Search results for: particle-tracking model
14845 A Deep Reinforcement Learning-Based Secure Framework against Adversarial Attacks in Power System
Authors: Arshia Aflaki, Hadis Karimipour, Anik Islam
Abstract:
Generative Adversarial Attacks (GAAs) threaten critical sectors, ranging from fingerprint recognition to industrial control systems. Existing Deep Learning (DL) algorithms are not robust enough against this kind of cyber-attack. As one of the most critical industries in the world, the power grid is not an exception. In this study, a Deep Reinforcement Learning-based (DRL) framework assisting the DL model to improve the robustness of the model against generative adversarial attacks is proposed. Real-world smart grid stability data, as an IIoT dataset, test our method and improves the classification accuracy of a deep learning model from around 57 percent to 96 percent.Keywords: generative adversarial attack, deep reinforcement learning, deep learning, IIoT, generative adversarial networks, power system
Procedia PDF Downloads 3714844 Nonlinear Structural Behavior of Micro- and Nano-Actuators Using the Galerkin Discretization Technique
Authors: Hassen M. Ouakad
Abstract:
In this paper, the influence of van der Waals, as well as electrostatic forces on the structural behavior of MEMS and NEMS actuators, has been investigated using of a Euler-Bernoulli beam continuous model. In the proposed nonlinear model, the electrostatic fringing-fields and the mid-plane stretching (geometric nonlinearity) effects have been considered. The nonlinear integro-differential equation governing the static structural behavior of the actuator has been derived. An original Galerkin-based reduced-order model has been developed to avoid problems arising from the nonlinearities in the differential equation. The obtained reduced-order model equations have been solved numerically using the Newton-Raphson method. The basic design parameters such as the pull-in parameters (voltage and deflection at pull-in), as well as the detachment length due to the van der Waals force of some investigated micro- and nano-actuators have been calculated. The obtained numerical results have been compared with some other existing methods (finite-elements method and finite-difference method) and the comparison showed good agreement among all assumed numerical techniques.Keywords: MEMS, NEMS, fringing-fields, mid-plane stretching, Galerkin
Procedia PDF Downloads 22914843 Simulation of a Three-Link, Six-Muscle Musculoskeletal Arm Activated by Hill Muscle Model
Authors: Nafiseh Ebrahimi, Amir Jafari
Abstract:
The study of humanoid character is of great interest to researchers in the field of robotics and biomechanics. One might want to know the forces and torques required to move a limb from an initial position to the desired destination position. Inverse dynamics is a helpful method to compute the force and torques for an articulated body limb. It enables us to know the joint torques required to rotate a link between two positions. Our goal in this study was to control a human-like articulated manipulator for a specific task of path tracking. For this purpose, the human arm was modeled with a three-link planar manipulator activated by Hill muscle model. Applying a proportional controller, values of force and torques applied to the joints were calculated by inverse dynamics, and then joints and muscle forces trajectories were computed and presented. To be more accurate to say, the kinematics of the muscle-joint space was formulated by which we defined the relationship between the muscle lengths and the geometry of the links and joints. Secondary, the kinematic of the links was introduced to calculate the position of the end-effector in terms of geometry. Then, we considered the modeling of Hill muscle dynamics, and after calculation of joint torques, finally, we applied them to the dynamics of the three-link manipulator obtained from the inverse dynamics to calculate the joint states, find and control the location of manipulator’s end-effector. The results show that the human arm model was successfully controlled to take the designated path of an ellipse precisely.Keywords: arm manipulator, hill muscle model, six-muscle model, three-link lodel
Procedia PDF Downloads 14214842 Uncertainty and Optimization Analysis Using PETREL RE
Authors: Ankur Sachan
Abstract:
The ability to make quick yet intelligent and value-added decisions to develop new fields has always been of great significance. In situations where the capital expenses and subsurface risk are high, carefully analyzing the inherent uncertainties in the reservoir and how they impact the predicted hydrocarbon accumulation and production becomes a daunting task. The problem is compounded in offshore environments, especially in the presence of heavy oils and disconnected sands where the margin for error is small. Uncertainty refers to the degree to which the data set may be in error or stray from the predicted values. To understand and quantify the uncertainties in reservoir model is important when estimating the reserves. Uncertainty parameters can be geophysical, geological, petrophysical etc. Identification of these parameters is necessary to carry out the uncertainty analysis. With so many uncertainties working at different scales, it becomes essential to have a consistent and efficient way of incorporating them into our analysis. Ranking the uncertainties based on their impact on reserves helps to prioritize/ guide future data gathering and uncertainty reduction efforts. Assigning probabilistic ranges to key uncertainties also enables the computation of probabilistic reserves. With this in mind, this paper, with the help the uncertainty and optimization process in petrel RE shows how the most influential uncertainties can be determined efficiently and how much impact so they have on the reservoir model thus helping in determining a cost effective and accurate model of the reservoir.Keywords: uncertainty, reservoir model, parameters, optimization analysis
Procedia PDF Downloads 65214841 Logistics Hub Location and Scheduling Model for Urban Last-Mile Deliveries
Authors: Anastasios Charisis, Evangelos Kaisar, Steven Spana, Lili Du
Abstract:
Logistics play a vital role in the prosperity of today’s cities, but current urban logistics practices are proving problematic, causing negative effects such as traffic congestion and environmental impacts. This paper proposes an alternative urban logistics system, leasing hubs inside cities for designated time intervals, and using handcarts for last-mile deliveries. A mathematical model for selecting the locations of hubs and allocating customers, while also scheduling the optimal times during the day for leasing hubs is developed. The proposed model is compared to current delivery methods requiring door-to-door truck deliveries. It is shown that truck traveled distances decrease by more than 60%. In addition, analysis shows that in certain conditions the approach can be economically competitive and successfully applied to address real problems.Keywords: hub location, last-mile, logistics, optimization
Procedia PDF Downloads 19414840 A Conceptual E-Business Model and the Effect of Strategic Planning Parameters on E-Business Strategy Management and Performance
Authors: Alexandra Lipitakis, Evangelia A. E. C. Lipitakis
Abstract:
In this article, a class of e-business strategy planning parameters are introduced and their effect on financial and non-financial performance of e-businesses and organizations is investigated. The relationships between these strategic planning parameters, i.e. Formality, Participation, Sophistication, Thoroughness, Synergy and Cooperation, Entropic Factor, Adaptivity, Uncertainty and Financial and Non-Financial Performance are examined and the directions of these relationships are given. A conceptual model has been constructed and quantitative research methods can be used to test the considered eight hypotheses. In the framework of e-business strategy planning this research study clearly demonstrates how strategic planning components have positive relationships with e-business strategy management and performance.Keywords: e-business management, e-business model, e-business performance assessments, strategy management methodologies, strategy planning, quantitative methods
Procedia PDF Downloads 39014839 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter
Authors: Amartya Hatua, Trung Nguyen, Andrew Sung
Abstract:
In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter
Procedia PDF Downloads 39114838 Controlled Chemotherapy Strategy Applied to HIV Model
Authors: Shohel Ahmed, Md. Abdul Alim, Sumaiya Rahman
Abstract:
Optimal control can be helpful to test and compare different vaccination strategies of a certain disease. The mathematical model of HIV we consider here is a set of ordinary differential equations (ODEs) describing the interactions of CD4+T cells of the immune system with the human immunodeficiency virus (HIV). As an early treatment setting, we investigate an optimal chemotherapy strategy where control represents the percentage of effect the chemotherapy has on the system. The aim is to obtain a new optimal chemotherapeutic strategy where an isoperimetric constraint on the chemotherapy supply plays a crucial role. We outline the steps in formulating an optimal control problem, derive optimality conditions and demonstrate numerical results of an optimal control for the model. Numerical results illustrate how such a constraint alters the optimal vaccination schedule and its effect on cell-virus interactions.Keywords: chemotherapy of HIV, optimal control involving ODEs, optimality conditions, Pontryagin’s maximum principle
Procedia PDF Downloads 33014837 A Multi-Criteria Model for Scheduling of Stochastic Single Machine Problem with Outsourcing and Solving It through Application of Chance Constrained
Authors: Homa Ghave, Parmis Shahmaleki
Abstract:
This paper presents a new multi-criteria stochastic mathematical model for a single machine scheduling with outsourcing allowed. There are multiple jobs processing in batch. For each batch, all of job or a quantity of it can be outsourced. The jobs have stochastic processing time and lead time and deterministic due dates arrive randomly. Because of the stochastic inherent of processing time and lead time, we use the chance constrained programming for modeling the problem. First, the problem is formulated in form of stochastic programming and then prepared in a form of deterministic mixed integer linear programming. The objectives are considered in the model to minimize the maximum tardiness and outsourcing cost simultaneously. Several procedures have been developed to deal with the multi-criteria problem. In this paper, we utilize the concept of satisfaction functions to increases the manager’s preference. The proposed approach is tested on instances where the random variables are normally distributed.Keywords: single machine scheduling, multi-criteria mathematical model, outsourcing strategy, uncertain lead times and processing times, chance constrained programming, satisfaction function
Procedia PDF Downloads 26414836 Influence of Ammonia Emissions on Aerosol Formation in Northern and Central Europe
Authors: A. Aulinger, A. M. Backes, J. Bieser, V. Matthias, M. Quante
Abstract:
High concentrations of particles pose a threat to human health. Thus, legal maximum concentrations of PM10 and PM2.5 in ambient air have been steadily decreased over the years. In central Europe, the inorganic species ammonium sulphate and ammonium nitrate make up a large fraction of fine particles. Many studies investigate the influence of emission reductions of sulfur- and nitrogen oxides on aerosol concentration. Here, we focus on the influence of ammonia (NH3) emissions. While emissions of sulphate and nitrogen oxides are quite well known, ammonia emissions are subject to high uncertainty. This is due to the uncertainty of location, amount, time of fertilizer application in agriculture, and the storage and treatment of manure from animal husbandry. For this study, we implemented a crop growth model into the SMOKE emission model. Depending on temperature, local legislation, and crop type individual temporal profiles for fertilizer and manure application are calculated for each model grid cell. Additionally, the diffusion from soils and plants and the direct release from open and closed barns are determined. The emission data was used as input for the Community Multiscale Air Quality (CMAQ) model. Comparisons to observations from the EMEP measurement network indicate that the new ammonia emission module leads to a better agreement of model and observation (for both ammonia and ammonium). Finally, the ammonia emission model was used to create emission scenarios. This includes emissions based on future European legislation, as well as a dynamic evaluation of the influence of different agricultural sectors on particle formation. It was found that a reduction of ammonia emissions by 50% lead to a 24% reduction of total PM2.5 concentrations during winter time in the model domain. The observed reduction was mainly driven by reduced formation of ammonium nitrate. Moreover, emission reductions during winter had a larger impact than during the rest of the year.Keywords: ammonia, ammonia abatement strategies, ctm, seasonal impact, secondary aerosol formation
Procedia PDF Downloads 35114835 Convectory Policing-Reconciling Historic and Contemporary Models of Police Service Delivery
Authors: Mark Jackson
Abstract:
Description: This paper is based on an theoretical analysis of the efficacy of the dominant model of policing in western jurisdictions. Those results are then compared with a similar analysis of a traditional reactive model. It is found that neither model provides for optimal delivery of services. Instead optimal service can be achieved by a synchronous hybrid model, termed the Convectory Policing approach. Methodology and Findings: For over three decades problem oriented policing (PO) has been the dominant model for western police agencies. Initially based on the work of Goldstein during the 1970s the problem oriented framework has spawned endless variants and approaches, most of which embrace a problem solving rather than a reactive approach to policing. This has included the Area Policing Concept (APC) applied in many smaller jurisdictions in the USA, the Scaled Response Policing Model (SRPM) currently under trial in Western Australia and the Proactive Pre-Response Approach (PPRA) which has also seen some success. All of these, in some way or another, are largely based on a model that eschews a traditional reactive model of policing. Convectory Policing (CP) is an alternative model which challenges the underpinning assumptions which have seen proliferation of the PO approach in the last three decades and commences by questioning the economics on which PO is based. It is argued that in essence, the PO relies on an unstated, and often unrecognised assumption that resources will be available to meet demand for policing services, while at the same time maintaining the capacity to deploy staff to develop solutions to the problems which were ultimately manifested in those same calls for service. The CP model relies on the observations from a numerous western jurisdictions to challenge the validity of that underpinning assumption, particularly in fiscally tight environment. In deploying staff to pursue and develop solutions to underpinning problems, there is clearly an opportunity cost. Those same staff cannot be allocated to alternative duties while engaged in a problem solution role. At the same time, resources in use responding to calls for service are unavailable, while committed to that role, to pursue solutions to the problems giving rise to those same calls for service. The two approaches, reactive and PO are therefore dichotomous. One cannot be optimised while the other is being pursued. Convectory Policing is a pragmatic response to the schism between the competing traditional and contemporary models. If it is not possible to serve either model with any real rigour, it becomes necessary to taper an approach to deliver specific outcomes against which success or otherwise might be measured. CP proposes that a structured roster-driven approach to calls for service, combined with the application of what is termed a resource-effect response capacity has the potential to resolve the inherent conflict between traditional and models of policing and the expectations of the community in terms of community policing based problem solving models.Keywords: policing, reactive, proactive, models, efficacy
Procedia PDF Downloads 48314834 Analytical Model for Vacuum Cathode Arcs in an Oblique Magnetic Field
Authors: P. W. Chen, C. T. Chang, Y. Peng, J. Y. Wu, D. J. Jan, Md. Manirul Ali
Abstract:
In the last decade, the nature of cathode spot splitting and the current per spot depended on an oblique magnetic field was investigated. This model for cathode current splitting is developed that we have investigated with relationship the magnetic pressures produced by kinetic pressure, self-magnetic pressure, and changed with an external magnetic field. We propose a theoretical model that has been established to an external magnetic field with components normal and tangential to the cathode surface influenced on magnetic pressure strength. We mainly focus on developed to understand the current per spot influenced with the tangential magnetic field strength and normal magnetic field strength.Keywords: cathode spot, vacuum arc discharge, oblique magnetic field, tangential magnetic field
Procedia PDF Downloads 32414833 Modelling for Temperature Non-Isothermal Continuous Stirred Tank Reactor Using Fuzzy Logic
Authors: Nasser Mohamed Ramli, Mohamad Syafiq Mohamad
Abstract:
Many types of controllers were applied on the continuous stirred tank reactor (CSTR) unit to control the temperature. In this research paper, Proportional-Integral-Derivative (PID) controller are compared with Fuzzy Logic controller for temperature control of CSTR. The control system for temperature non-isothermal of a CSTR will produce a stable response curve to its set point temperature. A mathematical model of a CSTR using the most general operating condition was developed through a set of differential equations into S-function using MATLAB. The reactor model and S-function are developed using m.file. After developing the S-function of CSTR model, User-Defined functions are used to link to SIMULINK file. Results that are obtained from simulation and temperature control were better when using Fuzzy logic control compared to PID control.Keywords: CSTR, temperature, PID, fuzzy logic
Procedia PDF Downloads 45714832 Investigating Safe Operation Condition for Iterative Learning Control under Load Disturbances Effect in Singular Values
Authors: Muhammad A. Alsubaie
Abstract:
An iterative learning control framework designed in state feedback structure suffers a lack in investigating load disturbance considerations. The presented work discusses the controller previously designed, highlights the disturbance problem, finds new conditions using singular value principle to assure safe operation conditions with error convergence and reference tracking under the influence of load disturbance. It is known that periodic disturbances can be represented by a delay model in a positive feedback loop acting on the system input. This model can be manipulated by isolating the delay model and finding a controller for the overall system around the delay model to remedy the periodic disturbances using the small signal theorem. The overall system is the base for control design and load disturbance investigation. The major finding of this work is the load disturbance condition found which clearly sets safe operation condition under the influence of load disturbances such that the error tends to nearly zero as the system keeps operating trial after trial.Keywords: iterative learning control, singular values, state feedback, load disturbance
Procedia PDF Downloads 15814831 Regional Flood-Duration-Frequency Models for Norway
Authors: Danielle M. Barna, Kolbjørn Engeland, Thordis Thorarinsdottir, Chong-Yu Xu
Abstract:
Design flood values give estimates of flood magnitude within a given return period and are essential to making adaptive decisions around land use planning, infrastructure design, and disaster mitigation. Often design flood values are needed at locations with insufficient data. Additionally, in hydrologic applications where flood retention is important (e.g., floodplain management and reservoir design), design flood values are required at different flood durations. A statistical approach to this problem is a development of a regression model for extremes where some of the parameters are dependent on flood duration in addition to being covariate-dependent. In hydrology, this is called a regional flood-duration-frequency (regional-QDF) model. Typically, the underlying statistical distribution is chosen to be the Generalized Extreme Value (GEV) distribution. However, as the support of the GEV distribution depends on both its parameters and the range of the data, special care must be taken with the development of the regional model. In particular, we find that the GEV is problematic when developing a GAMLSS-type analysis due to the difficulty of proposing a link function that is independent of the unknown parameters and the observed data. We discuss these challenges in the context of developing a regional QDF model for Norway.Keywords: design flood values, bayesian statistics, regression modeling of extremes, extreme value analysis, GEV
Procedia PDF Downloads 7214830 Model Canvas and Process for Educational Game Design in Outcome-Based Education
Authors: Ratima Damkham, Natasha Dejdumrong, Priyakorn Pusawiro
Abstract:
This paper explored the solution in game design to help game designers in the educational game designing using digital educational game model canvas (DEGMC) and digital educational game form (DEGF) based on Outcome-based Education program. DEGMC and DEGF can help designers develop an overview of the game while designing and planning their own game. The way to clearly assess players’ ability from learning outcomes and support their game learning design is by using the tools. Designers can balance educational content and entertainment in designing a game by using the strategies of the Business Model Canvas and design the gameplay and players’ ability assessment from learning outcomes they need by referring to the Constructive Alignment. Furthermore, they can use their design plan in this research to write their Game Design Document (GDD). The success of the research was evaluated by four experts’ perspectives in the education and computer field. From the experiments, the canvas and form helped the game designers model their game according to the learning outcomes and analysis of their own game elements. This method can be a path to research an educational game design in the future.Keywords: constructive alignment, constructivist theory, educational game, outcome-based education
Procedia PDF Downloads 35414829 Lattice Network Model for Calculation of Eddy Current Losses in a Solid Permanent Magnet
Authors: Jan Schmidt, Pierre Köhring
Abstract:
Permanently excited machines are set up with magnets that are made of highly energetic magnetic materials. Inherently, the permanent magnets warm up while the machine is operating. With an increasing temperature, the electromotive force and hence the degree of efficiency decrease. The reasons for this are slot harmonics and distorted armature currents arising from frequency inverter operation. To prevent or avoid demagnetizing of the permanent magnets it is necessary to ensure that the magnets do not excessively heat up. Demagnetizations of permanent magnets are irreversible and a breakdown of the electrical machine is inevitable. For the design of an electrical machine, the knowledge of the behavior of heating under operating conditions of the permanent magnet is of crucial importance. Therefore, a calculation model is presented with which the machine designer can easily calculate the eddy current losses in the magnetic material.Keywords: analytical model, eddy current, losses, lattice network, permanent magnet
Procedia PDF Downloads 42114828 A Model Predictive Control Based Virtual Active Power Filter Using V2G Technology
Authors: Mahdi Zolfaghari, Seyed Hossein Hosseinian, Hossein Askarian Abyaneh, Mehrdad Abedi
Abstract:
This paper presents a virtual active power filter (VAPF) using vehicle to grid (V2G) technology to maintain power quality requirements. The optimal discrete operation of the power converter of electric vehicle (EV) is based on recognizing desired switching states using the model predictive control (MPC) algorithm. A fast dynamic response, lower total harmonic distortion (THD) and good reference tracking performance are realized through the presented control strategy. The simulation results using MATLAB/Simulink validate the effectiveness of the scheme in improving power quality as well as good dynamic response in power transferring capability.Keywords: electric vehicle, model predictive control, power quality, V2G technology, virtual active power filter
Procedia PDF Downloads 43014827 E-Consumers’ Attribute Non-Attendance Switching Behavior: Effect of Providing Information on Attributes
Authors: Leonard Maaya, Michel Meulders, Martina Vandebroek
Abstract:
Discrete Choice Experiments (DCE) are used to investigate how product attributes affect decision-makers’ choices. In DCEs, choice situations consisting of several alternatives are presented from which choice-makers select the preferred alternative. Standard multinomial logit models based on random utility theory can be used to estimate the utilities for the attributes. The overarching principle in these models is that respondents understand and use all the attributes when making choices. However, studies suggest that respondents sometimes ignore some attributes (commonly referred to as Attribute Non-Attendance/ANA). The choice modeling literature presents ANA as a static process, i.e., respondents’ ANA behavior does not change throughout the experiment. However, respondents may ignore attributes due to changing factors like availability of information on attributes, learning/fatigue in experiments, etc. We develop a dynamic mixture latent Markov model to model changes in ANA when information on attributes is provided. The model is illustrated on e-consumers’ webshop choices. The results indicate that the dynamic ANA model describes the behavioral changes better than modeling the impact of information using changes in parameters. Further, we find that providing information on attributes leads to an increase in the attendance probabilities for the investigated attributes.Keywords: choice models, discrete choice experiments, dynamic models, e-commerce, statistical modeling
Procedia PDF Downloads 14014826 Let It Rain In Our Conscious To Flourish Our Individual Self Like A Sakura: The Balance Model From Ppt And Rain Spiritual Method Used In A Drugs Prevention Program For Teenagers In A Psychoeducational Manner
Authors: Moise Alin Ionuț Cornel
Abstract:
In a pilot lesson of prevention of consumption drugs in a classroom of teenager`s where the school want them to know how to manage their thoughts and emotions to protect themself an to be strong in an possible environment of drugs consumption. At this classroom was applied the RAIN(Recognize, Accept, Investigation,Non-identify) spiritual method and the balance model from positive and transcultural psychotherapy (PPT) in a manner of a game play for them to understand the methods in an individual experience. The balance model from PPT with his 4 parts and used in 3 ways, and the RAIN spiritual method was used to see how the teenager`s can bring clarity about theirs individual self and how they spend the time and energy in the daily life. The 3 ways of how they can used this model was explained like a analogy with the 3 periods of the SAKURA (Japanese cherry) flourish (kaika, mankai and chiru). The teenager`s received a new perspective and in the same time new tools from the spiritual point of view combined with the psychotherapeutic point of view to manage their thoughts, emotions, time and energy in the form of a psychoeducational game to be able to prevent the use of drugs.Keywords: addiction, drugs consumption prevention education, psychotherapy, Self, Spirituality, teenagers
Procedia PDF Downloads 7014825 Model Order Reduction of Complex Airframes Using Component Mode Synthesis for Dynamic Aeroelasticity Load Analysis
Authors: Paul V. Thomas, Mostafa S. A. Elsayed, Denis Walch
Abstract:
Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive analysis procedure which involves simulating the aircraft at thousands of load cases as defined in the certification requirements. It is computationally prohibitive to use a Global Finite Element Model (GFEM) for the load analysis, hence reduced order structural models are required which closely represent the dynamic characteristics of the GFEM. This paper presents the implementation of Component Mode Synthesis (CMS) method for the generation of high fidelity Reduced Order Model (ROM) of complex airframes. Here, sub-structuring technique is used to divide the complex higher order airframe dynamical system into a set of subsystems. Each subsystem is reduced to fewer degrees of freedom using matrix projection onto a carefully chosen reduced order basis subspace. The reduced structural matrices are assembled for all the subsystems through interface coupling and the dynamic response of the total system is solved. The CMS method is employed to develop the ROM of a Bombardier Aerospace business jet which is coupled with an aerodynamic model for dynamic aeroelasticity loads analysis under gust turbulence. Another set of dynamic aeroelastic loads is also generated employing a stick model of the same aircraft. Stick model is the reduced order modelling methodology commonly used in the aerospace industry based on stiffness generation by unitary loading application. The extracted aeroelastic loads from both models are compared against those generated employing the GFEM. Critical loads Modal participation factors and modal characteristics of the different ROMs are investigated and compared against those of the GFEM. Results obtained show that the ROM generated using Craig Bampton CMS reduction process has a superior dynamic characteristics compared to the stick model.Keywords: component mode synthesis, craig bampton reduction method, dynamic aeroelasticity analysis, model order reduction
Procedia PDF Downloads 20914824 Response to Name Training in Autism Spectrum Disorder (ASD): A New Intervention Model
Authors: E. Verduci, I. Aguglia, A. Filocamo, I. Macrì, R. Scala, A. Vinci
Abstract:
One of the first indicator of autism spectrum disorder (ASD) is a decreasing tendency or failure to respond to name (RTN) call. Despite RTN is important for social and language developmentand it’s a common target for early interventions for children with ASD, research on specific treatments is insufficient and does not consider the importance of the discrimination between the own name and other names. The purpose of the current study was to replicate an assessment and treatment model proposed by Conine et al. (2020) to teach children with ASD to respond to their own name and to not respond to other names (RTO). The model includes three different phases (baseline/screening, treatment, and generalization), and itgradually introduces the different treatment components, starting with the most naturalistic ones (such as social interaction) and adding more intrusive components (such as tangible reinforcements, prompt and fading procedures) if necessary. The participants of this study were three children with ASD diagnosis: D. (5 years old) with a low frequency of RTN, M. (7 years old) with a RTN unstable and no ability of discrimination between his name and other names, S. (3 years old) with a strong RTN but a constant response to other names. Moreover, the treatment for D. and M. consisted of social and tangible reinforcements (treatment T1), for S. the purpose of the treatment was to teach the discrimination between his name and the others. For all participants, results suggest the efficacy of the model to acquire the ability to selectively respond to the own name and the generalization of the behavior with other people and settings.Keywords: response to name, autism spectrum disorder, progressive training, ABA
Procedia PDF Downloads 8414823 Development a Home-Hotel-Hospital-School Community-Based Palliative Care Model for Patients with Cancer in Suratthani, Thailand
Authors: Patcharaporn Sakulpong, Wiriya Phokhwang
Abstract:
Background: Banpunrug (Love Sharing House) established in 2013 provides a community-based palliative care for patients with cancer from 7 provinces in southern Thailand. These patients come to receive outpatient chemotherapy and radiotherapy at Suratthani Cancer Hospital. They are poor and uneducated; they need an accommodation during their 30-45 day course of therapy. Methods: A community-participatory action research (PAR) was employed to establish a model of palliative care for patients with cancer. The participants included health care providers, community, and patients and families. The PAR process includes problem identification and need assessment, community and team establishment, field survey, organization founding, model of care planning, action and inquiry (PDCA), outcome evaluation, and model distribution. Results: The model of care at Banpunrug involves the concepts of HHHS model, in that Banpunrug is a Home for patients; patients live in a house comfortable like in a Hotel resource; the patients are given care and living facilities similarly to those in a Hospital; the house is a School for patients to learn how to take care themselves, how to live well with cancer, and most importantly how to prepare themselves for a good death. The house is also a humanized care school for health care providers. Banpunrug’s philosophy of care is based on friendship therapy, social and spiritual support, community partnership, patient-family centeredness, Live & Love sharing house, and holistic and humanized care. With this philosophy, the house is managed as a home of the patients and everyone involved; everything is costless for all eligible patients and their family members; all facilities and living expense are donated from benevolent people, friends, and community. Everyone, including patients and family, has a sense of belonging to the house and there is no authority between health care providers and the patients in the house. The house is situated in a temple and a community and supported by many local nonprofit organizations and healthcare facilities such as a health promotion hospital at sub-disctrict level and Suratthani Cancer Hospital. Village health volunteers and multi-professional health care volunteers have contributed not only appropriate care, but also knowledge and experience to develop a distinguishing HHHS community-based palliative care model for patients with cancer. Since its opening the house has been a home for more than 400 patients and 300 family members. It is also a model for many national and international healthcare organizations and providers, who come to visit and learn about palliative care in and by community. Conclusions: The success of this palliative care model comes from community involvement, multi-professional volunteers and distributions, and concepts of HHHS model. Banpunrug promotes a consistent care across the cancer trajectory independent of prognosis in order to strengthen a full integration of palliativeKeywords: community-based palliative care, model, participatory action research, patients with cancer
Procedia PDF Downloads 26814822 Quantitative Analysis of the Trade Potential of the United States with Members of the European Union: A Gravity Model Approach
Authors: Zahid Ahmad, Nauman Ali
Abstract:
This study has estimated the trade between USA and individual members of European Union using Gravity Model of Trade as The USA has a complex trade relationship with the European countries consist of a large number of consumers, which make USA dependent on EU for major of its total world trade. However, among the member of EU, the trade potential of USA with individual members of EU is not known. Panel data techniques e.g. Random Effect, Fixed Effect and Pooled Panel have been applied to secondary quantitative data to analyze the Trade between USA and EU. Trade Potential of USA with individual members of EU has been obtained using the ratio of Actual trade of USA with EU members and the trade as predicted by Gravity Model. The Study concluded that the USA has greater trade potential with 16 members of EU, including Croatia, Portugal and United Kingdom on top. On the other hand, Finland, Ireland, and France are the top countries with which the USA has exhaustive trade potential.Keywords: analytical technique, economic, gravity, international trade, significant
Procedia PDF Downloads 30514821 Developing Performance Model for Road Side Elements Receiving Periodic Maintenance
Authors: Ayman M. Othman, Hassan Y. Ahmed, Tallat A. Ali
Abstract:
Inadequate maintenance programs and funds allocated for highway networks in the developed countries have led to fast deterioration of road side elements. Therefore, this research focuses on developing a performance model for road side elements periodic maintenance activities. Road side elements that receive periodic maintenance include; earthen shoulder, road signs and traffic markings. Using the level of service concept, the developed model can determine the optimal periodic maintenance intervals for those elements based on a selected level of service suitable with the available periodic maintenance budget. Data related to time periods for progressive deterioration stages for the chosen elements were collected. Ten maintenance experts in Aswan, Sohag and Assiut cities were interviewed for that purpose. Time in months related to 10%, 25%, 40%, 50%, 75%, 90% and 100% deterioration of each road side element was estimated based on the experts opinion. Least square regression analysis has shown that a power function represents the best fit for earthen shoulders edge drop-off and damage of road signs with time. It was also evident that, the progressive dirtiness of road signs could be represented by a quadratic function an a linear function could represent the paint degradation nature of both traffic markings and road signs. Actual measurements of earthen shoulder edge drop-off agree considerably with the developed model.Keywords: deterioration, level of service, periodic maintenance, performance model, road side element
Procedia PDF Downloads 57214820 Iot Device Cost Effective Storage Architecture and Real-Time Data Analysis/Data Privacy Framework
Authors: Femi Elegbeleye, Omobayo Esan, Muienge Mbodila, Patrick Bowe
Abstract:
This paper focused on cost effective storage architecture using fog and cloud data storage gateway and presented the design of the framework for the data privacy model and data analytics framework on a real-time analysis when using machine learning method. The paper began with the system analysis, system architecture and its component design, as well as the overall system operations. The several results obtained from this study on data privacy model shows that when two or more data privacy model is combined we tend to have a more stronger privacy to our data, and when fog storage gateway have several advantages over using the traditional cloud storage, from our result shows fog has reduced latency/delay, low bandwidth consumption, and energy usage when been compare with cloud storage, therefore, fog storage will help to lessen excessive cost. This paper dwelt more on the system descriptions, the researchers focused on the research design and framework design for the data privacy model, data storage, and real-time analytics. This paper also shows the major system components and their framework specification. And lastly, the overall research system architecture was shown, its structure, and its interrelationships.Keywords: IoT, fog, cloud, data analysis, data privacy
Procedia PDF Downloads 9914819 An Integration of Genetic Algorithm and Particle Swarm Optimization to Forecast Transport Energy Demand
Authors: N. R. Badurally Adam, S. R. Monebhurrun, M. Z. Dauhoo, A. Khoodaruth
Abstract:
Transport energy demand is vital for the economic growth of any country. Globalisation and better standard of living plays an important role in transport energy demand. Recently, transport energy demand in Mauritius has increased significantly, thus leading to an abuse of natural resources and thereby contributing to global warming. Forecasting the transport energy demand is therefore important for controlling and managing the demand. In this paper, we develop a model to predict the transport energy demand. The model developed is based on a system of five stochastic differential equations (SDEs) consisting of five endogenous variables: fuel price, population, gross domestic product (GDP), number of vehicles and transport energy demand and three exogenous parameters: crude birth rate, crude death rate and labour force. An interval of seven years is used to avoid any falsification of result since Mauritius is a developing country. Data available for Mauritius from year 2003 up to 2009 are used to obtain the values of design variables by applying genetic algorithm. The model is verified and validated for 2010 to 2012 by substituting the values of coefficients obtained by GA in the model and using particle swarm optimisation (PSO) to predict the values of the exogenous parameters. This model will help to control the transport energy demand in Mauritius which will in turn foster Mauritius towards a pollution-free country and decrease our dependence on fossil fuels.Keywords: genetic algorithm, modeling, particle swarm optimization, stochastic differential equations, transport energy demand
Procedia PDF Downloads 36914818 Hybrid Energy System for the German Mining Industry: An Optimized Model
Authors: Kateryna Zharan, Jan C. Bongaerts
Abstract:
In recent years, economic attractiveness of renewable energy (RE) for the mining industry, especially for off-grid mines, and a negative environmental impact of fossil energy are stimulating to use RE for mining needs. Being that remote area mines have higher energy expenses than mines connected to a grid, integration of RE may give a mine economic benefits. Regarding the literature review, there is a lack of business models for adopting of RE at mine. The main aim of this paper is to develop an optimized model of RE integration into the German mining industry (GMI). Hereby, the GMI with amount of around 800 mill. t. annually extracted resources is included in the list of the 15 major mining country in the world. Accordingly, the mining potential of Germany is evaluated in this paper as a perspective market for RE implementation. The GMI has been classified in order to find out the location of resources, quantity and types of the mines, amount of extracted resources, and access of the mines to the energy resources. Additionally, weather conditions have been analyzed in order to figure out where wind and solar generation technologies can be integrated into a mine with the highest efficiency. Despite the fact that the electricity demand of the GMI is almost completely covered by a grid connection, the hybrid energy system (HES) based on a mix of RE and fossil energy is developed due to show environmental and economic benefits. The HES for the GMI consolidates a combination of wind turbine, solar PV, battery and diesel generation. The model has been calculated using the HOMER software. Furthermore, the demonstrated HES contains a forecasting model that predicts solar and wind generation in advance. The main result from the HES such as CO2 emission reduction is estimated in order to make the mining processing more environmental friendly.Keywords: diesel generation, German mining industry, hybrid energy system, hybrid optimization model for electric renewables, optimized model, renewable energy
Procedia PDF Downloads 34314817 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory
Authors: Xu Jiaqiao
Abstract:
Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments
Procedia PDF Downloads 9414816 Predicting Mobile Payment System Adoption in Nigeria: An Empirical Analysis
Authors: Aminu Hamza
Abstract:
This study examines the factors that play vital role in the adoption of mobile payment system among consumers in Nigeria. Technology Acceptance Model (TAM) was used with two additional variables to form the conceptual model. The study was conducted in three Universities in Kano state, Nigeria. Convenience sampling method was used with a total valid 202 respondents which involved the students of Bayero University Kano (BUK), Northwest University, and Kano University of Science and Technology (KUST) Wudil, Kano, Nigeria. Results of the regression analysis revealed that Perceived ease of use (PEOU) and Perceived usefulness (PU) have significant and positive correlation with the behavioral intention to adopt mobile payment system. The findings of this study would be useful to the policy makers Central Bank of Nigeria (CBN), mobile network operators and providers of the services.Keywords: mobile payment system, Nigeria, technology adoption, technology acceptance model
Procedia PDF Downloads 305