Search results for: water temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14029

Search results for: water temperature

12109 NR/PEO Block Copolymer: A Chelating Exchanger for Metal Ions

Authors: M. S. Mrudula, M. R. Gopinathan Nair

Abstract:

In order to utilize the natural rubber for developing new green polymeric materials for specialty applications, we have prepared natural rubber and polyethylene oxide based polymeric networks by two shot method. The polymeric networks thus formed have been used as chelating exchanger for metal ion binding. Chelating exchangers are, in general, coordinating copolymers containing one or more electron donor atoms such as N, S, O, and P that can form coordinate bonds with metals. Hydrogels are water- swollen network of hydrophilic homopolymer or copolymers. They acquire a great interest due to the facility of the incorporation of different chelating groups into the polymeric networks. Such polymeric hydrogels are promising materials in the field of hydrometallurgical applications and water purification due to their chemical stability. The current study discusses the swelling response of the polymeric networks as a function of time, temperature, pH and [NaCl] and sorption studies. Equilibrium swelling has been observed to depend on both structural aspects of the polymers and environmental factors. Metal ion sorption shows that these polymeric networks can be used for removal, separation, and enrichment of metal ions from aqueous solutions and can play an important role for environmental remediation of municipal and industrial wastewater.

Keywords: block copolymer, adsorption, chelating exchanger, swelling study, polymer, metal complexes

Procedia PDF Downloads 342
12108 Gendered Water Insecurity: a Structural Equation Approach for Female-Headed Households in South Africa

Authors: Saul Ngarava, Leocadia Zhou, Nomakhaya Monde

Abstract:

Water crises have the fourth most significant societal impact after weapons of mass destruction, climate change, and extreme weather conditions, ahead of natural disasters. Intricacies between women and water are central to achieving the 2030 Sustainable Development Goals (SDGs). The majority of the 1.2 billion poor people worldwide, with two-thirds being women, and mostly located in Sub Sahara Africa (SSA) and South Asia, do not have access to safe and reliable sources of water. There exist gendered differences in water security based on the division of labour associating women with water. Globally, women and girls are responsible for water collection in 80% of the households which have no water on their premises. Women spend 16 million hours a day collecting water, while men and children spend 6 million and 4 million per day, respectively, which is time foregone in the pursuit of other livelihood activities. Due to their proximity and activities concerning water, women are vulnerable to water insecurity through exposures to water-borne diseases, fatigue from physically carrying water, and exposure to sexual and physical harassment, amongst others. Proximity to treated water and their wellbeing also has an effect on their sensitivity and adaptive capacity to water insecurity. The great distances, difficult terrain and heavy lifting expose women to vulnerabilities of water insecurity. However, few studies have quantified the vulnerabilities and burdens on women, with a few taking a phenomenological qualitative approach. Vulnerability studies have also been scanty in the water security realm, with most studies taking linear forms of either quantifying exposures, sensitivities or adaptive capacities in climate change studies. The current study argues for the need for a water insecurity vulnerability assessment, especially for women into research agendas as well as policy interventions, monitoring, and evaluation. The study sought to identify and provide pathways through which female-headed households were water insecure in South Africa, the 30th driest country in the world. This was through linking the drinking water decision as well as the vulnerability frameworks. Secondary data collected during the 2016 General Household Survey (GHS) was utilised, with a sample of 5928 female-headed households. Principal Component Analysis and Structural Equation Modelling were used to analyse the data. The results show dynamic relationships between water characteristics and water treatment. There were also associations between water access and wealth status of the female-headed households. Association was also found between water access and water treatment as well as between wealth status and water treatment. The study concludes that there are dynamic relationships in water insecurity (exposure, sensitivity, and adaptive capacity) for female-headed households in South Africa. The study recommends that a multi-prong approach is required in tackling exposures, sensitivities, and adaptive capacities to water insecurity. This should include capacitating and empowering women for wealth generation, improve access to water treatment equipment as well as prioritising the improvement of infrastructure that brings piped and safe water to female-headed households.

Keywords: gender, principal component analysis, structural equation modelling, vulnerability, water insecurity

Procedia PDF Downloads 121
12107 Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams

Authors: Alena Zemanová, Jan Zeman, Michal Šejnoha

Abstract:

The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependence. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units.

Keywords: finite element method, finite-strain Reissner model, Lagrange multipliers, generalized Maxwell model, laminated glass, Newton method, Williams-Landel-Ferry equation

Procedia PDF Downloads 431
12106 Upgrades for Hydric Supply in Water System Distribution: Use of the Bayesian Network and Technical Expedients

Authors: Elena Carcano, James Ball

Abstract:

This work details the strategies adopted by the Italian Water Utilities during the distribution of water in emergency conditions which glide from earthquakes and droughts to floods and fires. Several water bureaus located over the national territory have been interviewed, and the collected information has been used in a database of potential interventions to be taken. The work discusses the actions adopted by water utilities. These are generally prioritized in order to minimize the social, temporal, and economic burden that the damaged and nearby areas need to support. Actions are defined relying on the Bayesian Network Approach, which constitutes the hard core of any decision support system. The Bayesian Networks give answers to interventions to real and most likely risky cases. The added value of this research consists in supplying the National Bureau, namely Protezione Civile, in charge of managing havoc and catastrophic situations with a univocal plot outline so as to be able to handle actions uniformly at the expense of different local laws or contradictory customs which squander any recovery conditions, proper technical service, and economic aids. The paper is organized as follows: in section 1, the introduction is stated; section 2 provides a brief discussion of BNNs (Bayesian Networks), section 3 introduces the adopted methodology; and in the last sections, results are presented, and conclusions are drawn.

Keywords: hierarchical process, strategic plan, water emergency conditions, water supply

Procedia PDF Downloads 160
12105 Integrating Insulated Concrete Form (ICF) with Solar-Driven Reverse Osmosis Desalination for Building Integrated Energy Storage in Cold Climates

Authors: Amirhossein Eisapour, Mohammad Emamjome Kashan, Alan S. Fung

Abstract:

This research addresses the pressing global challenges of clean energy and water supplies, emphasizing the need for sustainable solutions for the building sector. The research centers on integrating Reverse Osmosis (RO) systems with building energy systems, incorporating Solar Thermal Collectors (STC)/Photovoltaic Thermal (PVT), water-to-water heat pumps, and an Insulated Concrete Form (ICF) based building foundation wall thermal energy storage. The study explores an innovative configuration’s effectiveness in addressing water and heating demands through clean energy sources while addressing ICF-based thermal storage challenges, which could overheat in the cooling season. Analyzing four configurations—STC-ICF, STC-ICF-RO, PVT-ICF, and PVT-ICF-RO, the study conducts a sensitivity analysis on collector area (25% and 50% increase) and weather data (evaluating five Canadian cities, Winnipeg, Toronto, Edmonton, Halifax and Vancouver). Key outcomes highlight the benefits of integrated RO scenarios, showcasing reduced ICF wall temperature, diminished unwanted heat in the cooling season, reduced RO pump consumption and enhanced solar energy production. The STC-ICF-RO and PVT-ICF-RO systems achieved energy savings of 653 kWh and 131 kWh, respectively, in comparison to their non-integrated RO counterparts. Additionally, both systems successfully contributed to lowering the CO2 production level of the energy system. The calculated payback period of STC-ICF-RO (2 years) affirms the proposed systems’ economic viability. Compared to the base system, which does not benefit from the ICF and RO integration with the building energy system, the STC-ICF-RO and PVT-ICF-RO demonstrate a dramatic energy consumption reduction of 20% and 32%, respectively. The sensitivity analysis suggests potential system improvements under specific conditions, especially when implementing the introduced energy system in communities of buildings.

Keywords: insulated concrete form, thermal energy storage, reverse osmosis, building energy systems, solar thermal collector, photovoltaic thermal, heat pump

Procedia PDF Downloads 54
12104 Effect of Multilayered MnBi Films on Magnetic and Microstructural Properties

Authors: Hyun-Sook Lee, Hongjae Moon, Hwaebong Jung, Sumin Kim, Wooyoung Lee

Abstract:

Low-temperature phase (LTP) of MnBi has attracted much attention because it has a larger coercivity than that of Nd-Fe-B at high temperature, which gives high potential as a permanent magnet material that can be used at such high temperature. We present variation in magnetic properties of MnBi films by controlling the numbers of Bi/Mn bilayer. The thin films of LTP-MnBi were fabricated onto glass substrates by UHV sputtering, followed by in-situ annealing process at an optimized condition of 350 °C and 1.5 hours. The composition ratio of Bi/Mn was adjusted by varying the thickness of Bi and Mn layers. The highest value of (BH)max ~ 8.6 MGOe at room temperature was obtained in one Bi/Mn bilayer with 34 nm Bi and 16 nm Mn. To investigate the effect of Bi/Mn multilayers on the magnetic properties, we increased the numbers of Bi/Mn bilayer up to five at which the total film thicknesses of Bi and Mn were fixed with 34 nm and 16 nm. The increase of coercivity was observed up to three layers from 4.8 kOe to 15.3 kOe and then suppression was appeared. A reversed behavior was exhibited in the magnetization. We found that these were closely related to a microstructural change of LTP-MnBi and a reduction of growth rate of LTP-MnBi by analyzing XRD and TEM results. We will discuss how the multilayered MnBi affects the magnetic properties in details.

Keywords: coercivity, MnBi, multilayer film, permanent magnet

Procedia PDF Downloads 335
12103 Bench-scale Evaluation of Alternative-to-Chlorination Disinfection Technologies for the Treatment of the Maltese Tap-water

Authors: Georgios Psakis, Imren Rahbay, David Spiteri, Jeanice Mallia, Martin Polidano, Vasilis P. Valdramidis

Abstract:

Absence of surface water and progressive groundwater quality deterioration have exacerbated scarcity rapidly, making the Mediterranean island of Malta one of the most water-stressed countries in Europe. Water scarcity challenges have been addressed by reverse osmosis desalination of seawater, 60% of which is blended with groundwater to form the current potable tap-water supply. Chlorination has been the adopted method of water disinfection prior to distribution. However, with the Malteseconsumer chlorine sensory-threshold being as low as 0.34 ppm, presence of chorine residuals and chlorination by-products in the distributed tap-water impacts negatively on its organoleptic attributes, deterring the public from consuming it. As part of the PURILMA initiative, and with the aim of minimizing the impact of chlorine residual on the quality of the distributed water, UV-C, and hydrosonication, have been identified as cost- and energy-effective decontamination alternatives, paving the way for more sustainable water management. Bench-scale assessment of the decontamination efficiency of UV-C (254 nm), revealed 4.7-Log10 inactivation for both Escherichia coli and Enterococcus faecalis at 36 mJ/cm2. At >200 mJ/cm2fluence rates, there was a systematic 2-Log10 difference in the reductions exhibited by E. coli and E. faecalis to suggest that UV-C disinfection was more effective against E. coli. Hybrid treatment schemes involving hydrosonication(at 9.5 and 12.5 dm3/min flow rates with 1-5 MPa maximum pressure) and UV-C showed at least 1.1-fold greater bactericidal activity relative to the individualized UV-C treatments. The observed inactivation appeared to have stemmed from additive effects of the combined treatments, with hydrosonication-generated reactive oxygen species enhancing the biocidal activity of UV-C.

Keywords: disinfection, groundwater, hydrosonication, UV-C

Procedia PDF Downloads 173
12102 Moderation in Temperature Dependence on Counter Frictional Coefficient and Prevention of Wear of C/C Composites by Synthesizing SiC around Surface and Internal Vacancies

Authors: Noboru Wakamoto, Kiyotaka Obunai, Kazuya Okubo, Toru Fujii

Abstract:

The aim of this study is to moderate the dependence of counter frictional coefficient on temperature between counter surfaces and to reduce the wear of C/C composites at low temperature. To modify the C/C composites, Silica (SiO2) powders were added into phenolic resin for carbon precursor. The preform plate of the precursor of C/C composites was prepared by conventional filament winding method. The C/C composites plates were obtained by carbonizing preform plate at 2200 °C under an argon atmosphere. At that time, the silicon carbides (SiC) were synthesized around the surfaces and the internal vacancies of the C/C composites. The frictional coefficient on the counter surfaces and specific wear volumes of the C/C composites were measured by our developed frictional test machine like pin-on disk type. The XRD indicated that SiC was synthesized in the body of C/C composite fabricated by current method. The results of friction test showed that coefficient of friction of unmodified C/C composites have temperature dependence when the test condition was changed. In contrast, frictional coefficient of the C/C composite modified with SiO2 powders was almost constant at about 0.27 when the temperature condition was changed from Room Temperature (RT) to 300 °C. The specific wear rate decreased from 25×10-6 mm2/N to 0.1×10-6 mm2/N. The observations of the surfaces after friction tests showed that the frictional surface of the modified C/C composites was covered with a film produced by the friction. This study found that synthesizing SiC around surface and internal vacancies of C/C composites was effective to moderate the dependence on the frictional coefficient and reduce to the abrasion of C/C composites.

Keywords: C/C composites, friction coefficient, wear, SiC

Procedia PDF Downloads 344
12101 Investigation on the Structure of Temperature-Responsive N-isopropylacrylamide Microgels Containing a New Hydrophobic Crosslinker

Authors: G. Roshan Deen, J. S. Pedersen

Abstract:

Temperature-responsive poly(N-isopropyl acrylamide) PNIPAM microgels crosslinked with a new hydrophobic chemical crosslinker was prepared by surfactant-mediated precipitation emulsion polymerization. The temperature-responsive property of the microgel and the influence of the crosslinker on the swelling behaviour was studied systematically by light scattering and small-angle X-ray scattering (SAXS). The radius of gyration (Rg) and the hydrodynamic radius (Rh) of the microgels decreased with increase in temperature due to the volume phase transition from a swollen to a collapsed state. The ratio of Rg/Rh below the transition temperature was lower than that of hard-spheres due to the lower crosslinking density of the microgels. The SAXS data was analysed by a model in which the microgels were modelled as core-shell particles with a graded interface. The model at intermediate temperatures included a central core and a more diffuse outer layer describing pending polymer chains with a low crosslinking density. In the fully swollen state, the microgels were modelled with a single component with a broad graded surface. In the collapsed state they were modelled as homogeneous and relatively compact particles. The polymer volume fraction inside the microgel was also derived based on the model and was found to increase with increase in temperature as a result of collapse of the microgel to compact particles. The polymer volume fraction in the core of the microgel in the collapsed state was about 60% which is higher than that of similar microgels crosslinked with hydrophilic and flexible cross-linkers.

Keywords: microgels, SAXS, hydrophobic crosslinker, light scattering

Procedia PDF Downloads 427
12100 Enhanced Recoverable Oil in Northern Afghanistan Kashkari Oil Field by Low-Salinity Water Flooding

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi

Abstract:

Afghanistan is located in a tectonically complex and dynamic area, surrounded by rocks that originated on the mother continent of Gondwanaland. The northern Afghanistan basin, which runs along the country's northern border, has the potential for petroleum generation and accumulation. The Amu Darya basin has the largest petroleum potential in the region. Sedimentation occurred in the Amu Darya basin from the Jurassic to the Eocene epochs. Kashkari oil field is located in northern Afghanistan's Amu Darya basin. The field structure consists of a narrow northeast-southwest (NE-SW) anticline with two structural highs, the northwest limb being mild and the southeast limb being steep. The first oil production well in the Kashkari oil field was drilled in 1976, and a total of ten wells were drilled in the area between 1976 and 1979. The amount of original oil in place (OOIP) in the Kashkari oil field, based on the results of surveys and calculations conducted by research institutions, is estimated to be around 140 MMbbls. The objective of this study is to increase recoverable oil reserves in the Kashkari oil field through the implementation of low-salinity water flooding (LSWF) enhanced oil recovery (EOR) technique. The LSWF involved conducting a core flooding laboratory test consisting of four sequential steps with varying salinities. The test commenced with the use of formation water (FW) as the initial salinity, which was subsequently reduced to a salinity level of 0.1%. Afterwards, the numerical simulation model of core scale oil recovery by LSWF was designed by Computer Modelling Group’s General Equation Modeler (CMG-GEM) software to evaluate the applicability of the technology to the field scale. Next, the Kahskari oil field simulation model was designed, and the LSWF method was applied to it. To obtain reasonable results, laboratory settings (temperature, pressure, rock, and oil characteristics) are designed as far as possible based on the condition of the Kashkari oil field, and several injection and production patterns are investigated. The relative permeability of oil and water in this study was obtained using Corey’s equation. In the Kashkari oilfield simulation model, three models: 1. Base model (with no water injection), 2. FW injection model, and 3. The LSW injection model were considered for the evaluation of the LSWF effect on oil recovery. Based on the results of the LSWF laboratory experiment and computer simulation analysis, the oil recovery increased rapidly after the FW was injected into the core. Subsequently, by injecting 1% salinity water, a gradual increase of 4% oil can be observed. About 6.4% of the field, is produced by the application of the LSWF technique. The results of LSWF (salinity 0.1%) on the Kashkari oil field suggest that this technology can be a successful method for developing Kashkari oil production.

Keywords: low salinity water flooding, immiscible displacement, kashkari oil field, twophase flow, numerical reservoir simulation model

Procedia PDF Downloads 43
12099 Evaluation of Groundwater Quality in North-West Region of Punjab, India

Authors: Jeevan Jyoti Mohindroo, Umesh Kumar Garg

Abstract:

The district of Tarntaran is located25 km south of Amritsar city in Punjab State of Northwestern India. It is 5059 Sq. Km in area. It is surrounded by Amritsar in the North, Kapurthala in the East, and Ferozepur in the South and Pakistan in the West. Patti Town is a municipal council of the Tarntaran district of the Indian state of Punjab, located 45 km from Amritsar its geographical coordinates are 310 16' 51" north to 740 51' 25" East Longitude. The town spreads over an area of 50sq. Km. Moisture content is very less in the air, falling within the semiarid region and frequently facing water scarcity as well as water quality problems. The major sources of employment are agriculture, horticulture and animal husbandry engaging almost 80% of the workforce. Water samples are collected from 400 locations in 20 villages on the Patti –Khem Karan highway with 20 samples from each village, and were subjected to analysis of chemical characteristics. The type of water that predominates in the study area is Ca-Mg-HCO3 type, based on hydro-chemical analysis. Besides, suitability of water for irrigation is evaluated based on the sodium adsorption ratio (SAR), residual sodium carbonate, sodium percent and salinity hazard. Other Physico-chemical parameters such as pH, TDS, conductance, etc. were also determined using a water analysis kit. Analysis of water samples for heavy metal analysis was also carried out in the present study.

Keywords: groundwater, chemical classification, SAR, RSC, USSL diagram

Procedia PDF Downloads 198
12098 Triticum Aestivum Yield Enhanced with Irrigation Scheduling Strategy under Salinity

Authors: Taramani Yadav, Gajender Kumar, R. K. Yadav, H. S. Jat

Abstract:

Soil Salinity and irrigation water salinity is critical threat to enhance agricultural food production to full fill the demand of billion plus people worldwide. Salt affected soils covers 6.73 Mha in India and ~1000 Mha area around the world. Irrigation scheduling of saline water is the way to ensure food security in salt affected areas. Research experiment was conducted at ICAR-Central Soil Salinity Research Institute, Experimental Farm, Nain, Haryana, India with 36 treatment combinations in double split plot design. Three sets of treatments consisted of (i) three regimes of irrigation viz., 60, 80 and 100% (I1, I2 and I3, respectively) of crop ETc (crop evapotranspiration at identified respective stages) in main plot; (ii) four levels of irrigation water salinity (sub plot treatments) viz., 2, 4, 8 and 12 dS m-1 (iii) applications of two PBRs along with control (without PBRs) i.e. salicylic acid (G1; 1 mM) and thiourea (G2; 500 ppm) as sub-sub plot treatments. Grain yield of wheat (Triticum aestivum) was increased with less amount of high salt loaded irrigation water at the same level of salinity (2 dS m-1), the trend was I3>I2>I1 at 2 dS m-1 with 8.10 and 17.07% increase at 80 and 100% ETc, respectively compared to 60% ETc. But contrary results were obtained by increasing amount of irrigation water at same level of highest salinity (12 dS m-1) showing following trend; I1>I2>I3 at 12 dS m-1 with 9.35 and 12.26% increase at 80 and 60% ETc compared to 100% ETc. Enhancement in grain yield of wheat (Triticum aestivum) is not need to increase amount of irrigation water under saline condition, with salty irrigation water less amount of irrigation water gave the maximum wheat (Triticum aestivum) grain yield.

Keywords: Irrigation Scheduling, Saline Environment, Triticum aestivum, Yield

Procedia PDF Downloads 145
12097 Biological Treatment of Bacterial Biofilms from Drinking Water Distribution System in Lebanon

Authors: A. Hamieh, Z. Olama, H. Holail

Abstract:

Drinking Water Distribution Systems provide opportunities for microorganisms that enter the drinking water to develop into biofilms. Antimicrobial agents, mainly chlorine, are used to disinfect drinking water, however, there are not yet standardized disinfection strategies with reliable efficacy and development of novel anti-biofilm strategies is still of major concern. In the present study the ability of Lactobacillus acidophilus and Streptomyces sp. cell free supernatants to inhibit the bacterial biofilm formation in Drinking Water Distribution System in Lebanon was investigated. Treatment with cell free supernatants of Lactobacillus acidophilus and Streptomyces sp. at 20% concentration resulted in average biofilm inhibition (52.89 and 39.66% respectively). A preliminary investigation about the mode of action of biofilm inhibition revealed that cell free supernatants showed no bacteriostatic or bactericidal activity against all the tested isolates. Pre-coating wells with supernatants revealed that Lactobacillus acidophilus cell free supernatant inhibited average biofilm formation (62.53%) by altering the adhesion of bacterial isolates to the surface, preventing the initial attachment step, which is important for biofilm production.

Keywords: biofilm, cell free supernatant, distribution system, drinking water, lactobacillus acidophilus, streptomyces sp, adhesion

Procedia PDF Downloads 435
12096 Drying Kinects of Soybean Seeds

Authors: Amanda Rithieli Pereira Dos Santos, Rute Quelvia De Faria, Álvaro De Oliveira Cardoso, Anderson Rodrigo Da Silva, Érica Leão Fernandes Araújo

Abstract:

The study of the kinetics of drying has great importance for the mathematical modeling, allowing to know about the processes of transference of heat and mass between the products and to adjust dryers managing new technologies for these processes. The present work had the objective of studying the kinetics of drying of soybean seeds and adjusting different statistical models to the experimental data varying cultivar and temperature. Soybean seeds were pre-dried in a natural environment in order to reduce and homogenize the water content to the level of 14% (b.s.). Then, drying was carried out in a forced air circulation oven at controlled temperatures of 38, 43, 48, 53 and 58 ± 1 ° C, using two soybean cultivars, BRS 8780 and Sambaíba, until reaching a hygroscopic equilibrium. The experimental design was completely randomized in factorial 5 x 2 (temperature x cultivar) with 3 replicates. To the experimental data were adjusted eleven statistical models used to explain the drying process of agricultural products. Regression analysis was performed using the least squares Gauss-Newton algorithm to estimate the parameters. The degree of adjustment was evaluated from the analysis of the coefficient of determination (R²), the adjusted coefficient of determination (R² Aj.) And the standard error (S.E). The models that best represent the drying kinetics of soybean seeds are those of Midilli and Logarítmico.

Keywords: curve of drying seeds, Glycine max L., moisture ratio, statistical models

Procedia PDF Downloads 628
12095 Water Footprint for the Palm Oil Industry in Malaysia

Authors: Vijaya Subramaniam, Loh Soh Kheang, Astimar Abdul Aziz

Abstract:

Water footprint (WFP) has gained importance due to the increase in water scarcity in the world. This study analyses the WFP for an agriculture sector, i.e., the oil palm supply chain, which produces oil palm fresh fruit bunch (FFB), crude palm oil, palm kernel, and crude palm kernel oil. The water accounting and vulnerability evaluation (WAVE) method was used. This method analyses the water depletion index (WDI) based on the local blue water scarcity. The main contribution towards the WFP at the plantation was the production of FFB from the crop itself at 0.23m³/tonne FFB. At the mill, the burden shifts to the water added during the process, which consists of the boiler and process water, which accounted for 6.91m³/tonne crude palm oil. There was a 33% reduction in the WFP when there was no dilution or water addition after the screw press at the mill. When allocation was performed, the WFP reduced by 42% as the burden was shared with the palm kernel and palm kernel shell. At the kernel crushing plant (KCP), the main contributor towards the WFP 4.96 m³/tonne crude palm kernel oil which came from the palm kernel which carried the burden from upstream followed by electricity, 0.33 m³/tonne crude palm kernel oil used for the process and 0.08 m³/tonne crude palm kernel oil for transportation of the palm kernel. A comparison was carried out for mills with biogas capture versus no biogas capture, and the WFP had no difference for both scenarios. The comparison when the KCPs operate in the proximity of mills as compared to those operating in the proximity of ports only gave a reduction of 6% for the WFP. Both these scenarios showed no difference and insignificant difference, which differed from previous life cycle assessment studies on the carbon footprint, which showed significant differences. This shows that findings change when only certain impact categories are focused on. It can be concluded that the impact from the water used by the oil palm tree is low due to the practice of no irrigation at the plantations and the high availability of water from rainfall in Malaysia. This reiterates the importance of planting oil palm trees in regions with high rainfall all year long, like the tropics. The milling stage had the most significant impact on the WFP. Mills should avoid dilution to reduce this impact.

Keywords: life cycle assessment, water footprint, crude palm oil, crude palm kernel oil, WAVE method

Procedia PDF Downloads 175
12094 Swelling Hydrogels on the Base Nitron Fiber Wastes for Water Keeping in Sandy Soils

Authors: Alim Asamatdinov

Abstract:

Superabsorbent polymer hydrogels can swell to absorb huge volumes of water or aqueous solutions. This property has led to many practical applications of these new materials, particularly in agriculture for improving the water retention of soils and the water supply of plants. This article reviews the methods of polymeric hydrogels, measurements and treatments of their properties, as well as their effects on soil and on plant growth. The thermodynamic approach used to describe the swelling behaviour of polymer networks proves to be quite helpful in modelling the hydrogel efficiency of water-absorbing additives. The paper presents the results of a study of the physical and chemical properties of hydrogels based on of the production of "Nitron" (Polyacrylonitrile) wastes fibre and salts of the 3-rd transition metals and formalin. The developed hydrogels HG-Al, HG-Cr and HG-formalin have been tested for water holding the capacity of sand. Such a conclusion was also confirmed by data from the method of determining the wilting point by vegetative thumbnails. In the entering process using a dose of 0.1% of the swelling polymeric hydrogel in sand with a culture of barley the difference between the wilting point in comparison with the control was negligible. This indicates that the moisture which was contained in the hydrogel is involved in moisture availability for plant growth, to the same extent as that in the capillaries.

Keywords: hydrogel, chemical, polymer, sandy, colloid

Procedia PDF Downloads 143
12093 Interannual Variations in Snowfall and Continuous Snow Cover Duration in Pelso, Central Finland, Linked to Teleconnection Patterns, 1944-2010

Authors: M. Irannezhad, E. H. N. Gashti, S. Mohammadighavam, M. Zarrini, B. Kløve

Abstract:

Climate warming would increase rainfall by shifting precipitation falling form from snow to rain, and would accelerate snow cover disappearing by increasing snowpack. Using temperature and precipitation data in the temperature-index snowmelt model, we evaluated variability of snowfall and continuous snow cover duration(CSCD) during 1944-2010 over Pelso, central Finland. MannKendall non-parametric test determined that annual precipitation increased by 2.69 (mm/year, p<0.05) during the study period, but no clear trend in annual temperature. Both annual rainfall and snowfall increased by 1.67 and 0.78 (mm/year, p<0.05), respectively. CSCD was generally about 205 days from 14 October to 6 May. No clear trend was found in CSCD over Pelso. Spearman’s rank correlation showed most significant relationships of annual snowfall with the East Atlantic (EA) pattern, and CSCD with the East Atlantic/West Russia (EA/WR) pattern. Increased precipitation with no warming temperature caused the rainfall and snowfall to increase, while no effects on CSCD.

Keywords: variations, snowfall, snow cover duration, temperature-index snowmelt model, teleconnection patterns

Procedia PDF Downloads 223
12092 Dielectric Properties in Frequency Domain of Main Insulation System of Printed Circuit Board

Authors: Xize Dai, Jian Hao, Claus Leth Bak, Gian Carlo Montanari, Huai Wang

Abstract:

Printed Circuit Board (PCB) is a critical component applicable to power electronics systems, especially for high-voltage applications involving several high-voltage and high-frequency SiC/GaN devices. The insulation system of PCB is facing more challenges from high-voltage and high-frequency stress that can alter the dielectric properties. Dielectric properties of the PCB insulation system also determine the electrical field distribution that correlates with intrinsic and extrinsic aging mechanisms. Hence, investigating the dielectric properties in the frequency domain of the PCB insulation system is a must. The paper presents the frequency-dependent, temperature-dependent, and voltage-dependent dielectric properties, permittivity, conductivity, and dielectric loss tangents of PCB insulation systems. The dielectric properties mechanisms associated with frequency, temperature, and voltage are revealed from the design perspective. It can be concluded that the dielectric properties of PCB in the frequency domain show a strong dependence on voltage, frequency, and temperature. The voltage-, frequency-, and temperature-dependent dielectric properties are associated with intrinsic conduction behavior and polarization patterns from the perspective of dielectric theory. The results may provide some reference for the PCB insulation system design in high voltage, high frequency, and high-temperature power electronics applications.

Keywords: electrical insulation system, dielectric properties, high voltage and frequency, printed circuit board

Procedia PDF Downloads 94
12091 Performance Analysis of Solar Assisted Air Condition Using Carbon Dioxide as Refrigerant

Authors: Olusola Bamisile, Ferdinard Dika, Mustafa Dagbasi, Serkan Abbasoglu

Abstract:

The aim of this study was to model an air conditioning system that brings about effective cooling and reduce fossil fuel consumption with solar energy as an alternative source of energy. The objective of the study is to design a system with high COP, low usage of electricity and to integrate solar energy into AC systems. A hybrid solar assisted air conditioning system is designed to produce 30kW cooling capacity and R744 (CO₂) is used as a refrigerant. The effect of discharge pressure on the performance of the system is studied. The subcool temperature, evaporating temperature (5°C) and suction gas return temperature (12°C) are kept constant for the four different discharge pressures considered. The cooling gas temperature is set at 25°C, and the discharge pressure includes 80, 85, 90 and 95 bars. Copeland Scroll software is used for the simulation. A pressure-enthalpy graph is also used to deduce each enthalpy point while numerical methods were used in making other calculations. From the result of the study, it is observed that a higher COP is achieved with the use of solar assisted systems. As much as 46% of electricity requirements will be save using solar input at compressor stage.

Keywords: air conditioning, solar energy, performance, energy saving

Procedia PDF Downloads 147
12090 Modelling of Recovery and Application of Low-Grade Thermal Resources in the Mining and Mineral Processing Industry

Authors: S. McLean, J. A. Scott

Abstract:

The research topic is focusing on improving sustainable operation through recovery and reuse of waste heat in process water streams, an area in the mining industry that is often overlooked. There are significant advantages to the application of this topic, including economic and environmental benefits. The smelting process in the mining industry presents an opportunity to recover waste heat and apply it to alternative uses, thereby enhancing the overall process. This applied research has been conducted at the Sudbury Integrated Nickel Operations smelter site, in particular on the water cooling towers. The aim was to determine and optimize methods for appropriate recovery and subsequent upgrading of thermally low-grade heat lost from the water cooling towers in a manner that makes it useful for repurposing in applications, such as within an acid plant. This would be valuable to mining companies as it would be an opportunity to reduce the cost of the process, as well as decrease environmental impact and primary fuel usage. The waste heat from the cooling towers needs to be upgraded before it can be beneficially applied, as lower temperatures result in a decrease of the number of potential applications. Temperature and flow rate data were collected from the water cooling towers at an acid plant over two years. The research includes process control strategies and the development of a model capable of determining if the proposed heat recovery technique is economically viable, as well as assessing any environmental impact with the reduction in net energy consumption by the process. Therefore, comprehensive cost and impact analyses are carried out to determine the best area of application for the recovered waste heat. This method will allow engineers to easily identify the value of thermal resources available to them and determine if a full feasibility study should be carried out. The rapid scoping model developed will be applicable to any site that generates large amounts of waste heat. Results show that heat pumps are an economically viable solution for this application, allowing for reduced cost and CO₂ emissions.

Keywords: environment, heat recovery, mining engineering, sustainability

Procedia PDF Downloads 111
12089 Assessing Water Bottle Consumption on College Campus in Abu Dhabi: Towards a Sustainable Future

Authors: Ludmilla Wikkeling-Scott, Amira Karim

Abstract:

Background: In a rapidly developing environment, concerns for pollution and depletion of natural resources are challenges facing global communities. A major source of waste on university campuses is the use of plastic bottles, while cost of production and processing is high. Consumer demand stimulates popularity of plastic bottle production, but researchers agree this is not a sustainable solution. This pilot study assesses plastic water bottle used and attitude towards alternatives among Emirati college students. Methods: This study was conducted in December 2016, using an anonymous self-administered survey of 17 questions. The survey included personal characteristics, plastic water bottle used, attitude towards alternative replacement and sustainability. For statistical analysis, STATA 14C was used to determine significance of association. Results: A total of 500 Emirati students (94.6% female) completed the survey. Of the students, 82.6% preferred bottled water over tap water, and 44.6% reported disposable bottled water use in their household, 42.6% purchased disposable bottled water more than twice a week, and 44.2% purchased bottled water at least once, while on campus. Students were willing to consider switching to alternative water bottle use if it was more convenient (22.54%), cost less (55.13%) or improved the taste (22.54%), while only 7.85% students would not consider any alternatives. There was a significant difference in attitude towards alternatives to water bottle use by area of study (p < 0.005). Conclusion: The UAE strives to be at the forefront of sustainable development and protecting biodiversity. However, a major challenge is the increasing amount of waste, exacerbated by the increasing consumer demand for convenience as seen in this billion-dollar industry. Plastic bottles, for all purposes, pose a serious threat to the environment and sustainable campus initiatives can help reduce the ecological footprint, improve awareness of safe alternatives and benefits to the environment.

Keywords: ecological foot print, emirati students, plastic bottle consumption, sustainable campus

Procedia PDF Downloads 159
12088 Heat Stress Adaptive Urban Design Intervention for Planned Residential Areas of Khulna City: Case Study of Sonadanga

Authors: Tanjil Sowgat, Shamim Kobir

Abstract:

World is now experiencing the consequences of climate change such as increased heat stress due to high temperature rise. In the context of changing climate, this study intends to find out the planning interventions necessary to adapt to the current heat stress in the planned residential areas of Khulna city. To carry out the study Sonadanga residential area (phase I) of Khulna city has been taken as the study site. This residential neighbourhood covering an area of 30 acres has 206 residential plots. The study area comprises twelve access roads, one park, one playfield, one water body and two street furniture’s. This study conducts visual analysis covering green, open space, water body, footpath, drainage and street trees and furniture and questionnaire survey deals with socio-economic, housing tenancy, experience of heat stress and urban design interventions. It finds that the current state that accelerates the heat stress condition such as lack of street trees and inadequate shading, maximum uses are not within ten minutes walking distance, no footpath for the pedestrians and lack of well-maintained street furniture. It proposes that to adapt to the heat stress pedestrian facilities, buffer sidewalk with landscaping, street trees and open spaces, soft scape, natural and man-made water bodies, green roofing could be effective urban design interventions. There are evidences of limited number of heat stress adaptive planned residential area. Since current sub-division planning practice focuses on rigid land use allocation, it partly addresses the climatic concerns through creating open space and street trees. To better respond to adapt to the heat stress, urban design considerations in the context of sub-division practice would bring more benefits.

Keywords: climate change, urban design, adaptation, heat stress, water-logging

Procedia PDF Downloads 296
12087 Stand Alone Multiple Trough Solar Desalination with Heat Storage

Authors: Abderrahmane Diaf, Kamel Benabdellaziz

Abstract:

Remote arid areas of the vast expanses of the African deserts hold huge subterranean reserves of brackish water resources waiting for economic development. This work presents design guidelines as well as initial performance data of new autonomous solar desalination equipment which could help local communities produce their own fresh water using solar energy only and, why not, contribute to transforming desert lands into lush gardens. The output of solar distillation equipment is typically low and in the range of 3 l/m2/day on the average. This new design with an integrated, water-based, environmentally-friendly solar heat storage system produced 5 l/m2/day in early spring weather. Equipment output during summer exceeded 9 liters per m2 per day.

Keywords: multiple trough distillation, solar desalination, solar distillation with heat storage, water based heat storage system

Procedia PDF Downloads 440
12086 Increasing Recoverable Oil in Northern Afghanistan Kashkari Oil Field by Low-Salinity Water Flooding

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi

Abstract:

Afghanistan is located in a tectonically complex and dynamic area, surrounded by rocks that originated on the mother continent of Gondwanaland. The northern Afghanistan basin, which runs along the country's northern border, has the potential for petroleum generation and accumulation. The Amu Darya basin has the largest petroleum potential in the region. Sedimentation occurred in the Amu Darya basin from the Jurassic to the Eocene epochs. Kashkari oil field is located in northern Afghanistan's Amu Darya basin. The field structure consists of a narrow northeast-southwest (NE-SW) anticline with two structural highs, the northwest limb being mild and the southeast limb being steep. The first oil production well in the Kashkari oil field was drilled in 1976, and a total of ten wells were drilled in the area between 1976 and 1979. The amount of original oil in place (OOIP) in the Kashkari oil field, based on the results of surveys and calculations conducted by research institutions, is estimated to be around 140 MMbbls. The objective of this study is to increase recoverable oil reserves in the Kashkari oil field through the implementation of low-salinity water flooding (LSWF) enhanced oil recovery (EOR) technique. The LSWF involved conducting a core flooding laboratory test consisting of four sequential steps with varying salinities. The test commenced with the use of formation water (FW) as the initial salinity, which was subsequently reduced to a salinity level of 0.1%. Afterward, the numerical simulation model of core scale oil recovery by LSWF was designed by Computer Modelling Group’s General Equation Modeler (CMG-GEM) software to evaluate the applicability of the technology to the field scale. Next, the Kahskari oil field simulation model was designed, and the LSWF method was applied to it. To obtain reasonable results, laboratory settings (temperature, pressure, rock, and oil characteristics) are designed as far as possible based on the condition of the Kashkari oil field, and several injection and production patterns are investigated. The relative permeability of oil and water in this study was obtained using Corey’s equation. In the Kashkari oilfield simulation model, three models: 1. Base model (with no water injection), 2. FW injection model, and 3. The LSW injection model was considered for the evaluation of the LSWF effect on oil recovery. Based on the results of the LSWF laboratory experiment and computer simulation analysis, the oil recovery increased rapidly after the FW was injected into the core. Subsequently, by injecting 1% salinity water, a gradual increase of 4% oil can be observed. About 6.4% of the field is produced by the application of the LSWF technique. The results of LSWF (salinity 0.1%) on the Kashkari oil field suggest that this technology can be a successful method for developing Kashkari oil production.

Keywords: low-salinity water flooding, immiscible displacement, Kashkari oil field, two-phase flow, numerical reservoir simulation model

Procedia PDF Downloads 40
12085 Prediction of Welding Induced Distortion in Thin Metal Plates Using Temperature Dependent Material Properties and FEA

Authors: Rehan Waheed, Abdul Shakoor

Abstract:

Distortion produced during welding of thin metal plates is a problem in many industries. The purpose of this research was to study distortion produced during welding in 2mm Mild Steel plate by simulating the welding process using Finite Element Analysis. Simulation of welding process requires a couple field transient analyses. At first a transient thermal analysis is performed and the temperature obtained from thermal analysis is used as input in structural analysis to find distortion. An actual weld sample is prepared and the weld distortion produced is measured. The simulated and actual results were in quite agreement with each other and it has been found that there is profound deflection at center of plate. Temperature dependent material properties play significant role in prediction of weld distortion. The results of this research can be used for prediction and control of weld distortion in large steel structures by changing different weld parameters.

Keywords: welding simulation, FEA, welding distortion, temperature dependent mechanical properties

Procedia PDF Downloads 391
12084 A Low Order Thermal Envelope Model for Heat Transfer Characteristics of Low-Rise Residential Buildings

Authors: Nadish Anand, Richard D. Gould

Abstract:

A simplistic model is introduced for determining the thermal characteristics of a Low-rise Residential (LRR) building and then predicts the energy usage by its Heating Ventilation & Air Conditioning (HVAC) system according to changes in weather conditions which are reflected in the Ambient Temperature (Outside Air Temperature). The LRR buildings are treated as a simple lump for solving the heat transfer problem and the model is derived using the lumped capacitance model of transient conduction heat transfer from bodies. Since most contemporary HVAC systems have a thermostat control which will have an offset temperature and user defined set point temperatures which define when the HVAC system will switch on and off. The aim is to predict without any error the Body Temperature (i.e. the Inside Air Temperature) which will estimate the switching on and off of the HVAC system. To validate the mathematical model derived from lumped capacitance we have used EnergyPlus simulation engine, which simulates Buildings with considerable accuracy. We have predicted through the low order model the Inside Air Temperature of a single house kept in three different climate zones (Detroit, Raleigh & Austin) and different orientations for summer and winter seasons. The prediction error from the model for the same day as that of model parameter calculation has showed an error of < 10% in winter for almost all the orientations and climate zones. Whereas the prediction error is only <10% for all the orientations in the summer season for climate zone at higher latitudes (Raleigh & Detroit). Possible factors responsible for the large variations are also noted in the work, paving way for future research.

Keywords: building energy, energy consumption, energy+, HVAC, low order model, lumped capacitance

Procedia PDF Downloads 267
12083 Effects of Inadequate Domestic Water Supply on Human Health in Selected Neighbourhoods of Lokoja, Kogi State

Authors: Folorunsho J. O., Umar M. A.

Abstract:

Access to potable water supply in both the rural and urban regions of the world has been neglected, and this has severely affected man and the aesthetics of the natural environment of man. This has further worsened the issue of diseases prevalence. This study considered the effects of inadequate domestic water supply on human health in selected neighbourhoods of Lokoja. The study used descriptive statistics such as relative frequencies, percentages and inferential statistics to analyse the data obtained through the use of structured questionnaire. The results revealed that the females and male constituted 56% and 44% of the respondents respectively; 62% of the respondents married and 32% are unmarried; respondents between ages 31 and 40 years constitute majority of the study population, while respondents with tertiary education constituted 35%, and those with secondary education were 32% of the total respondents. Furthermore, civil servants constituted 40% and unemployed 16% of the total respondents. In terms of monthly income, 40% of the respondents was found to earn between ₦31,000 - 40,000 monthly. On the perception of households on the availability and adequacy of domestic water supply, the study revealed that 64.7% of the respondents have pipe-borne water as their main source of water supply, with only 28.5% out of the 64.7% have pipe-borne water supply daily. On the relationship between water supply characteristics and health status among households, the result shows that 76% of the respondents perceived a strong relationship between water supply and health status. Cumulatively, 67% of the respondents confirm that both the quality and quantity of water supplied play a critical role in determining health status of residents of the study area. The respondents also reported skin diseases (96%), diarrhoea (96%), malaria (91%), cholera (67%), dysentery (67%), and respiratory diseases (67%) as the most perceived and experienced in the area, the disease rate in the prevalence order of malaria (81%), diarrhoea (61%), skin diseases (58%), cholera (34%), dysentery (31%) and respiratory disease (14%) respectively. Finally, the results further showed how households cope with inadequate water supply with 52% of the respondents confirm that they regularly treat their water before it was deployed for domestic uses, while 35%, 26%, 25%, 10% and 4% of the 52% respectively, adopted boiling, addition of alums, filtering with fabrics, chlorination and bleaching as the preferred treatment methods. The study thus recommended policy options that will aggressively launch adequate potable water supply infrastructure in the study area.Keywords: Potable Water, Supply, Human Health, Perception, Chlorination

Keywords: potable water, human health, perception, chlorination

Procedia PDF Downloads 65
12082 Eco-Degradation and Phytodiversity of Pulicat Lagoon, Eastcoast of Southern India

Authors: Khasim Munir Bhasha Shaik

Abstract:

Pulicat Lake is the second largest brackish water lagoon after Chilika Lake of Orissa along the east coast of India. Estuaries and lagoons have brackish water which shows high biological productivity than fresh or sea water. Hence, it has a wide range of aquatic, terrestrial flora. The World Wide Fund for Nature declared it as a protected area. The present study aims to explore the flora of the lagoon along with the various threats for its eco-degradation which helps to plan necessary conservation methods.

Keywords: phytodiversity, pulicat lake, threats, conservation

Procedia PDF Downloads 287
12081 Assessment the Infiltration of the Wastewater Ponds and Its Impact on the Water Quality of Pleistocene Aquifer at El Sadat City Using 2-D Electrical Resistivity Tomography and Water Chemistry

Authors: Abeer A. Kenawy, Usama Massoud, El-Said A. Ragab, Heba M. El-Kosery

Abstract:

2-D Electrical Resistivity Tomography (ERT) and hydrochemical study have been conducted at El Sadat industrial city. The study aims to investigate the area around the wastewater ponds to determine the possibility of water percolation from the wastewater ponds to the Pleistocene aquifer and to inspect the effect of this seepage on the groundwater chemistry. Pleistocene aquifer is the main groundwater reservoir in this area, where El Sadat city and its vicinities depend totally on this aquifer for water supplies needed for drinking, agricultural, and industrial activities. In this concern, seven ERT profiles were measured around the wastewater ponds. Besides, 10 water samples were collected from the ponds and the nearby groundwater wells. The water samples have been chemically analyzed for major cations, anions, nutrients, and heavy elements. Also, the physical parameters (pH, Alkalinity, EC, TDS) of the water samples were measured. Inspection of the ERT sections shows that they exhibit lower resistivity values towards the water ponds and higher values in opposite sides. In addition, the water table was detected at shallower depths at the same sides of lower resistivity. This could indicate a wastewater infiltration to the groundwater aquifer near the oxidation ponds. Correlation of the physical parameters and ionic concentrations of the wastewater samples with those of the groundwater samples indicates that; the ionic levels are randomly varying and no specific trend could be obtained. In addition, the wastewater samples shows some ionic levels lower than those detected in other groundwater samples. Besides, the nitrate level is higher in samples taken from the cultivated land than the wastewater samples due to the over using of nitrogen fertilizers. Then, we can say that the infiltrated water from wastewater ponds are not the main controller of the groundwater chemistry in this area, but rather the variable ionic concentrations could be attributed to local, natural, and anthropogenic processes.

Keywords: El Sadat city, ERT, hydrochemistry, percolation, wastewater ponds

Procedia PDF Downloads 355
12080 Pilot Scale Sub-Surface Constructed Wetland: Evaluation of Performance of Bed Vegetated with Water Hyacinth in the Treatment of Domestic Sewage

Authors: Abdul-Hakeem Olatunji Abiola, A. E. Adeniran, A. O. Ajimo, A. B. Lamilisa

Abstract:

Introduction: Conventional wastewater treatment technology has been found to fail in developing countries because they are expensive to construct, operate and maintain. Constructed wetlands are nowadays considered as a low-cost alternative for effective wastewater treatment, especially where suitable land can be available. This study aims to evaluate the performance of the constructed wetland vegetated with water hyacinth (Eichhornia crassipes) plant for the treatment of wastewater. Methodology: The sub-surface flow wetland used for this study was an experimental scale constructed wetland consisting of four beds A, B, C, and D. Beds A, B, and D were vegetated while bed C which was used as a control was non-vegetated. This present study presents the results from bed B vegetated with water hyacinth (Eichhornia crassipes) and control bed C which was non-vegetated. The influent of the experimental scale wetland has been pre-treated with sedimentation, screening and anaerobic chamber before feeding into the experimental scale wetland. Results: pH and conductivity level were more reduced, colour of effluent was more improved, nitrate, iron, phosphate, and chromium were more removed, and dissolved oxygen was more improved in the water hyacinth bed than the control bed. While manganese, nickel, cyanuric acid, and copper were more removed from the control bed than the water hyacinth bed. Conclusion: The performance of the experimental scale constructed wetland bed planted with water hyacinth (Eichhornia crassipes) is better than that of the control bed. It is therefore recommended that plain bed without any plant should not be encouraged.

Keywords: constructed experimental scale wetland, domestic sewage, treatment, water hyacinth

Procedia PDF Downloads 134