles penetration and scattering inside furnace by adjustment of axial/tangential contributions of air feed without change their mass flow. The model considers turbulence using RNG k-, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller-Naumann model. The obtained results are favorable to use of new design swirl burner because its axial/tangential control promotes more penetration or more scattering than actual design and allows reproduce the actual design operation without change the overall mass flow supply.Keywords: comprehensive CFD model, sugar-cane bagasse combustion, swirl burner, contributions
Procedia PDF Downloads 4401079 A New Design of Vacuum Membrane Distillation Module for Water Desalination
Authors: Adnan Alhathal Alanezi
Abstract:
The performance of vacuum membrane distillation (VMD) process for water desalination was investigated utilizing a new design membrane module using two commercial polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) flat sheet hydrophobic membranes. The membrane module's design demonstrated its suitability for achieving a high heat transfer coefficient of the order of 103 (W/m2K) and a high Reynolds number (Re). The heat and mass transport coefficients within the membrane module were measured using VMD experiments. The permeate flux has been examined in relation to process parameters such as feed temperature, feed flow rate, vacuum degree, and feed concentration. Because the feed temperature, feed flow rate, and vacuum degree all play a role in improving the performance of the VMD process, optimizing all of these parameters is the best method to achieve a high permeate flux. In VMD desalination, the PTFE membrane outperformed the PVDF membrane. When compared to previous studies, the obtained water flux is relatively high, reaching 43.8 and 52.6 (kg/m2h) for PVDF and PTFE, respectively. For both membranes, the salt rejection of NaCl was greater than 99%.Keywords: desalination, vacuum membrane distillation, PTFE and PVDF, hydrophobic membranes, O-ring membrane module
Procedia PDF Downloads 891078 Linking Excellence in Biomedical Knowledge and Computational Intelligence Research for Personalized Management of Cardiovascular Diseases within Personal Health Care
Authors: T. Rocha, P. Carvalho, S. Paredes, J. Henriques, A. Bianchi, V. Traver, A. Martinez
Abstract:
The main goal of LINK project is to join competences in intelligent processing in order to create a research ecosystem to address two central scientific and technical challenges for personal health care (PHC) deployment: i) how to merge clinical evidence knowledge in computational decision support systems for PHC management and ii) how to provide achieve personalized services, i.e., solutions adapted to the specific user needs and characteristics. The final goal of one of the work packages (WP2), designated Sustainable Linking and Synergies for Excellence, is the definition, implementation and coordination of the necessary activities to create and to strengthen durable links between the LiNK partners. This work focuses on the strategy that has been followed to achieve the definition of the Research Tracks (RT), which will support a set of actions to be pursued along the LiNK project. These include common research activities, knowledge transfer among the researchers of the consortium, and PhD student and post-doc co-advisement. Moreover, the RTs will establish the basis for the definition of concepts and their evolution to project proposals.Keywords: LiNK Twin European Project, personal health care, cardiovascular diseases, research tracks
Procedia PDF Downloads 2161077 Flow Prediction of Boundary Shear Stress with Enlarging Flood Plains
Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua
Abstract:
River is our main source of water which is a form of open channel flow and the flow in open channel provides with many complex phenomenon of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress and depth averaged velocity. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, CES software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel and the results is compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.Keywords: depth average velocity, non prismatic compound channel, relative flow depth, velocity distribution
Procedia PDF Downloads 1521076 CFD Simulation on Gas Turbine Blade and Effect of Twisted Hole Shape on Film Cooling Effectiveness
Authors: Thulodin Mat Lazim, Aminuddin Saat, Ammar Fakhir Abdulwahid, Zaid Sattar Kareem
Abstract:
Film cooling is one of the cooling systems investigated for the application to gas turbine blades. Gas turbines use film cooling in addition to turbulence internal cooling to protect the blades outer surface from hot gases. The present study concentrates on the numerical investigation of film cooling performance for a row of twisted cylindrical holes in modern turbine blade. The adiabatic film effectiveness and the heat transfer coefficient are determined numerical on a flat plate downstream of a row of inclined different cross section area hole exit by using Computational Fluid Dynamics (CFD). The swirling motion of the film coolant was induced the twisted angle of film cooling holes, which inclined an angle of α toward the vertical direction and surface of blade turbine. The holes angle α of the impingement mainstream was changed from 90°, 65°, 45°, 30° and 20°. The film cooling effectiveness on surface of blade turbine wall was measured by using 3D Computational Fluid Dynamics (CFD). Results showed that the effectiveness of rectangular twisted hole has the effectiveness among other cross section area of the hole at blowing ratio (0.5, 1, 1.5 and 2).Keywords: turbine blade cooling, film cooling, geometry shape of hole, turbulent flow
Procedia PDF Downloads 5411075 Creeping Control Strategy for Direct Shift Gearbox Based on the Investigation of Temperature Variation of the Wet Clutch
Authors: Biao Ma, Jikai Liu, Man Chen, Jianpeng Wu, Liyong Wang, Changsong Zheng
Abstract:
Proposing an appropriate control strategy is an effective and practical way to address the overheat problems of the wet multi-plate clutch in Direct Shift Gearbox under the long-time creeping condition. To do so, the temperature variation of the wet multi-plate clutch is investigated firstly by establishing a thermal resistance model for the gearbox cooling system. To calculate the generated heat flux and predict the clutch temperature precisely, the friction torque model is optimized by introducing an improved friction coefficient, which is related to the pressure, the relative speed and the temperature. After that, the heat transfer model and the reasonable friction torque model are employed by the vehicle powertrain model to construct a comprehensive co-simulation model for the Direct Shift Gearbox (DSG) vehicle. A creeping control strategy is then proposed and, to evaluate the vehicle performance, the safety temperature (250 ℃) is particularly adopted as an important metric. During the creeping process, the temperature of two clutches is always under the safety value (250 ℃), which demonstrates the effectiveness of the proposed control strategy in avoiding the thermal failures of clutches.Keywords: creeping control strategy, direct shift gearbox, temperature variation, wet clutch
Procedia PDF Downloads 1331074 A Review on Thermal Conductivity of Bio-Based Carbon Nanotubes
Authors: Gloria A. Adewumi, Andrew C. Eloka-Eboka, Freddie L. Inambao
Abstract:
Bio-based carbon nanotubes (CNTs) have received considerable research attention due to their comparative advantages of high level stability, simplistic use, low toxicity and overall environmental friendliness. New potentials for improvement in heat transfer applications are presented due to their high aspect ratio, high thermal conductivity and special surface area. Phonons have been identified as being responsible for thermal conductivities in carbon nanotubes. Therefore, understanding the mechanism of heat conduction in CNTs involves investigating the difference between the varieties of phonon modes and knowing the kinds of phonon modes that play the dominant role. In this review, a reference to a different number of studies is made and in addition, the role of phonon relaxation rate mainly controlled by boundary scattering and three-phonon Umklapp scattering process was investigated. Results show that the phonon modes are sensitive to a number of nanotube conditions such as: diameter, length, temperature, defects and axial strain. At a low temperature (<100K) the thermal conductivity increases with increasing temperature. A small nanotube size causes phonon quantization which is evident in the thermal conductivity at low temperatures.Keywords: carbon nanotubes, phonons, thermal conductivity, Umklapp process
Procedia PDF Downloads 3601073 Computer Based Model for Collaborative Research as a Panacea for National Development in Third World Countries
Authors: M. A. Rahman, A. O. Enikuomehin
Abstract:
Sharing commitment to reach a common goal in research by harnessing available resources from two or more parties can simply be referred to as collaborative research. Asides from avoiding duplication of research, the benefits often accrued from such research alliances include time economy as well as expenses reduction in completing such studies. Likewise, it provides an avenue to produce a wider horizon of scientific knowledge sequel to gathering of skills, knowledge and resources. In institutions of higher learning and research institutes, it often gives scholars an opportunity to strengthen the teaching and research capacity of their various institutions. Between industries and institutions, collaborative research breeds promising relationship that could be geared towards addressing different research problems such as producing and enhancing industrial-based products and services, including technological transfer. For Nigeria to take advantage of this collaboration, different issues like licensing of technology, intellectual property right, confidentiality, and funding among others, which could arise during this collaborative research programme, are identified in this paper. An important tool required to achieve this height in developing economy is the use of appropriate computer model. The paper highlights the costs of the collaborations and likewise stresses the need for evaluating the effectiveness and efficiency of such collaborative research activities and proposes an appropriate computer model to assist in this regard.Keywords: collaborative research, developing country, computerization, model
Procedia PDF Downloads 3321072 Thermographic Tests of Curved GFRP Structures with Delaminations: Numerical Modelling vs. Experimental Validation
Authors: P. D. Pastuszak
Abstract:
The present work is devoted to thermographic studies of curved composite panels (unidirectional GFRP) with subsurface defects. Various artificial defects, created by inserting PTFE stripe between individual layers of a laminate during manufacturing stage are studied. The analysis is conducted both with the use finite element method and experiments. To simulate transient heat transfer in 3D model with embedded various defect sizes, the ANSYS package is used. Pulsed Thermography combined with optical excitation source provides good results for flat surfaces. Composite structures are mostly used in complex components, e.g., pipes, corners and stiffeners. Local decrease of mechanical properties in these regions can have significant influence on strength decrease of the entire structure. Application of active procedures of thermography to defect detection and evaluation in this type of elements seems to be more appropriate that other NDT techniques. Nevertheless, there are various uncertainties connected with correct interpretation of acquired data. In this paper, important factors concerning Infrared Thermography measurements of curved surfaces in the form of cylindrical panels are considered. In addition, temperature effects on the surface resulting from complex geometry and embedded and real defect are also presented.Keywords: active thermography, composite, curved structures, defects
Procedia PDF Downloads 3191071 Loop Heat Pipe Two-Phase Heat Transports: Guidelines for Technology Utilization
Authors: Triem T. Hoang
Abstract:
Loop heat pipes (LHPs) are two-phase capillary-pumped heat transports. An appropriate working fluid is selected for the intended application temperature range. A closed-loop is evacuated to a high vacuum, back-filled partially with the working fluid, and then hermetically sealed under the fluid own pressure. Heat from a heat source conducts through the evaporator casing to vaporize liquid on the outer surface of the wick structure inside the evaporator. The generated vapor is compelled to vent out of the evaporator and into the vapor line for transport to the condenser assembly. There, heat is removed and rejected to a heat sink to condensed vapor back to liquid. The liquid exits the condenser and travels in the liquid line to return to the evaporator to complete the cycle. The circulation of fluid, and thus the heat transport in the LHP, is accomplished entirely by capillary action. The LHP contains no mechanical moving part to wear out or break down and, therefore possesses, reliability and a long life even without maintenance. In this paper, the author not only attempts to introduce the LHP technology in simplistic terms to those who are not familiar with it but also provides necessary technical information to potential users for the proper design and analysis of the LHP system.Keywords: two-phase heat transfer, loop heat pipe, capillary pumped technology, thermal-fluid modeling
Procedia PDF Downloads 1401070 Analysis of Entrepreneurship in Industrial Cluster
Authors: Wen-Hsiang Lai
Abstract:
Except for the internal aspects of entrepreneurship (i.e. motivation, opportunity perspective and alertness), there are external aspects that affecting entrepreneurship (i.e. the industrial cluster). By comparing the machinery companies located inside and outside the industrial district, this study aims to explore the cluster effects on the entrepreneurship of companies in Taiwan machinery clusters (TMC). In this study, three factors affecting the entrepreneurship in TMC are conducted as “competition”, “embedded-ness” and “specialized knowledge”. The “competition” in the industrial cluster is defined as the competitive advantages that companies gain in form of demand effects and diversified strategies; the “embedded-ness” refers to the quality of company relations (relational embedded-ness) and ranges (structural embedded-ness) with the industry components (universities, customers and complementary) that affecting knowledge transfer and knowledge generations; the “specialized knowledge” shares the internal knowledge within industrial clusters. This study finds that when comparing to the companies which are outside the cluster, the industrial cluster has positive influence on the entrepreneurship. Additionally, the factor of “relational embedded-ness” has significant impact on the entrepreneurship and affects the adaptation ability of companies in TMC. Finally, the factor of “competition” reveals partial influence on the entrepreneurship.Keywords: entrepreneurship, industrial cluster, industrial district, economies of agglomerations, Taiwan Machinery Cluster (TMC)
Procedia PDF Downloads 388