Search results for: distributed artificial intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4583

Search results for: distributed artificial intelligence

2633 Evolving Urban Landscapes: Smart Cities and Sustainable Futures

Authors: Mehrzad Soltani, Pegah Rezaei

Abstract:

In response to the escalating challenges posed by resource scarcity, urban congestion, and the dearth of green spaces, contemporary urban areas have undergone a remarkable transformation into smart cities. This evolution necessitates a strategic and forward-thinking approach to urban development, with the primary objective of diminishing and eventually eradicating dependence on non-renewable energy sources. This steadfast commitment to sustainable development is geared toward the continual enhancement of our global urban milieu, ensuring a healthier and more prosperous environment for forthcoming generations. This transformative vision has been meticulously shaped by an extensive research framework, incorporating in-depth field studies and investigations conducted at both neighborhood and city levels. Our holistic strategy extends its purview to encompass major cities and states, advocating for the realization of exceptional development firmly rooted in the principles of sustainable intelligence. At its core, this approach places a paramount emphasis on stringent pollution control measures, concurrently safeguarding ecological equilibrium and regional cohesion. Central to the realization of this vision is the widespread adoption of environmentally friendly materials and components, championing the cultivation of plant life and harmonious green spaces, and the seamless integration of intelligent lighting and irrigation systems. These systems, including solar panels and solar energy utilization, are deployed wherever feasible, effectively meeting the essential lighting and irrigation needs of these dynamic urban ecosystems. Overall, the transformation of urban areas into smart cities necessitates a holistic and innovative approach to urban development. By actively embracing sustainable intelligence and adhering to strict environmental standards, these cities pave the way for a brighter and more sustainable future, one that is marked by resilient, thriving, and eco-conscious urban communities.

Keywords: smart city, green urban, sustainability, urban management

Procedia PDF Downloads 71
2632 Designing Function Knitted and Woven Upholstery Textile With SCOPY Film

Authors: Manar Y. Abd El-Aziz, Alyaa E. Morgham, Amira A. El-Fallal, Heba Tolla E. Abo El Naga

Abstract:

Different textile materials are usually used in upholstery. However, upholstery parts may become unhealthy when dust accrues and bacteria raise on the surface, which negatively affects the user's health. Also, leather and artificial leather were used in upholstery but, leather has a high cost and artificial leather has a potential chemical risk for users. Researchers have advanced vegie leather made from bacterial cellulose a symbiotic culture of bacteria and yeast (SCOBY). SCOBY remains a gelatinous, cellulose biofilm discovered floating at the air-liquid interface of the container. But this leather still needs some enhancement for its mechanical properties. This study aimed to prepare SCOBY, produce bamboo rib knitted fabrics with two different stitch densities, and cotton woven fabric then laminate these fabrics with the prepared SCOBY film to enhance the mechanical properties of the SCOBY leather at the same time; add anti-microbial function to the prepared fabrics. Laboratory tests were conducted on the produced samples, including tests for function properties; anti-microbial, thermal conductivity and light transparency. Physical properties; thickness and mass per unit. Mechanical properties; elongation, tensile strength, young modulus, and peel force. The results showed that the type of the fabric affected significantly SCOBY properties. According to the test results, the bamboo knitted fabric with higher stitch density laminated with SCOBY was chosen for its tensile strength and elongation as the upholstery of a bed model with antimicrobial properties and comfortability in the headrest design. Also, the single layer of SCOBY was chosen regarding light transparency and lower thermal conductivity for the creation of a lighting unit built into the bed headboard.

Keywords: anti-microbial, bamboo, rib, SCOPY, upholstery

Procedia PDF Downloads 64
2631 Audit and Assurance Program for AI-Based Technologies

Authors: Beatrice Arthur

Abstract:

The rapid development of artificial intelligence (AI) has transformed various industries, enabling faster and more accurate decision-making processes. However, with these advancements come increased risks, including data privacy issues, systemic biases, and challenges related to transparency and accountability. As AI technologies become more integrated into business processes, there is a growing need for comprehensive auditing and assurance frameworks to manage these risks and ensure ethical use. This paper provides a literature review on AI auditing and assurance programs, highlighting the importance of adapting traditional audit methodologies to the complexities of AI-driven systems. Objective: The objective of this review is to explore current AI audit practices and their role in mitigating risks, ensuring accountability, and fostering trust in AI systems. The study aims to provide a structured framework for developing audit programs tailored to AI technologies while also investigating how AI impacts governance, risk management, and regulatory compliance in various sectors. Methodology: This research synthesizes findings from academic publications and industry reports from 2014 to 2024, focusing on the intersection of AI technologies and IT assurance practices. The study employs a qualitative review of existing audit methodologies and frameworks, particularly the COBIT 2019 framework, to understand how audit processes can be aligned with AI governance and compliance standards. The review also considers real-time auditing as an emerging necessity for influencing AI system design during early development stages. Outcomes: Preliminary findings indicate that while AI auditing is still in its infancy, it is rapidly gaining traction as both a risk management strategy and a potential driver of business innovation. Auditors are increasingly being called upon to develop controls that address the ethical and operational risks posed by AI systems. The study highlights the need for continuous monitoring and adaptable audit techniques to handle the dynamic nature of AI technologies. Future Directions: Future research will explore the development of AI-specific audit tools and real-time auditing capabilities that can keep pace with evolving technologies. There is also a need for cross-industry collaboration to establish universal standards for AI auditing, particularly in high-risk sectors like healthcare and finance. Further work will involve engaging with industry practitioners and policymakers to refine the proposed governance and audit frameworks. Funding/Support Acknowledgements: This research is supported by the Information Systems Assurance Management Program at Concordia University of Edmonton.

Keywords: AI auditing, assurance, risk management, governance, COBIT 2019, transparency, accountability, machine learning, compliance

Procedia PDF Downloads 22
2630 Using ANN in Emergency Reconstruction Projects Post Disaster

Authors: Rasha Waheeb, Bjorn Andersen, Rafa Shakir

Abstract:

Purpose The purpose of this study is to avoid delays that occur in emergency reconstruction projects especially in post disaster circumstances whether if they were natural or manmade due to their particular national and humanitarian importance. We presented a theoretical and practical concepts for projects management in the field of construction industry that deal with a range of global and local trails. This study aimed to identify the factors of effective delay in construction projects in Iraq that affect the time and the specific quality cost, and find the best solutions to address delays and solve the problem by setting parameters to restore balance in this study. 30 projects were selected in different areas of construction were selected as a sample for this study. Design/methodology/approach This study discusses the reconstruction strategies and delay in time and cost caused by different delay factors in some selected projects in Iraq (Baghdad as a case study).A case study approach was adopted, with thirty construction projects selected from the Baghdad region, of different types and sizes. Project participants from the case projects provided data about the projects through a data collection instrument distributed through a survey. Mixed approach and methods were applied in this study. Mathematical data analysis was used to construct models to predict delay in time and cost of projects before they started. The artificial neural networks analysis was selected as a mathematical approach. These models were mainly to help decision makers in construction project to find solutions to these delays before they cause any inefficiency in the project being implemented and to strike the obstacles thoroughly to develop this industry in Iraq. This approach was practiced using the data collected through survey and questionnaire data collection as information form. Findings The most important delay factors identified leading to schedule overruns were contractor failure, redesigning of designs/plans and change orders, security issues, selection of low-price bids, weather factors, and owner failures. Some of these are quite in line with findings from similar studies in other countries/regions, but some are unique to the Iraqi project sample, such as security issues and low-price bid selection. Originality/value we selected ANN’s analysis first because ANN’s was rarely used in project management , and never been used in Iraq to finding solutions for problems in construction industry. Also, this methodology can be used in complicated problems when there is no interpretation or solution for a problem. In some cases statistical analysis was conducted and in some cases the problem is not following a linear equation or there was a weak correlation, thus we suggested using the ANN’s because it is used for nonlinear problems to find the relationship between input and output data and that was really supportive.

Keywords: construction projects, delay factors, emergency reconstruction, innovation ANN, post disasters, project management

Procedia PDF Downloads 165
2629 Developing the Principal Change Leadership Non-Technical Competencies Scale: An Exploratory Factor Analysis

Authors: Tai Mei Kin, Omar Abdull Kareem

Abstract:

In light of globalization, educational reform has become a top priority for many countries. However, the task of leading change effectively requires a multidimensional set of competencies. Over the past two decades, technical competencies of principal change leadership have been extensively analysed and discussed. Comparatively, little research has been conducted in Malaysian education context on non-technical competencies or popularly known as emotional intelligence, which is equally crucial for the success of change. This article provides a validation of the Principal Change Leadership Non-Technical Competencies (PCLnTC) Scale, a tool that practitioners can easily use to assess school principals’ level of change leadership non-technical competencies that facilitate change and maximize change effectiveness. The overall coherence of the PCLnTC model was constructed by incorporating three theories: a)the change leadership theory whereby leading change is the fundamental role of a leader; b)competency theory in which leadership can be taught and learned; and c)the concept of emotional intelligence whereby it can be developed, fostered and taught. An exploratory factor analysis (EFA) was used to determine the underlying factor structure of PCLnTC model. Before conducting EFA, five important pilot test approaches were conducted to ensure the validity and reliability of the instrument: a)reviewed by academic colleagues; b)verification and comments from panel; c)evaluation on questionnaire format, syntax, design, and completion time; d)evaluation of item clarity; and e)assessment of internal consistency reliability. A total of 335 teachers from 12 High Performing Secondary School in Malaysia completed the survey. The PCLnTCS with six points Liker-type scale were subjected to Principal Components Analysis. The analysis yielded a three-factor solution namely, a)Interpersonal Sensitivity; b)Flexibility; and c)Motivation, explaining a total 74.326 per cent of the variance. Based on the results, implications for instrument revisions are discussed and specifications for future confirmatory factor analysis are delineated.

Keywords: exploratory factor analysis, principal change leadership non-technical competencies (PCLnTC), interpersonal sensitivity, flexibility, motivation

Procedia PDF Downloads 423
2628 A Graph Theoretic Algorithm for Bandwidth Improvement in Computer Networks

Authors: Mehmet Karaata

Abstract:

Given two distinct vertices (nodes) source s and target t of a graph G = (V, E), the two node-disjoint paths problem is to identify two node-disjoint paths between s ∈ V and t ∈ V . Two paths are node-disjoint if they have no common intermediate vertices. In this paper, we present an algorithm with O(m)-time complexity for finding two node-disjoint paths between s and t in arbitrary graphs where m is the number of edges. The proposed algorithm has a wide range of applications in ensuring reliability and security of sensor, mobile and fixed communication networks.

Keywords: disjoint paths, distributed systems, fault-tolerance, network routing, security

Procedia PDF Downloads 441
2627 The Contemporary Visual Spectacle: Critical Visual Literacy

Authors: Lai-Fen Yang

Abstract:

In this increasingly visual world, how can we best decipher and understand the many ways that our everyday lives are organized around looking practices and the many images we encounter each day? Indeed, how we interact with and interpret visual images is a basic component of human life. Today, however, we are living in one of the most artificial visual and image-saturated cultures in human history, which makes understanding the complex construction and multiple social functions of visual imagery more important than ever before. Themes regarding our experience of a visually pervasive mediated culture, here, termed visual spectacle.

Keywords: visual culture, contemporary, images, literacy

Procedia PDF Downloads 511
2626 Graffiti as Intelligence: an Analysis of Encoded Messages in Gang Graffiti Renderings

Authors: Timothy Kephart

Abstract:

Many law enforcement officials believe that gangs communicate messages to both the community and to rival gangs through graffiti. Some social scientists have documented this as well, however no recent research has examined gang graffiti for its underlying meaning. Empirical research on gang graffiti and gang communication through graffiti is limited. This research can be described as an exploratory effort to better understand how, and perhaps why, gangs employ this medium for communication. Furthermore this research showcases how law enforcement agencies can utilize this hidden form of communication to better direct resources and impact gang violence.

Keywords: gangs, graffiti, juvenile justice, policing

Procedia PDF Downloads 437
2625 Prototype of an Interactive Toy from Lego Robotics Kits for Children with Autism

Authors: Ricardo A. Martins, Matheus S. da Silva, Gabriel H. F. Iarossi, Helen C. M. Senefonte, Cinthyan R. S. C. de Barbosa

Abstract:

This paper is the development of a concept of the man/robot interaction. More accurately in developing of an autistic child that have more troubles with interaction, here offers an efficient solution, even though simple; however, less studied for this public. This concept is based on code applied thought out the Lego NXT kit, built for the interpretation of the robot, thereby can create this interaction in a constructive way for children suffering with Autism.

Keywords: lego NXT, interaction, BricX, autismo, ANN (Artificial Neural Network), MLP back propagation, hidden layers

Procedia PDF Downloads 568
2624 A Survey of Domain Name System Tunneling Attacks: Detection and Prevention

Authors: Lawrence Williams

Abstract:

As the mechanism which converts domains to internet protocol (IP) addresses, Domain Name System (DNS) is an essential part of internet usage. It was not designed securely and can be subject to attacks. DNS attacks have become more frequent and sophisticated and the need for detecting and preventing them becomes more important for the modern network. DNS tunnelling attacks are one type of attack that are primarily used for distributed denial-of-service (DDoS) attacks and data exfiltration. Discussion of different techniques to detect and prevent DNS tunneling attacks is done. The methods, models, experiments, and data for each technique are discussed. A proposal about feasibility is made. Future research on these topics is proposed.

Keywords: DNS, tunneling, exfiltration, botnet

Procedia PDF Downloads 74
2623 Distant Speech Recognition Using Laser Doppler Vibrometer

Authors: Yunbin Deng

Abstract:

Most existing applications of automatic speech recognition relies on cooperative subjects at a short distance to a microphone. Standoff speech recognition using microphone arrays can extend the subject to sensor distance somewhat, but it is still limited to only a few feet. As such, most deployed applications of standoff speech recognitions are limited to indoor use at short range. Moreover, these applications require air passway between the subject and the sensor to achieve reasonable signal to noise ratio. This study reports long range (50 feet) automatic speech recognition experiments using a Laser Doppler Vibrometer (LDV) sensor. This study shows that the LDV sensor modality can extend the speech acquisition standoff distance far beyond microphone arrays to hundreds of feet. In addition, LDV enables 'listening' through the windows for uncooperative subjects. This enables new capabilities in automatic audio and speech intelligence, surveillance, and reconnaissance (ISR) for law enforcement, homeland security and counter terrorism applications. The Polytec LDV model OFV-505 is used in this study. To investigate the impact of different vibrating materials, five parallel LDV speech corpora, each consisting of 630 speakers, are collected from the vibrations of a glass window, a metal plate, a plastic box, a wood slate, and a concrete wall. These are the common materials the application could encounter in a daily life. These data were compared with the microphone counterpart to manifest the impact of various materials on the spectrum of the LDV speech signal. State of the art deep neural network modeling approaches is used to conduct continuous speaker independent speech recognition on these LDV speech datasets. Preliminary phoneme recognition results using time-delay neural network, bi-directional long short term memory, and model fusion shows great promise of using LDV for long range speech recognition. To author’s best knowledge, this is the first time an LDV is reported for long distance speech recognition application.

Keywords: covert speech acquisition, distant speech recognition, DSR, laser Doppler vibrometer, LDV, speech intelligence surveillance and reconnaissance, ISR

Procedia PDF Downloads 177
2622 Development of Excellent Water-Repellent Coatings for Metallic and Ceramic Surfaces

Authors: Aditya Kumar

Abstract:

One of the most fascinating properties of various insects and plant surfaces in nature is their water-repellent (superhydrophobicity) capability. The nature offers new insights to learn and replicate the same in designing artificial superhydrophobic structures for a wide range of applications such as micro-fluidics, micro-electronics, textiles, self-cleaning surfaces, anti-corrosion, anti-fingerprint, oil/water separation, etc. In general, artificial superhydrophobic surfaces are synthesized by creating roughness and then treating the surface with low surface energy materials. In this work, various super-hydrophobic coatings on metallic surfaces (aluminum, steel, copper, steel mesh) were synthesized by chemical etching process using different etchants and fatty acid. Also, SiO2 nano/micro-particles embedded polyethylene, polystyrene, and poly(methyl methacrylate) superhydrophobic coatings were synthesized on glass substrates. Also, the effect of process parameters such as etching time, etchant concentration, and particle concentration on wettability was studied. To know the applications of the coatings, surface morphology, contact angle, self-cleaning, corrosion-resistance, and water-repellent characteristics were investigated at various conditions. Furthermore, durabilities of coatings were also studied by performing thermal, ultra-violet, and mechanical stability tests. The surface morphology confirms the creation of rough microstructures by chemical etching or by embedding particles, and the contact angle measurements reveal the superhydrophobic nature. Experimentally it is found that the coatings have excellent self-cleaning, anti-corrosion and water-repellent nature. These coatings also withstand mechanical disturbances such surface bending, adhesive peeling, and abrasion. Coatings are also found to be thermal and ultra-violet stable. Additionally, coatings are also reproducible. Hence aforesaid durable superhydrophobic surfaces have many potential industrial applications.

Keywords: superhydrophobic, water-repellent, anti-corrosion, self-cleaning

Procedia PDF Downloads 294
2621 Optimization of Waste Plastic to Fuel Oil Plants' Deployment Using Mixed Integer Programming

Authors: David Muyise

Abstract:

Mixed Integer Programming (MIP) is an approach that involves the optimization of a range of decision variables in order to minimize or maximize a particular objective function. The main objective of this study was to apply the MIP approach to optimize the deployment of waste plastic to fuel oil processing plants in Uganda. The processing plants are meant to reduce plastic pollution by pyrolyzing the waste plastic into a cleaner fuel that can be used to power diesel/paraffin engines, so as (1) to reduce the negative environmental impacts associated with plastic pollution and also (2) to curb down the energy gap by utilizing the fuel oil. A programming model was established and tested in two case study applications that are, small-scale applications in rural towns and large-scale deployment across major cities in the country. In order to design the supply chain, optimal decisions on the types of waste plastic to be processed, size, location and number of plants, and downstream fuel applications were concurrently made based on the payback period, investor requirements for capital cost and production cost of fuel and electricity. The model comprises qualitative data gathered from waste plastic pickers at landfills and potential investors, and quantitative data obtained from primary research. It was found out from the study that a distributed system is suitable for small rural towns, whereas a decentralized system is only suitable for big cities. Small towns of Kalagi, Mukono, Ishaka, and Jinja were found to be the ideal locations for the deployment of distributed processing systems, whereas Kampala, Mbarara, and Gulu cities were found to be the ideal locations initially utilize the decentralized pyrolysis technology system. We conclude that the model findings will be most important to investors, engineers, plant developers, and municipalities interested in waste plastic to fuel processing in Uganda and elsewhere in developing economy.

Keywords: mixed integer programming, fuel oil plants, optimisation of waste plastics, plastic pollution, pyrolyzing

Procedia PDF Downloads 127
2620 Comparative Study of Outcome of Patients with Wilms Tumor Treated with Upfront Chemotherapy and Upfront Surgery in Alexandria University Hospitals

Authors: Golson Mohamed, Yasmine Gamasy, Khaled EL-Khatib, Anas Al-Natour, Shady Fadel, Haytham Rashwan, Haytham Badawy, Nadia Farghaly

Abstract:

Introduction: Wilm's tumor is the most common malignant renal tumor in children. Much progress has been made in the management of patients with this malignancy over the last 3 decades. Today treatments are based on several trials and studies conducted by the International Society of Pediatric Oncology (SIOP) in Europe and National Wilm's Tumor Study Group (NWTS) in the USA. It is necessary for us to understand why do we follow either of the protocols, NWTS which follows the upfront surgery principle or the SIOP which follows the upfront chemotherapy principle in all stages of the disease. Objective: The aim of is to assess outcome in patients treated with preoperative chemotherapy and patients treated with upfront surgery to compare their effect on overall survival. Study design: to decide which protocol to follow, study was carried out on records for patients aged 1 day to 18 years old suffering from Wilm's tumor who were admitted to Alexandria University Hospital, pediatric oncology, pediatric urology and pediatric surgery departments, with a retrospective survey records from 2010 to 2015, Design and editing of the transfer sheet with a (PRISMA flow study) Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Data were fed to the computer and analyzed using IBM SPSS software package version 20.0. (11) Qualitative data were described using number and percent. Quantitative data were described using Range (minimum and maximum), mean, standard deviation and median. Comparison between different groups regarding categorical variables was tested using Chi-square test. When more than 20% of the cells have expected count less than 5, correction for chi-square was conducted using Fisher’s Exact test or Monte Carlo correction. The distributions of quantitative variables were tested for normality using Kolmogorov-Smirnov test, Shapiro-Wilk test, and D'Agstino test, if it reveals normal data distribution, parametric tests were applied. If the data were abnormally distributed, non-parametric tests were used. For normally distributed data, a comparison between two independent populations was done using independent t-test. For abnormally distributed data, comparison between two independent populations was done using Mann-Whitney test. Significance of the obtained results was judged at the 5% level. Results: A significantly statistical difference was observed for survival between the two studied groups favoring the upfront chemotherapy(86.4%)as compared to the upfront surgery group (59.3%) where P=0.009. As regard complication, 20 cases (74.1%) out of 27 were complicated in the group of patients treated with upfront surgery. Meanwhile, 30 cases (68.2%) out of 44 had complications in patients treated with upfront chemotherapy. Also, the incidence of intraoperative complication (rupture) was less in upfront chemotherapy group as compared to upfront surgery group. Conclusion: Upfront chemotherapy has superiority over upfront surgery.As the patient who started with upfront chemotherapy shown, higher survival rate, less percent in complication, less percent needed for radiotherapy, and less rate in recurrence.

Keywords: Wilm's tumor, renal tumor, chemotherapy, surgery

Procedia PDF Downloads 316
2619 Smart Help at the Workplace for Persons with Disabilities (SHW-PWD)

Authors: Ghassan Kbar, Shady Aly, Ibrahim Alsharawy, Akshay Bhatia, Nur Alhasan, Ronaldo Enriquez

Abstract:

The Smart Help for persons with disability (PWD) is a part of the project SMARTDISABLE which aims to develop relevant solution for PWD that target to provide an adequate workplace environment for them. It would support PWD needs smartly through smart help to allow them access to relevant information and communicate with other effectively and flexibly, and smart editor that assist them in their daily work. It will assist PWD in knowledge processing and creation as well as being able to be productive at the work place. The technical work of the project involves design of a technological scenario for the Ambient Intelligence (AmI) - based assistive technologies at the workplace consisting of an integrated universal smart solution that suits many different impairment conditions and will be designed to empower the Physically disabled persons (PDP) with the capability to access and effectively utilize the ICTs in order to execute knowledge rich working tasks with minimum efforts and with sufficient comfort level. The proposed technology solution for PWD will support voice recognition along with normal keyboard and mouse to control the smart help and smart editor with dynamic auto display interface that satisfies the requirements for different PWD group. In addition, a smart help will provide intelligent intervention based on the behavior of PWD to guide them and warn them about possible misbehavior. PWD can communicate with others using Voice over IP controlled by voice recognition. Moreover, Auto Emergency Help Response would be supported to assist PWD in case of emergency. This proposed technology solution intended to make PWD very effective at the work environment and flexible using voice to conduct their tasks at the work environment. The proposed solution aims to provide favorable outcomes that assist PWD at the work place, with the opportunity to participate in PWD assistive technology innovation market which is still small and rapidly growing as well as upgrading their quality of life to become similar to the normal people at the workplace. Finally, the proposed smart help solution is applicable in all workplace setting, including offices, manufacturing, hospital, etc.

Keywords: ambient intelligence, ICT, persons with disability PWD, smart application, SHW

Procedia PDF Downloads 421
2618 Analysis of Digital Transformation in Banking: The Hungarian Case

Authors: Éva Pintér, Péter Bagó, Nikolett Deutsch, Miklós Hetényi

Abstract:

The process of digital transformation has a profound influence on all sectors of the worldwide economy and the business environment. The influence of blockchain technology can be observed in the digital economy and e-government, rendering it an essential element of a nation's growth strategy. The banking industry is experiencing significant expansion and development of financial technology firms. Utilizing developing technologies such as artificial intelligence (AI), machine learning (ML), and big data (BD), these entrants are offering more streamlined financial solutions, promptly addressing client demands, and presenting a challenge to incumbent institutions. The advantages of digital transformation are evident in the corporate realm, and firms that resist its adoption put their survival at risk. The advent of digital technologies has revolutionized the business environment, streamlining processes and creating opportunities for enhanced communication and collaboration. Thanks to the aid of digital technologies, businesses can now swiftly and effortlessly retrieve vast quantities of information, all the while accelerating the process of creating new and improved products and services. Big data analytics is generally recognized as a transformative force in business, considered the fourth paradigm of science, and seen as the next frontier for innovation, competition, and productivity. Big data, an emerging technology that is shaping the future of the banking sector, offers numerous advantages to banks. It enables them to effectively track consumer behavior and make informed decisions, thereby enhancing their operational efficiency. Banks may embrace big data technologies to promptly and efficiently identify fraud, as well as gain insights into client preferences, which can then be leveraged to create better-tailored products and services. Moreover, the utilization of big data technology empowers banks to develop more intelligent and streamlined models for accurately recognizing and focusing on the suitable clientele with pertinent offers. There is a scarcity of research on big data analytics in the banking industry, with the majority of existing studies only examining the advantages and prospects associated with big data. Although big data technologies are crucial, there is a dearth of empirical evidence about the role of big data analytics (BDA) capabilities in bank performance. This research addresses a gap in the existing literature by introducing a model that combines the resource-based view (RBV), the technical organization environment framework (TOE), and dynamic capability theory (DC). This study investigates the influence of Big Data Analytics (BDA) utilization on the performance of market and risk management. This is supported by a comparative examination of Hungarian mobile banking services.

Keywords: big data, digital transformation, dynamic capabilities, mobile banking

Procedia PDF Downloads 64
2617 Comparison with Mechanical Behaviors of Mastication in Teeth Movement Cases

Authors: Jae-Yong Park, Yeo-Kyeong Lee, Hee-Sun Kim

Abstract:

Purpose: This study aims at investigating the mechanical behaviors of mastication, according to various teeth movement. There are three masticatory cases which are general case and 2 cases of teeth movement. General case includes the common arrange of all teeth and 2 cases of teeth movement are that one is the half movement location case of molar teeth in no. 14 tooth seat after extraction of no. 14 tooth and the other is no. 14 tooth seat location case of molar teeth after extraction in the same case before. Materials and Methods: In order to analyze these cases, 3 dimensional finite element (FE) model of the skull were generated based on computed tomography images, 964 dicom files of 38 year old male having normal occlusion status. An FE model in general occlusal case was used to develop CAE procedure. This procedure was applied to FE models in other occlusal cases. The displacement controls according to loading condition were applied effectively to simulate occlusal behaviors in all cases. From the FE analyses, von Mises stress distribution of skull and teeth was observed. The von Mises stress, effective stress, had been widely used to determine the absolute stress value, regardless of stress direction and yield characteristics of materials. Results: High stress was distributed over the periodontal area of mandible under molar teeth when the mandible was transmitted to the coronal-apical direction in the general occlusal case. According to the stress propagation from teeth to cranium, stress distribution decreased as the distribution propagated from molar teeth to infratemporal crest of the greater wing of the sphenoid bone and lateral pterygoid plate in general case. In 2 cases of teeth movement, there were observed that high stresses were distributed over the periodontal area of mandible under teeth where they are located under the moved molar teeth in cranium. Conclusion: The predictions of the mechanical behaviors of general case and 2 cases of teeth movement during the masticatory process were investigated including qualitative validation. The displacement controls as the loading condition were applied effectively to simulate occlusal behaviors in 2 cases of teeth movement of molar teeth.

Keywords: cranium, finite element analysis, mandible, masticatory action, occlusal force

Procedia PDF Downloads 391
2616 Challenges of Blockchain Applications in the Supply Chain Industry: A Regulatory Perspective

Authors: Pardis Moslemzadeh Tehrani

Abstract:

Due to the emergence of blockchain technology and the benefits of cryptocurrencies, intelligent or smart contracts are gaining traction. Artificial intelligence (AI) is transforming our lives, and it is being embraced by a wide range of sectors. Smart contracts, which are at the heart of blockchains, incorporate AI characteristics. Such contracts are referred to as "smart" contracts because of the underlying technology that allows contracting parties to agree on terms expressed in computer code that defines machine-readable instructions for computers to follow under specific situations. The transmission happens automatically if the conditions are met. Initially utilised for financial transactions, blockchain applications have since expanded to include the financial, insurance, and medical sectors, as well as supply networks. Raw material acquisition by suppliers, design, and fabrication by manufacturers, delivery of final products to consumers, and even post-sales logistics assistance are all part of supply chains. Many issues are linked with managing supply chains from the planning and coordination stages, which can be implemented in a smart contract in a blockchain due to their complexity. Manufacturing delays and limited third-party amounts of product components have raised concerns about the integrity and accountability of supply chains for food and pharmaceutical items. Other concerns include regulatory compliance in multiple jurisdictions and transportation circumstances (for instance, many products must be kept in temperature-controlled environments to ensure their effectiveness). Products are handled by several providers before reaching customers in modern economic systems. Information is sent between suppliers, shippers, distributors, and retailers at every stage of the production and distribution process. Information travels more effectively when individuals are eliminated from the equation. The usage of blockchain technology could be a viable solution to these coordination issues. In blockchains, smart contracts allow for the rapid transmission of production data, logistical data, inventory levels, and sales data. This research investigates the legal and technical advantages and disadvantages of AI-blockchain technology in the supply chain business. It aims to uncover the applicable legal problems and barriers to the use of AI-blockchain technology to supply chains, particularly in the food industry. It also discusses the essential legal and technological issues and impediments to supply chain implementation for stakeholders, as well as methods for overcoming them before releasing the technology to clients. Because there has been little research done on this topic, it is difficult for industrial stakeholders to grasp how blockchain technology could be used in their respective operations. As a result, the focus of this research will be on building advanced and complex contractual terms in supply chain smart contracts on blockchains to cover all unforeseen supply chain challenges.

Keywords: blockchain, supply chain, IoT, smart contract

Procedia PDF Downloads 125
2615 Case Study Analysis of 2017 European Railway Traffic Management Incident: The Application of System for Investigation of Railway Interfaces Methodology

Authors: Sanjeev Kumar Appicharla

Abstract:

This paper presents the results of the modelling and analysis of the European Railway Traffic Management (ERTMS) safety-critical incident to raise awareness of biases in the systems engineering process on the Cambrian Railway in the UK using the RAIB 17/2019 as a primary input. The RAIB, the UK independent accident investigator, published the Report- RAIB 17/2019 giving the details of their investigation of the focal event in the form of immediate cause, causal factors, and underlying factors and recommendations to prevent a repeat of the safety-critical incident on the Cambrian Line. The Systems for Investigation of Railway Interfaces (SIRI) is the methodology used to model and analyze the safety-critical incident. The SIRI methodology uses the Swiss Cheese Model to model the incident and identify latent failure conditions (potentially less than adequate conditions) by means of the management oversight and risk tree technique. The benefits of the systems for investigation of railway interfaces methodology (SIRI) are threefold: first is that it incorporates the “Heuristics and Biases” approach advanced by 2002 Nobel laureate in Economic Sciences, Prof Daniel Kahneman, in the management oversight and risk tree technique to identify systematic errors. Civil engineering and programme management railway professionals are aware of the role “optimism bias” plays in programme cost overruns and are aware of bow tie (fault and event tree) model-based safety risk modelling techniques. However, the role of systematic errors due to “Heuristics and Biases” is not appreciated as yet. This overcomes the problems of omission of human and organizational factors from accident analysis. Second, the scope of the investigation includes all levels of the socio-technical system, including government, regulatory, railway safety bodies, duty holders, signaling firms and transport planners, and front-line staff such that lessons are learned at the decision making and implementation level as well. Third, the author’s past accident case studies are supplemented with research pieces of evidence drawn from the practitioner's and academic researchers’ publications as well. This is to discuss the role of system thinking to improve the decision-making and risk management processes and practices in the IEC 15288 systems engineering standard and in the industrial context such as the GB railways and artificial intelligence (AI) contexts as well.

Keywords: accident analysis, AI algorithm internal audit, bounded rationality, Byzantine failures, heuristics and biases approach

Procedia PDF Downloads 188
2614 Meditation and Insight Interpretation Using Quantum Circle Based-on Experiment and Quantum Relativity Formalism

Authors: Somnath Bhattachryya, Montree Bunruangses, Somchat Sonasang, Preecha Yupapin

Abstract:

In this study and research on meditation and insight, the design and experiment with electronic circuits to manipulate the meditators' mental circles that call the chakras to have the same size is proposed. The shape of the circuit is 4-ports, called an add-drop multiplexer, that studies the meditation structure called the four-mindfulness foundation, then uses an AC power signal as an input instead of the meditation time function, where various behaviors with the method of re-filtering the signal (successive filtering), like eight noble paths. Start by inputting a signal at a frequency that causes the velocity of the wave on the perimeter of the circuit to cause particles to have the speed of light in a vacuum. The signal changes from electromagnetic waves and matter waves according to the velocity (frequency) until it reaches the point of the relativistic limit. The electromagnetic waves are transformed into photons with properties of wave-particle overcoming the limits of the speed of light. As for the matter wave, it will travel to the other side and cannot pass through the relativistic limit, called a shadow signal (echo) that can have power from increasing speed but cannot create speed faster than light or insight. In the experiment, the only the side where the velocity is positive, only where the speed above light or the corresponding frequency indicates intelligence. Other side(echo) can be done by changing the input signal to the other side of the circuit to get the same result. But there is no intelligence or speed beyond light. It is also used to study the stretching, contraction of time and wormholes that can be applied for teleporting, Bose-Einstein condensate and teleprinting, quantum telephone. The teleporting can happen throughout the system with wave-particle and echo, which is when the speed of the particle is faster than the stretching or contraction of time, the particle will submerge in the wormhole, when the destination and time are determined, will travel through the wormhole. In a wormhole, time can determine in the future and the past. The experimental results using the microstrip circuit have been found to be by the principle of quantum relativity, which can be further developed for both tools and meditation practitioners for quantum technology.

Keywords: quantu meditation, insight picture, quantum circuit, absolute time, teleportation

Procedia PDF Downloads 63
2613 A Survey of Digital Health Companies: Opportunities and Business Model Challenges

Authors: Iris Xiaohong Quan

Abstract:

The global digital health market reached 175 billion U.S. dollars in 2019, and is expected to grow at about 25% CAGR to over 650 billion USD by 2025. Different terms such as digital health, e-health, mHealth, telehealth have been used in the field, which can sometimes cause confusion. The term digital health was originally introduced to refer specifically to the use of interactive media, tools, platforms, applications, and solutions that are connected to the Internet to address health concerns of providers as well as consumers. While mHealth emphasizes the use of mobile phones in healthcare, telehealth means using technology to remotely deliver clinical health services to patients. According to FDA, “the broad scope of digital health includes categories such as mobile health (mHealth), health information technology (IT), wearable devices, telehealth and telemedicine, and personalized medicine.” Some researchers believe that digital health is nothing else but the cultural transformation healthcare has been going through in the 21st century because of digital health technologies that provide data to both patients and medical professionals. As digital health is burgeoning, but research in the area is still inadequate, our paper aims to clear the definition confusion and provide an overall picture of digital health companies. We further investigate how business models are designed and differentiated in the emerging digital health sector. Both quantitative and qualitative methods are adopted in the research. For the quantitative analysis, our research data came from two databases Crunchbase and CBInsights, which are well-recognized information sources for researchers, entrepreneurs, managers, and investors. We searched a few keywords in the Crunchbase database based on companies’ self-description: digital health, e-health, and telehealth. A search of “digital health” returned 941 unique results, “e-health” returned 167 companies, while “telehealth” 427. We also searched the CBInsights database for similar information. After merging and removing duplicate ones and cleaning up the database, we came up with a list of 1464 companies as digital health companies. A qualitative method will be used to complement the quantitative analysis. We will do an in-depth case analysis of three successful unicorn digital health companies to understand how business models evolve and discuss the challenges faced in this sector. Our research returned some interesting findings. For instance, we found that 86% of the digital health startups were founded in the recent decade since 2010. 75% of the digital health companies have less than 50 employees, and almost 50% with less than 10 employees. This shows that digital health companies are relatively young and small in scale. On the business model analysis, while traditional healthcare businesses emphasize the so-called “3P”—patient, physicians, and payer, digital health companies extend to “5p” by adding patents, which is the result of technology requirements (such as the development of artificial intelligence models), and platform, which is an effective value creation approach to bring the stakeholders together. Our case analysis will detail the 5p framework and contribute to the extant knowledge on business models in the healthcare industry.

Keywords: digital health, business models, entrepreneurship opportunities, healthcare

Procedia PDF Downloads 183
2612 Distributed Key Management With Less Transmitted Messaged In Rekeying Process To Secure Iot Wireless Sensor Networks In Smart-Agro

Authors: Safwan Mawlood Hussien

Abstract:

Internet of Things (IoT) is a promising technology has received considerable attention in different fields such as health, industry, defence, and agro, etc. Due to the limitation capacity of computing, storage, and communication, IoT objects are more vulnerable to attacks. Many solutions have been proposed to solve security issues, such as key management using symmetric-key ciphers. This study provides a scalable group distribution key management based on ECcryptography; with less transmitted messages The method has been validated through simulations in OMNeT++.

Keywords: elliptic curves, Diffie–Hellman, discrete logarithm problem, secure key exchange, WSN security, IoT security, smart-agro

Procedia PDF Downloads 119
2611 Durability of Light-Weight Concrete

Authors: Rudolf Hela, Michala Hubertova

Abstract:

The paper focuses on research of durability and lifetime of dense light-weight concrete with artificial light-weight aggregate Liapor exposed to various types of aggressive environment. Experimental part describes testing of designed concrete of various strength classes and volume weights exposed to cyclical freezing, frost and chemical de-icers and various types of chemically aggressive environment.

Keywords: aggressive environment, durability, physical-mechanical properties, light-weight concrete

Procedia PDF Downloads 266
2610 Performance of Staggered Wall Buildings Subjected to Low to Medium Earthquake Loads

Authors: Younghoo Choi, Yong Jun, Jinkoo Kim

Abstract:

In this study seismic performance of typical reinforced concrete staggered wall system structures was evaluated through nonlinear static and incremental dynamic analyses. To this end, and 15-story SWS structures were designed and were analyzed to obtain their nonlinear force-displacement relationships. The analysis results showed that the 5-story SWS structures failed due to yielding of columns and walls located in the lower stories, whereas in the 15-story structures plastic hinges were more widely distributed throughout the stories.

Keywords: staggered wall systems, reinforced concrete, seismic performance

Procedia PDF Downloads 392
2609 A Fermatean Fuzzy MAIRCA Approach for Maintenance Strategy Selection of Process Plant Gearbox Using Sustainability Criteria

Authors: Soumava Boral, Sanjay K. Chaturvedi, Ian Howard, Kristoffer McKee, V. N. A. Naikan

Abstract:

Due to strict regulations from government to enhance the possibilities of sustainability practices in industries, and noting the advances in sustainable manufacturing practices, it is necessary that the associated processes are also sustainable. Maintenance of large scale and complex machines is a pivotal task to maintain the uninterrupted flow of manufacturing processes. Appropriate maintenance practices can prolong the lifetime of machines, and prevent associated breakdowns, which subsequently reduces different cost heads. Selection of the best maintenance strategies for such machines are considered as a burdensome task, as they require the consideration of multiple technical criteria, complex mathematical calculations, previous fault data, maintenance records, etc. In the era of the fourth industrial revolution, organizations are rapidly changing their way of business, and they are giving their utmost importance to sensor technologies, artificial intelligence, data analytics, automations, etc. In this work, the effectiveness of several maintenance strategies (e.g., preventive, failure-based, reliability centered, condition based, total productive maintenance, etc.) related to a large scale and complex gearbox, operating in a steel processing plant is evaluated in terms of economic, social, environmental and technical criteria. As it is not possible to obtain/describe some criteria by exact numerical values, these criteria are evaluated linguistically by cross-functional experts. Fuzzy sets are potential soft-computing technique, which has been useful to deal with linguistic data and to provide inferences in many complex situations. To prioritize different maintenance practices based on the identified sustainable criteria, multi-criteria decision making (MCDM) approaches can be considered as potential tools. Multi-Attributive Ideal Real Comparative Analysis (MAIRCA) is a recent addition in the MCDM family and has proven its superiority over some well-known MCDM approaches, like TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and ELECTRE (ELimination Et Choix Traduisant la REalité). It has a simple but robust mathematical approach, which is easy to comprehend. On the other side, due to some inherent drawbacks of Intuitionistic Fuzzy Sets (IFS) and Pythagorean Fuzzy Sets (PFS), recently, the use of Fermatean Fuzzy Sets (FFSs) has been proposed. In this work, we propose the novel concept of FF-MAIRCA. We obtain the weights of the criteria by experts’ evaluation and use them to prioritize the different maintenance practices according to their suitability by FF-MAIRCA approach. Finally, a sensitivity analysis is carried out to highlight the robustness of the approach.

Keywords: Fermatean fuzzy sets, Fermatean fuzzy MAIRCA, maintenance strategy selection, sustainable manufacturing, MCDM

Procedia PDF Downloads 137
2608 Enhancing Cultural Heritage Data Retrieval by Mapping COURAGE to CIDOC Conceptual Reference Model

Authors: Ghazal Faraj, Andras Micsik

Abstract:

The CIDOC Conceptual Reference Model (CRM) is an extensible ontology that provides integrated access to heterogeneous and digital datasets. The CIDOC-CRM offers a “semantic glue” intended to promote accessibility to several diverse and dispersed sources of cultural heritage data. That is achieved by providing a formal structure for the implicit and explicit concepts and their relationships in the cultural heritage field. The COURAGE (“Cultural Opposition – Understanding the CultuRal HeritAGE of Dissent in the Former Socialist Countries”) project aimed to explore methods about socialist-era cultural resistance during 1950-1990 and planned to serve as a basis for further narratives and digital humanities (DH) research. This project highlights the diversity of flourished alternative cultural scenes in Eastern Europe before 1989. Moreover, the dataset of COURAGE is an online RDF-based registry that consists of historical people, organizations, collections, and featured items. For increasing the inter-links between different datasets and retrieving more relevant data from various data silos, a shared federated ontology for reconciled data is needed. As a first step towards these goals, a full understanding of the CIDOC CRM ontology (target ontology), as well as the COURAGE dataset, was required to start the work. Subsequently, the queries toward the ontology were determined, and a table of equivalent properties from COURAGE and CIDOC CRM was created. The structural diagrams that clarify the mapping process and construct queries are on progress to map person, organization, and collection entities to the ontology. Through mapping the COURAGE dataset to CIDOC-CRM ontology, the dataset will have a common ontological foundation with several other datasets. Therefore, the expected results are: 1) retrieving more detailed data about existing entities, 2) retrieving new entities’ data, 3) aligning COURAGE dataset to a standard vocabulary, 4) running distributed SPARQL queries over several CIDOC-CRM datasets and testing the potentials of distributed query answering using SPARQL. The next plan is to map CIDOC-CRM to other upper-level ontologies or large datasets (e.g., DBpedia, Wikidata), and address similar questions on a wide variety of knowledge bases.

Keywords: CIDOC CRM, cultural heritage data, COURAGE dataset, ontology alignment

Procedia PDF Downloads 144
2607 Causal-Explanatory Model of Academic Performance in Social Anxious Adolescents

Authors: Beatriz Delgado

Abstract:

Although social anxiety is one of the most prevalent disorders in adolescents and causes considerable difficulties and social distress in those with the disorder, to date very few studies have explored the impact of social anxiety on academic adjustment in student populations. The aim of this study was analyze the effect of social anxiety on school functioning in Secondary Education. Specifically, we examined the relationship between social anxiety and self-concept, academic goals, causal attributions, intellectual aptitudes, and learning strategies, personality traits, and academic performance, with the purpose of creating a causal-explanatory model of academic performance. The sample consisted of 2,022 students in the seven to ten grades of Compulsory Secondary Education in Spain (M = 13.18; SD = 1.35; 51.1% boys). We found that: (a) social anxiety has a direct positive effect on internal attributional style, and a direct negative effect on self-concept. Social anxiety also has an indirect negative effect on internal causal attributions; (b) prior performance (first academic trimester) exerts a direct positive effect on intelligence, achievement goals, academic self-concept, and final academic performance (third academic trimester), and a direct negative effect on internal causal attributions. It also has an indirect positive effect on causal attributions (internal and external), learning goals, achievement goals, and study strategies; (c) intelligence has a direct positive effect on learning goals and academic performance (third academic trimester); (d) academic self-concept has a direct positive effect on internal and external attributional style. Also, has an indirect effect on learning goals, achievement goals, and learning strategies; (e) internal attributional style has a direct positive effect on learning strategies and learning goals. Has a positive but indirect effect on achievement goals and learning strategies; (f) external attributional style has a direct negative effect on learning strategies and learning goals and a direct positive effect on internal causal attributions; (g) learning goals have direct positive effect on learning strategies and achievement goals. The structural equation model fit the data well (CFI = .91; RMSEA = .04), explaining 93.8% of the variance in academic performance. Finally, we emphasize that the new causal-explanatory model proposed in the present study represents a significant contribution in that it includes social anxiety as an explanatory variable of cognitive-motivational constructs.

Keywords: academic performance, adolescence, cognitive-motivational variables, social anxiety

Procedia PDF Downloads 330
2606 Localized Variabilities in Traffic-related Air Pollutant Concentrations Revealed Using Compact Sensor Networks

Authors: Eric A. Morris, Xia Liu, Yee Ka Wong, Greg J. Evans, Jeff R. Brook

Abstract:

Air quality monitoring stations tend to be widely distributed and are often located far from major roadways, thus, determining where, when, and which traffic-related air pollutants (TRAPs) have the greatest impact on public health becomes a matter of extrapolation. Compact, multipollutant sensor systems are an effective solution as they enable several TRAPs to be monitored in a geospatially dense network, thus filling in the gaps between conventional monitoring stations. This work describes two applications of one such system named AirSENCE for gathering actionable air quality data relevant to smart city infrastructures. In the first application, four AirSENCE devices were co-located with traffic monitors around the perimeter of a city block in Oshawa, Ontario. This study, which coincided with the COVID-19 outbreak of 2020 and subsequent lockdown measures, demonstrated a direct relationship between decreased traffic volumes and TRAP concentrations. Conversely, road construction was observed to cause elevated TRAP levels while reducing traffic volumes, illustrating that conventional smart city sensors such as traffic counters provide inadequate data for inferring air quality conditions. The second application used two AirSENCE sensors on opposite sides of a major 2-way commuter road in Toronto. Clear correlations of TRAP concentrations with wind direction were observed, which shows that impacted areas are not necessarily static and may exhibit high day-to-day variability in air quality conditions despite consistent traffic volumes. Both of these applications provide compelling evidence favouring the inclusion of air quality sensors in current and future smart city infrastructure planning. Such sensors provide direct measurements that are useful for public health alerting as well as decision-making for projects involving traffic mitigation, heavy construction, and urban renewal efforts.

Keywords: distributed sensor network, continuous ambient air quality monitoring, Smart city sensors, Internet of Things, traffic-related air pollutants

Procedia PDF Downloads 71
2605 Using Computer Vision and Machine Learning to Improve Facility Design for Healthcare Facility Worker Safety

Authors: Hengameh Hosseini

Abstract:

Design of large healthcare facilities – such as hospitals, multi-service line clinics, and nursing facilities - that can accommodate patients with wide-ranging disabilities is a challenging endeavor and one that is poorly understood among healthcare facility managers, administrators, and executives. An even less-understood extension of this problem is the implications of weakly or insufficiently accommodative design of facilities for healthcare workers in physically-intensive jobs who may also suffer from a range of disabilities and who are therefore at increased risk of workplace accident and injury. Combine this reality with the vast range of facility types, ages, and designs, and the problem of universal accommodation becomes even more daunting and complex. In this study, we focus on the implication of facility design for healthcare workers suffering with low vision who also have physically active jobs. The points of difficulty are myriad and could span health service infrastructure, the equipment used in health facilities, and transport to and from appointments and other services can all pose a barrier to health care if they are inaccessible, less accessible, or even simply less comfortable for people with various disabilities. We conduct a series of surveys and interviews with employees and administrators of 7 facilities of a range of sizes and ownership models in the Northeastern United States and combine that corpus with in-facility observations and data collection to identify five major points of failure common to all the facilities that we concluded could pose safety threats to employees with vision impairments, ranging from very minor to severe. We determine that lack of design empathy is a major commonality among facility management and ownership. We subsequently propose three methods for remedying this lack of empathy-informed design, to remedy the dangers posed to employees: the use of an existing open-sourced Augmented Reality application to simulate the low-vision experience for designers and managers; the use of a machine learning model we develop to automatically infer facility shortcomings from large datasets of recorded patient and employee reviews and feedback; and the use of a computer vision model fine tuned on images of each facility to infer and predict facility features, locations, and workflows, that could again pose meaningful dangers to visually impaired employees of each facility. After conducting a series of real-world comparative experiments with each of these approaches, we conclude that each of these are viable solutions under particular sets of conditions, and finally characterize the range of facility types, workforce composition profiles, and work conditions under which each of these methods would be most apt and successful.

Keywords: artificial intelligence, healthcare workers, facility design, disability, visually impaired, workplace safety

Procedia PDF Downloads 114
2604 Touching Interaction: An NFC-RFID Combination

Authors: Eduardo Álvarez, Gerardo Quiroga, Jorge Orozco, Gabriel Chavira

Abstract:

AmI proposes a new way of thinking about computers, which follows the ideas of the Ubiquitous Computing vision of Mark Weiser. In these, there is what is known as a Disappearing Computer Initiative, with users immersed in intelligent environments. Hence, technologies need to be adapted so that they are capable of replacing the traditional inputs to the system by embedding these in every-day artifacts. In this work, we present an approach, which uses Radiofrequency Identification (RFID) and Near Field Communication (NFC) technologies. In the latter, a new form of interaction appears by contact. We compare both technologies by analyzing their requirements and advantages. In addition, we propose using a combination of RFID and NFC.

Keywords: touching interaction, ambient intelligence, ubiquitous computing, interaction, NFC and RFID

Procedia PDF Downloads 504