Search results for: shear zone
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2810

Search results for: shear zone

890 Microstructure and Corrosion Properties of Pulsed Current Gas Metal Arc Welded Narrow Groove and Ultra-Narrow Groove of 304 LN Austenitic Stainless Steel

Authors: Nikki A. Barla, P. K. Ghosh, Sourav Das

Abstract:

Two different groove sizes 13.6 mm (narrow groove) and 7.5 mm (ultra-narrow groove) of 304 LN austenitic stainless steel (ASS) plate was welded using pulse gas metal arc welding (P-GMAW). These grooves were welded using multi-pass single seam per layer (MSPPL) deposition technique with full assurance of groove wall fusion. During bead on plate deposition process, the thermal cycle was recorded using strain buster (temperature measuring device). Both the groove has heat affected Zone (HAZ) width of 1-2 mm. After welding, the microstructure studies was done which revealed that there was higher sensitization (Chromium carbide formation in grain boundary) in the HAZ of 13.6 mm groove weldment as compared to the HAZ of 7.5 mm weldment. Electrochemical potentiokinetic reactivation test (EPR) was done in 0.5 N H₂SO₄ + 1 M KSCN solution to study the degree of sensitization (DOS) and it was observed that 7.5 mm groove HAZ has lower DOS. Mass deposition in the 13.6 mm weld is higher than 7.5mm groove weld, which naturally induces higher residual stress in 13.6 mm weld. Comparison between microstructural studies and corrosion test summarized that the residual stress affects the sensitization property of welded ASS.

Keywords: austenitic stainless steel (ASS), electrochemical potentiokinetic reactivation test (EPR), microstructure, pulse gas metal arc welding (P-GMAW), sensitization

Procedia PDF Downloads 162
889 The Flavonoids for a Plant Grows in the Arid and Semi-Arid Zone of the Northern Sahara of Algeria - Atriplex halimus L.

Authors: O. Smara, H. Dendougui, B. Legseir

Abstract:

Atriplex halimus L. is particularly well adapted to arid and salt-affected areas. In this species, salinity resistance is often attributed to the presence of vesiculated hairs covering leaf surface and containing a large amount of salt. Atriplex halimus L. (Chenopodiaceae) is a perennial shrub native to the Mediterranean basin with excellent tolerance to drought and salinity. The species is present in semiarid to subhumid areas of the north Mediterranean and in arid zones from North Africa and the eastern Mediterranean. The main aim of this study was to identify a medicinal plant used in the Ouargla (Est-southern Algeria) for the treatment of several human pathologies. This plant is an important source for livestock in nitrogenous matter, it is an effective and relatively inexpensive tool in the fight against erosion and desertification and rehabilitation of degraded lands. Phytochemical investigation is applied to the majority of extracts of the powder of the aerial parts of Atriplex halimus L. Different chromatographic methods after liquid-liquid extraction are used; it is the thin layer chromatography (TLC) and paper using multiple systems and chemical revelations. This study followed by an evaluation by the phenol assay the Folin-Ciocalteu method, using gallic acid as a reference for phenols and quercetin for flavonols. Some polar extracts showed an interesting result better than the less polar extracts.

Keywords: Atriples halimus L., chenopodiaceae, flavonoids, phenols

Procedia PDF Downloads 300
888 Design Criteria for Achieving Acceptable Indoor Radon Concentration

Authors: T. Valdbjørn Rasmussen

Abstract:

Design criteria for achieving an acceptable indoor radon concentration are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization in most countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. The first two criteria can prevent radon from infiltrating from the ground, and the third criteria can dilute the indoor air. By combining these three criteria, the indoor radon concentration can be lowered achieving an acceptable level. In addition, a cheap and reliable method for measuring the radon concentration in the indoor air is described. The provision on radon in the Danish Building Regulations complies with the latest recommendations from the World Health Organization. Radon can cause lung cancer and it is not known whether there is a lower limit for when it is not harmful to human beings. Therefore, it is important to reduce the radon concentration as much as possible in buildings. Airtightness is an important factor when dealing with buildings. It is important to avoid air leakages in the building envelope both facing the atmosphere, e.g. in compliance with energy requirements, but also facing the ground, to meet the requirements to ensure and control the indoor environment. Infiltration of air from the ground underneath a building is the main providing source of radon to the indoor air.

Keywords: radon, natural radiation, barrier, pressure lowering, ventilation

Procedia PDF Downloads 353
887 Effect of Garlic Powder Extract on Fungi Isolated from Diseased Irish Potato in Bokkos, Plateau State Nigeria

Authors: Musa Filibus Gugu

Abstract:

An investigation was carried out on the effect of garlic powder extract on fungi associated with Irish potato rot in Bokkos, Plateau State, Nigeria. Diseased Irish potatoes were randomly collected from three markets in the study location and fungal species isolated. Isolated fungal species were Fusarium culmorum, Fusarium oxysporum, and Pytophthora infestans. Frequency of occurrence for Fusarium culmorum, Fusarium oxysporum, and Pytophthora infestans was 10%, 34%, and 56%, respectively, using sabauraud dextrose agar, after incubation for 4-7 days. Treatment of Pytophthora infestans with garlic powder extract at concentrations of 0.5g/ml, 0.4g/ml, 0.3gml, 0.2g/ml and 0.1g/ml showed 100%, 92%, 68%, 32% and 10% inhibition zones, respectively. Fusarium culmorum showed 100%, 90%, 40%, 9% and 0% inhibition zones when treated with garlic powder extract at concentrations of 0.5g/ml, 0.4g/ml, 0.3gml, 0.2g/ml and 0.1g/ml, respectively. Garlic powder extract concentrations of 0.5g/ml, 0.4g/ml, 0.3gml, 0.2g/ml and 0.1g/ml showed 100%, 98%, 55%, 30%, 0% inhibition zones, respectively on Fusarium oxysporum. Hence, Restriction of the radial growth of the fungal colonies suggests a good antifungal effect of garlic extract. This can be integrated into the treatment of fungal diseases of Irish potato in Bokkos, Nigeria, as this will help to reduce the indiscriminate use of fungicides, especially in an environment with a struggling economy.

Keywords: fungal rot, garlic extract, inhibition zone, Irish potato

Procedia PDF Downloads 141
886 Chemical Composition of Essential Oil and in vitro Antibacterial and Anticancer Activity of the Hydroalcolic Extract from Coronilla varia

Authors: A. A. Dehpour, B. Eslami, S. Rezaie, S. F. Hashemian, F. Shafie, M. Kiaie

Abstract:

The aims of study were investigation on chemical composition essential oil and the effect of extract of Coronilla varia on antimicrobial and cytotoxicity activity. The essential oils of Coronilla varia is obtained by hydrodistillation and analyzed by (GC/MS) for determining their chemical composition and identification of their components. Antibacterial activity of plant extract was determined by disc diffusion method. The effect of hydroalcolic extracts from Cornilla varia investigated on MCF7 cancer cell line by MTT assay. The major components were Caryophyllene Oxide (60.19%), Alphacadinol (4.13%) and Homoadantaneca Robexylic Acid (3.31%). The extracts from Coronilla varia had interesting activity against Proteus mirabilis in the concentration of 700 µg/disc and did not show any activity against Staphylococus aureus, Bacillus subtillis, Klebsiella pneumonia and Entrobacter cloacae. The positive control, Ampicillin, Chloramphenicol and Cenphalothin had shown zone of inhibition resistant all bacteria. Corohilla varia ethanol extract could inhibit the proliferation of MCF7 cell line in RPMI 1640 medium. IC50 5(mg/ml) was the optimum concentration of extract from Coronilla varia inhibition of cell line growth. The MCF7 cancer cell line and Proteus mirabilis were more sensitive to Coronilla varia ethanol extract.

Keywords: Coronilla varia, essential oil, antibacterial, anticancer, hela cell line

Procedia PDF Downloads 389
885 Influence of Telkom Membership Card Customer Perceived Value on Retaining PT. Telkom Indonesia's Customer in 2013-2014

Authors: Eka Yuliana, Siska Shabrina Julyan

Abstract:

The competitive environment and high customer’s churn rate in telecommunication industries lead Indonesian telecommunication companies become strive to offer products with more value. Offering product with more value can encourage customers to keep using the companies product. One of way to retain customer is give a membership card to the customers as practiced by PT. Telkom by giving Telkom Membership Card to PT. Telkom loyal customer. This study aims to determine the influence of Telkom Membership Card customer perceived value on retaining PT. Telkom Indonesia’s customer in 2013-2014 by using quantitative method with causal study. Analythical technique used in this study is Structural Equation Modelling (SEM) to test the causal relationship with 216 owner of Telkom Membership Card in Indonesia. This study conclude that: (i) Customer perceived value on Telkom Membership Card is located in fair value zone, (ii) PT. Telkom efforts in order to retain the customers is classified as good, (iii) Customer perceived value is influencing the effort to retain the customer with the probability value less than 0.05 and level of influence 69%. Based on result of this study, PT. Telkom should (i) Improve Telkom Membership Card’s promotion because not all customer of PT. Telkom have the membership card. (iia) Adding Telkom Membership Card’s benefit such as discount at various merchant (iib) Making call center for member of Telkom Membership Card (iii) PT. Telkom should be ensure availability of their service. (iv) PT. Telkom should make a priority to customer who have telkom membership card and offers a better service.For future research should be use different variables.

Keywords: customer perceived value, customer retention, marketing, relationship marketing

Procedia PDF Downloads 317
884 Parametric Study on Dynamic Analysis of Composite Laminated Plate

Authors: Junaid Kameran Ahmed

Abstract:

A laminated plate composite of graphite/epoxy has been analyzed dynamically in the present work by using a quadratic element (8-node diso-parametric), and by depending on 1st order shear deformation theory, every node in this element has 6-degrees of freedom (displacement in x, y, and z axis and twist about x, y, and z axis). The dynamic analysis in the present work covered parametric studies on a composite laminated plate (square plate) to determine its effect on the natural frequency of the plate. The parametric study is represented by set of changes (plate thickness, number of layers, support conditions, layer orientation), and the plates have been simulated by using ANSYS package 12. The boundary conditions considered in this study, at all four edges of the plate, are simply supported and fixed boundary condition. The results obtained from ANSYS program show that the natural frequency for both fixed and simply supported increases with increasing the number of layers, but this increase in the natural frequency for the first five modes will be neglected after 10 layers. And it is observed that the natural frequency of a composite laminated plate will change with the change of ply orientation, the natural frequency increases and it will be at maximum with angle 45 of ply for simply supported laminated plate, and maximum natural frequency will be with cross-ply (0/90) for fixed laminated composite plate. It is also observed that the natural frequency increase is approximately doubled when the thickness is doubled.

Keywords: laminated plate, orthotropic plate, square plate, natural frequency (free vibration), composite (graphite / epoxy)

Procedia PDF Downloads 347
883 Buildings Founded on Thermal Insulation Layer Subjected to Earthquake Load

Authors: David Koren, Vojko Kilar

Abstract:

The modern energy-efficient houses are often founded on a thermal insulation (TI) layer placed under the building’s RC foundation slab. The purpose of the paper is to identify the potential problems of the buildings founded on TI layer from the seismic point of view. The two main goals of the study were to assess the seismic behavior of such buildings, and to search for the critical structural parameters affecting the response of the superstructure as well as of the extruded polystyrene (XPS) layer. As a test building a multi-storeyed RC frame structure with and without the XPS layer under the foundation slab has been investigated utilizing nonlinear dynamic (time-history) and static (pushover) analyses. The structural response has been investigated with reference to the following performance parameters: i) Building’s lateral roof displacements, ii) Edge compressive and shear strains of the XPS, iii) Horizontal accelerations of the superstructure, iv) Plastic hinge patterns of the superstructure, v) Part of the foundation in compression, and vi) Deformations of the underlying soil and vertical displacements of the foundation slab (i.e. identifying the potential uplift). The results have shown that in the case of higher and stiff structures lying on firm soil the use of XPS under the foundation slab might induce amplified structural peak responses compared to the building models without XPS under the foundation slab. The analysis has revealed that the superstructure as well as the XPS response is substantially affected by the stiffness of the foundation slab.

Keywords: extruded polystyrene (XPS), foundation on thermal insulation, energy-efficient buildings, nonlinear seismic analysis, seismic response, soil–structure interaction

Procedia PDF Downloads 300
882 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows

Authors: J. P. Panda, K. Sasmal, H. V. Warrior

Abstract:

Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.

Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD

Procedia PDF Downloads 200
881 Evaluation of Cellulase and Xylanase Production by Micrococcus Sp. Isolated from Decaying Lignocellulosic Biomass Obtained from Alice Environment in the Eastern Cape of South Africa

Authors: Z. Mmango, U. Nwodo, L. V. Mabinya, A. I. Okoh

Abstract:

Cellulose and hemicellulose account for a large portion of the world‘s plant biomass. In nature, these polysaccharides are intertwined forming complex materials that requires multiple and expensive treatment processes to free up the raw materials trapped in the matrix. Enzymatic degradation remains as the preferred technique as it is inexpensive and eco-friendly. However, the insufficiencies of enzyme battery systems in the degradation of lignocellulosic complex motivate the search for effective degrading enzymes from bacterial isolates from uncommon environment. The study aimed at the evaluation of actinomycetes isolated from saw dust samples collected from wood factory under bed. Cellulase and xylanase production was screened through organism culture on carboxyl methyl cellulose agar and Birchwood xylan. Halo zone indicating lignocellose utilization was shown by an isolate identified through 16S rRNA gene as Micrococcus luteus. The optimum condition for the production of cellulase and xylanase were incubation temperature of 25 °C, fermentation medium pH 5 and 10, agitation speed of 50 and 200 (rpm) and fermentation incubation time of 96 and 84 (h) respectively. The high cellulose and xylanase activity obtained from this isolate portends industrial relevance.

Keywords: carboxyl methyl cellulose, birchwood xylan, optimization, cellulase, xylanase, micrococcus, DNS method

Procedia PDF Downloads 352
880 Effect on the Performance of the Nano-Particulate Graphite Lubricant in the Turning of AISI 1040 Steel under Variable Machining Conditions

Authors: S. Srikiran, Dharmala Venkata Padmaja, P. N. L. Pavani, R. Pola Rao, K. Ramji

Abstract:

Technological advancements in the development of cutting tools and coolant/lubricant chemistry have enhanced the machining capabilities of hard materials under higher machining conditions. Generation of high temperatures at the cutting zone during machining is one of the most important and pertinent problems which adversely affect the tool life and surface finish of the machined components. Generally, cutting fluids and solid lubricants are used to overcome the problem of heat generation, which is not effectively addressing the problems. With technological advancements in the field of tribology, nano-level particulate solid lubricants are being used nowadays in machining operations, especially in the areas of turning and grinding. The present investigation analyses the effect of using nano-particulate graphite powder as lubricant in the turning of AISI 1040 steel under variable machining conditions and to study its effect on cutting forces, tool temperature and surface roughness of the machined component. Experiments revealed that the increase in cutting forces and tool temperature resulting in the decrease of surface quality with the decrease in the size of nano-particulate graphite powder as lubricant.

Keywords: solid lubricant, graphite, minimum quantity lubrication (MQL), nano–particles

Procedia PDF Downloads 269
879 Methanol Steam Reforming with Heat Recovery for Hydrogen-Rich Gas Production

Authors: Horng-Wen Wu, Yi Chao, Rong-Fang Horng

Abstract:

This study is to develop a methanol steam reformer with a heat recovery zone, which recovers heat from exhaust gas of a diesel engine, and to investigate waste heat recovery ratio at the required reaction temperature. The operation conditions of the reformer are reaction temperature (200 °C, 250 °C, and 300 °C), steam to carbonate (S/C) ratio (0.9, 1.1, and 1.3), and N2 volume flow rate (40 cm3/min, 70 cm3/min, and 100 cm3/min). Finally, the hydrogen concentration, the CO, CO2, and N2 concentrations are measured and recorded to calculate methanol conversion efficiency, hydrogen flow rate, and assisting combustion gas and impeding combustion gas ratio. The heat source of this reformer comes from electric heater and waste heat of exhaust gas from diesel engines. The objective is to recover waste heat from the engine and to make more uniform temperature distribution within the reformer. It is beneficial for the reformer to enhance the methanol conversion efficiency and hydrogen-rich gas production. Experimental results show that the highest hydrogen flow rate exists at N2 of the volume rate 40 cm3/min and reforming reaction temperature of 300 °C and the value is 19.6 l/min. With the electric heater and heat recovery from exhaust gas, the maximum heat recovery ratio is 13.18 % occurring at water-methanol (S/C) ratio of 1.3 and the reforming reaction temperature of 300 °C.

Keywords: heat recovery, hydrogen-rich production, methanol steam reformer, methanol conversion efficiency

Procedia PDF Downloads 463
878 Soil Organic Carbon and Nutrients in Smallholding Land Uses in Southern Ethiopia

Authors: Mekdes Lulu

Abstract:

This study assessed the soil organic C (SOC) and soil nutrients in smallholding home garden, woodlot, grazing land, and cropland at two soil depths and two sites in Wolaita Zone, southern Ethiopia. The results showed that soil properties were significantly influenced by land use. The home garden had significantly higher (p < 0.05) SOC and soil nutrients when compared to the cropland. When the home garden was compared to the woodlot and grazing land uses, it had significantly higher (p < 0.05) values except in SOC, total N (TN), cation exchange capacity (CEC), and exchangeable Ca. Cropland, in comparison with grazing land and woodlot, had a non-significant difference except TN. The SOC stock (0–40 cm) in the home garden, woodlot, grazing land and cropland was 79.5, 68.0, 65.0, and 58.1 Mg ha–1, respectively. Home garden significantly differed (p <0.05) in SOC only from cropland, and this was attributed not only to the relatively higher organic input in the home garden but also to the little organic matter input and frequently tillage of the cropland. The similar SOC among the home garden, woodlot and grazing lands may imply that the balance between inputs and outputs could be nearly similar for the land uses. Soil TN and CEC had a nearly similar pattern of difference as in SOC among the land uses because of their close relationship with SOC. In general, the land use influence on soil nutrients can be in the order: home garden > wood land » grazing land » cropland, with home garden showing the least difference from the woodlot and the greatest from the cropland. In the agroecosystem, in general, the influence of smallholding home garden on SOC and soil nutrient was marginally different from Eucalyptus woodlot and grazing lands but evidently different from cropland.

Keywords: cropland, grazing land, home garden, soc stock, soil nutrients, woodlot

Procedia PDF Downloads 25
877 Groundwater Contamination Assessment and Mitigation Strategies for Water Resource Sustainability: A Concise Review

Authors: Khawar Naeem, Adel Elomri, Adel Zghibi

Abstract:

Contamination leakage from municipal solid waste (MSW) landfills is a serious environmental challenge that poses a threat to interconnected ecosystems. It not only contaminates the soil of the saturated zone, but it also percolates down the earth and contaminates the groundwater (GW). In this concise literature review, an effort is made to understand the environmental hazards posed by this contamination to the soil and groundwater, the type of contamination, and possible solutions proposed in the literature. In the study’s second phase, the MSW management practices are explored as the landfill site dump rate and type of MSW into the landfill site directly depend on the MSW management strategies. Case studies from multiple developed and underdeveloped countries are presented, and the complex MSW management system is investigated from an operational perspective to minimize the contamination of GW. One of the significant tools used in the literature was found to be Systems Dynamic Modeling (SDM), which is a simulation-based approach to study the stakeholder’s approach. By employing the SDM approach, the risk of GW contamination can be reduced by devising effective MSW management policies, ultimately resulting in water resource sustainability and regional sustainable development.

Keywords: groundwater contamination, environmental risk, municipal solid waste management, system dynamic modeling, water resource sustainability, sustainable development

Procedia PDF Downloads 72
876 Design of Self-Heating Containers Using Sodium Acetate Trihydrate for Chemical Energy – Food Products

Authors: Rameshaiah Gowdara Narayanappa, Manikonda Prithvi, Manoj Kumar, Suraj Bhavani, Vikram Singh

Abstract:

Long ago heating of food was only related to fire or electricity. Heating and storage of consumer foods were satisfied by the use of vacuum thermo flaks, electric heating cans and DC powered heating cans. But many of which did not sustain the heat for a long period of time and were impractical for remote areas. The use of chemical energy for heating foods directed us to think about the applications of exothermic reactions as a source of heat. Initial studies of calcium oxide showed desirability but not feasible because the reaction was uncontrollable and irreversible. In this research work we viewed at crystallization of super saturated sodium acetate trihydrate solution. Supersaturated sodium acetate trihydrate has a freezing point of 540 C (1300 F), but it observed to be stable as a liquid at much lower temperatures. Mechanical work is performed to create an active chemical energy zone within the working fluid, when crystallization process is initiated. Due to this the temperature rises to its freezing point which in turn heats the contents in the storage container. Present work endeavor to design a self-heating storage container is suitable for consumer dedications.

Keywords: crystallization, exothermic reactions, self-heating container, super saturation, vacuum thermo flask

Procedia PDF Downloads 464
875 Rheological and Computational Analysis of Crude Oil Transportation

Authors: Praveen Kumar, Satish Kumar, Jashanpreet Singh

Abstract:

Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 °C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future.

Keywords: surfactant, natural, crude oil, rheology, CFD, viscosity

Procedia PDF Downloads 452
874 An Experimental Study on Heat and Flow Characteristics of Water Flow in Microtube

Authors: Zeynep Küçükakça, Nezaket Parlak, Mesut Gür, Tahsin Engin, Hasan Küçük

Abstract:

In the current research, the single phase fluid flow and heat transfer characteristics are experimentally investigated. The experiments are conducted to cover transition zone for the Reynolds numbers ranging from 100 to 4800 by fused silica and stainless steel microtubes having diameters of 103-180 µm. The applicability of the Logarithmic Mean Temperature Difference (LMTD) method is revealed and an experimental method is developed to calculate the heat transfer coefficient. Heat transfer is supplied by a water jacket surrounding the microtubes and heat transfer coefficients are obtained by LMTD method. The results are compared with data obtained by the correlations available in the literature in the study. The experimental results indicate that the Nusselt numbers of microtube flows do not accord with the conventional results when the Reynolds number is lower than 1000. After that, the Nusselt number approaches the conventional theory prediction. Moreover, the scaling effects in micro scale such as axial conduction, viscous heating and entrance effects are discussed. On the aspect of fluid characteristics, the friction factor is well predicted with conventional theory and the conventional friction prediction is valid for water flow through microtube with a relative surface roughness less than about 4 %.

Keywords: microtube, laminar flow, friction factor, heat transfer, LMTD method

Procedia PDF Downloads 459
873 Depositional Facies, High Resolution Sequence Stratigraphy, Reservoir Characterization of Early Oligocene Carbonates (Mukta Formation) Of North & Northwest of Heera, Mumbai Offshore

Authors: Almas Rajguru, Archana Kamath, Rachana Singh

Abstract:

The study aims to determine the depositional facies, high-resolution sequence stratigraphy, and diagenetic processes of Early Oligocene carbonates in N & N-W of Heera, Mumbai Offshore. Foraminiferal assemblage and microfacies from cores of Well A, B, C, D and E are indicative of facies association related to four depositional environments, i.e., restricted inner lagoons-tidal flats, shallow open lagoons, high energy carbonate bars-shoal complex and deeper mid-ramps of a westerly dipping homoclinal carbonate ramp. Two high-frequency (4th Order) depositional sequences bounded by sequence boundary, DS1 and DS2, displaying hierarchical stacking patterns, are identified and correlated across wells. Vadose zone diagenesis effect during short diastem/ subaerial exposure has rendered good porosity due to dissolution in HST carbonates and occasionally affected underlying TST sediments (Well D, C and E). On mapping and correlating the sequences, the presence of thin carbonate bars that can be potential reservoirs are envisaged along NW-SE direction, towards north and south of Wells E, D and C. A more pronounced development of these bars in the same orientation can be anticipated towards the west of the study area.

Keywords: sequence stratigraphy, depositional facies, diagenesis petrography, early Oligocene, Mumbai offshore

Procedia PDF Downloads 75
872 Soil Organic Carbon Pool Assessment and Chemical Evaluation of Soils in Akure North and South Local Government Area of Ondo State

Authors: B. F. Dada, B. S. Ewulo, M. A. Awodun, S. O. Ajayi

Abstract:

Aggregate soil carbon distribution and stock in the soil in the form of a carbon pool is important for soil fertility and sequestration. The amount of carbon pool and other nutrients statues of the soil are to benefit plants, animal and the environment in the long run. This study was carried out at Akure North and South Local Government; the study area is one of the 18 Local Government Areas of Ondo State in the Southwest geo-political zone of Nigeria. The sites were divided into Map Grids and geo-referenced with Global Positioning System (GPS). Horizons were designated and morphological description carried out on the field. Pedons were characterized and classified according to USDA soil taxonomy. The local government area shares boundaries with; Ikere Local Government (LG) in the North, Ise Orun LG in the northwest, Ifedore LG in the northeast Akure South LG in the East, Ose LG in the South East, and Owo LG in the South. SOC-pool at Federal College of Agriculture topsoil horizon A2 is significantly higher than all horizons, 67.83 th⁻¹. The chemical properties of the pedons have shown that the soil is very strongly acidic to neutral reaction (4.68 – 6.73). The nutrients status of the soil topsoil A1 and A2 generally indicates that the soils have a low potential for retaining plant nutrients, and therefore call for adequate soil management.

Keywords: soil organic carbon (SOC), horizon, pedon, Akure

Procedia PDF Downloads 148
871 Estimation of the Seismic Response Modification Coefficient in the Superframe Structural System

Authors: Ali Reza Ghanbarnezhad Ghazvini, Seyyed Hamid Reza Mosayyebi

Abstract:

In recent years, an earthquake has occurred approximately every five years in certain regions of Iran. To mitigate the impact of these seismic events, it is crucial to identify and thoroughly assess the vulnerability of buildings and infrastructure, ensuring their safety through principled reinforcement. By adopting new methods of risk assessment, we can effectively reduce the potential risks associated with future earthquakes. In our research, we have observed that the coefficient of behavior in the fourth chapter is 1.65 for the initial structure and 1.72 for the Superframe structure. This indicates that the Superframe structure can enhance the strength of the main structural members by approximately 10% through the utilization of super beams. Furthermore, based on the comparative analysis between the two structures conducted in this study, we have successfully designed a stronger structure with minimal changes in the coefficient of behavior. Additionally, this design has allowed for greater energy dissipation during seismic events, further enhancing the structure's resilience to earthquakes. By comprehensively examining and reinforcing the vulnerability of buildings and infrastructure, along with implementing advanced risk assessment techniques, we can significantly reduce casualties and damages caused by earthquakes in Iran. The findings of this study offer valuable insights for civil engineering professionals in the field of structural engineering, aiding them in designing safer and more resilient structures.

Keywords: modal pushover analysis, response modification factor, high-strength concrete, concrete shear walls, high-rise building

Procedia PDF Downloads 141
870 Effect of Temperature and CuO Nanoparticle Concentration on Thermal Conductivity and Viscosity of a Phase Change Material

Authors: V. Bastian Aguila, C. Diego Vasco, P. Paula Galvez, R. Paula Zapata

Abstract:

The main results of an experimental study of the effect of temperature and nanoparticle concentration on thermal conductivity and viscosity of a nanofluid are shown. The nanofluid was made by using octadecane as a base fluid and CuO spherical nanoparticles of 75 nm (MkNano). Since the base fluid is a phase change material (PCM) to be used in thermal storage applications, the engineered nanofluid is referred as nanoPCM. Three nanoPCM were prepared through the two-step method (2.5, 5.0 and 10.0%wv). In order to increase the stability of the nanoPCM, the surface of the CuO nanoparticles was modified with sodium oleate, and it was verified by IR analysis. The modified CuO nanoparticles were dispersed by using an ultrasonic horn (Hielscher UP50H) during one hour (amplitude of 180 μm at 50 W). The thermal conductivity was measured by using a thermal properties analyzer (KD2-Pro) in the temperature range of 30ºC to 40ºC. The viscosity was measured by using a Brookfield DV2T-LV viscosimeter to 30 RPM in the temperature range of 30ºC to 55ºC. The obtained results for the nanoPCM showed that thermal conductivity is almost constant in the analyzed temperature range, and the viscosity decreases non-linearly with temperature. Respect to the effect of the nanoparticle concentration, both thermal conductivity and viscosity increased with nanoparticle concentration. The thermal conductivity raised up to 9% respect to the base fluid, and the viscosity increases up to 60%, in both cases for the higher concentration. Finally, the viscosity measurements for different rotation speeds (30 RPM - 80 RPM) exhibited that the addition of nanoparticles modifies the rheological behavior of the base fluid, from a Newtonian to a viscoplastic (Bingham) or shear thinning (power-law) non-Newtonian behavior.

Keywords: NanoPCM, thermal conductivity, viscosity, non-Newtonian fluid

Procedia PDF Downloads 417
869 Theoretical-Experimental Investigations on Free Vibration of Glass Fiber/Polyester Composite Conical Shells Containing Fluid

Authors: Tran Ich Thinh, Nguyen Manh Cuong

Abstract:

Free vibrations of partial fluid-filled composite truncated conical shells are investigated using the Dynamic Stiffness Method (DSM) or Continuous Element Method (CEM) based on the First Order Shear Deformation Theory (FSDT) and non-viscous incompressible fluid equations. Numerical examples are given for analyzing natural frequencies and harmonic responses of clamped-free conical shells partially and completely filled with fluid. To compare with the theoretical results, detailed experimental results have been obtained on the free vibration of a clamped-free conical shells partially filled with water by using a multi-vibration measuring machine (DEWEBOOK-DASYLab 5.61.10). Three glass fiber/polyester composite truncated cones with the radius of the larger end 285 mm, thickness 2 mm, and the cone lengths along the generators are 285 mm, 427.5 mm and 570 mm with the semi-vertex angles 27, 14 and 9 degrees respectively were used, and the filling ratio of the contained water was 0, 0.25, 0.50, 0.75 and 1.0. The results calculated by proposed computational model for studied composite conical shells are in good agreement with experiments. Obtained results indicate that the fluid filling can reduce significantly the natural frequencies of composite conical shells. Parametric studies including circumferential wave number, fluid depth and cone angles are carried out.

Keywords: dynamic stiffness method, experimental study, free vibration, fluid-shell interaction, glass fiber/polyester composite conical shell

Procedia PDF Downloads 496
868 Application Reliability Method for Concrete Dams

Authors: Mustapha Kamel Mihoubi, Mohamed Essadik Kerkar

Abstract:

Probabilistic risk analysis models are used to provide a better understanding of the reliability and structural failure of works, including when calculating the stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of reliability analysis methods including the methods used in engineering. It is in our case, the use of level 2 methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type first order risk method (FORM) and the second order risk method (SORM). By way of comparison, a level three method was used which generates a full analysis of the problem and involves an integration of the probability density function of random variables extended to the field of security using the Monte Carlo simulation method. Taking into account the change in stress following load combinations: normal, exceptional and extreme acting on the dam, calculation of the results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities, thus causing a significant decrease in strength, shear forces then induce a shift that threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case the increase of uplift in a hypothetical default of the drainage system.

Keywords: dam, failure, limit-state, monte-carlo, reliability, probability, simulation, sliding, taylor

Procedia PDF Downloads 324
867 Numerical Approach for Characterization of Flow Field in Pump Intake Using Two Phase Model: Detached Eddy Simulation

Authors: Rahul Paliwal, Gulshan Maheshwari, Anant S. Jhaveri, Channamallikarjun S. Mathpati

Abstract:

Large pumping facility is the necessary requirement of the cooling water systems for power plants, process and manufacturing facilities, flood control and water or waste water treatment plant. With a large capacity of few hundred to 50,000 m3/hr, cares must be taken to ensure the uniform flow to the pump to limit vibration, flow induced cavitation and performance problems due to formation of air entrained vortex and swirl flow. Successful prediction of these phenomena requires numerical method and turbulence model to characterize the dynamics of these flows. In the past years, single phase shear stress transport (SST) Reynolds averaged Navier Stokes Models (like k-ε, k-ω and RSM) were used to predict the behavior of flow. Literature study showed that two phase model will be more accurate over single phase model. In this paper, a 3D geometries simulated using detached eddy simulation (LES) is used to predict the behavior of the fluid and the results are compared with experimental results. Effect of different grid structure and boundary condition is also studied. It is observed that two phase flow model can more accurately predict the mean flow and turbulence statistics compared to the steady SST model. These validate model will be used for further analysis of vortex structure in lab scale model to generate their frequency-plot and intensity at different location in the set-up. This study will help in minimizing the ill effect of vortex on pump performance.

Keywords: grid structure, pump intake, simulation, vibration, vortex

Procedia PDF Downloads 174
866 Enhancement of Mechanical Properties for Al-Mg-Si Alloy Using Equal Channel Angular Pressing

Authors: W. H. El Garaihy, A. Nassef, S. Samy

Abstract:

Equal channel angular pressing (ECAP) of commercial Al-Mg-Si alloy was conducted using two strain rates. The ECAP processing was conducted at room temperature and at 250 °C. Route A was adopted up to a total number of four passes in the present work. Structural evolution of the aluminum alloy discs was investigated before and after ECAP processing using optical microscopy (OM). Following ECAP, simple compression tests and Vicker’s hardness were performed. OM micrographs showed that, the average grain size of the as-received Al-Mg-Si disc tends to be larger than the size of the ECAP processed discs. Moreover, significant difference in the grain morphologies of the as-received and processed discs was observed. Intensity of deformation was observed via the alignment of the Al-Mg-Si consolidated particles (grains) in the direction of shear, which increased with increasing the number of passes via ECAP. Increasing the number of passes up to 4 resulted in increasing the grains aspect ratio up to ~5. It was found that the pressing temperature has a significant influence on the microstructure, Hv-values, and compressive strength of the processed discs. Hardness measurements demonstrated that 1-pass resulted in increase of Hv-value by 42% compared to that of the as-received alloy. 4-passes of ECAP processing resulted in additional increase in the Hv-value. A similar trend was observed for the yield and compressive strength. Experimental data of the Hv-values demonstrated that there is a lack of any significant dependence on the processing strain rate.

Keywords: Al-Mg-Si alloy, equal channel angular pressing, grain refinement, severe plastic deformation

Procedia PDF Downloads 434
865 Assessing Antimicrobial Activity of Various Plant Extracts on Midgutmicroflora of Aedesaegypti

Authors: V. Baweja, K. K. Gupta, V. Dubey, C. Keshavam

Abstract:

Antimicrobial activity of six indigenous plants such as Tulsi Ocimum sanctum, Neem Azadirachta indica, Aloe vera, Turmeric Curcuma longa, Lantana Lantana camara, and Clove Syzygium aromaticum was assessed against the gut microbiota of the dengue fever mosquito Aedes aegypti, keeping in view that the presence of midgut bacteria may affect the ability of the vector to transmit pathogens. Eleven different types of bacterial clones were isolated from the midgut of lab-reared fourth instar larvae of Aedes aegypti and were grown on LB agar medium at an optimum temperature of 25 ºC. Identification of these bacteria was done on the basis of their colony characteristic such as colony size, shape, opacity, elevation, consistency, and growth. Light microscopic studies of the gut microbiota revealed dominance of Gram-negative cocci over gram positive cocci and bacilli and Gram-negative bacilli. Identification of species was done by chemical characterization of the colonies. Crude extracts of all test plants were screened for their antimicrobial activities against gut microbiota by disc diffusion assay. The zone of exclusion seen after 24 hr of incubation in different assays revealed the most potent antibacterial activities in neem followed by clove and turmeric. Lantana and Aloe vera were least effective.

Keywords: plant extract, aedes, dengue, antimicrobial activity

Procedia PDF Downloads 402
864 Effect of Wind Braces to Earthquake Resistance of Steel Structures

Authors: H. Gokdemir

Abstract:

All structures are subject to vertical and lateral loads. Under these loads, structures make deformations and deformation values of structural elements mustn't exceed their capacity for structural stability. Especially, lateral loads cause critical deformations because of their random directions and magnitudes. Wind load is one of the lateral loads which can act in any direction and any magnitude. Although wind has nearly no effect on reinforced concrete structures, it must be considered for steel structures, roof systems and slender structures like minarets. Therefore, every structure must be able to resist wind loads acting parallel and perpendicular to any side. One of the effective methods for resisting lateral loads is assembling cross steel elements between columns which are called as wind bracing. These cross elements increases lateral rigidity of a structure and prevent exceeding of deformation capacity of the structural system. So, this means cross elements are also effective in resisting earthquake loads too. In this paper; Effects of wind bracing to earthquake resistance of structures are studied. Structure models (with and without wind bracing) are generated and these models are solved under both earthquake and wind loads with different seismic zone parameters. It is concluded by the calculations that; in low-seismic risk zones, wind bracing can easily resist earthquake loads and no additional reinforcement for earthquake loads is necessary. Similarly; in high-seismic risk zones, earthquake cross elements resist wind loads too.

Keywords: wind bracings, earthquake, steel structures, vertical and lateral loads

Procedia PDF Downloads 468
863 Migration Management in the Eastern Mediterranean: The European Union's Legacy of the Securitization and Lacking on the Principle of Solidarity and Burden Sharing

Authors: Tasawar Ashraf

Abstract:

The paper argues that the European Union’s securitized recourse to migration management which is lacking on the principle of solidarity has enhanced the sufferings of the asylum seekers by influencing the asylum policies of the non-EU states in the Eastern Mediterranean. The research critically analyses the development of the Turkish Asylum Policy and advocates that due to extraordinary burden of refugees and conceivable chances of getting EU membership, Turkey is developing its asylum policy essentially on the footprints of the EU. Such political and economic domination of the EU are resulting in the development of broader securitized migration zone in the EU and MENA region. Therefore, this paper critically analyses two interconnected issues, i.e., securitization of the migration in the EU and MENA region and the deficiency of the principle of solidarity and burden sharing in the European Agenda on Migration and how it reflects on Turkish asylum policy. This paper suggests that the EU must adopt a more generous resettle scheme ensuring the division of the refugee burden on all member and regional states by considering different political, social, and economic factors. Only such corporation can increase the pool of refugee hosting states by collaborating with the regional states to develop their asylum systems in accordance with international law.

Keywords: European Agenda on Migration (EAM), EU, Middle East and North Africa (MENA), Treaty on the Functioning of the European Union (TFEU)

Procedia PDF Downloads 177
862 The U.S.-Taliban Peace Deal: Two-level Game Logic and Actors’ Payoffs

Authors: Zafar Iqbal

Abstract:

This article aims at analyzing the U.S.-Taliban peace deal considering the cross- pressures that both parties (U.S. and Taliban) faced and eventually paved the way for a negotiated settlement to the two-decade-long war. The paper first discusses the peace process initiated by President Obama in 2009 and then explores the factors that compelled both the parties to sign this deal. The study is based on secondary data and interviews done with the leading experts on Afghanistan along with the Taliban Qatar office spokesperson’s interview. The theoretical framework is based on the interplay of diplomacy and domestic politics: two-level games logic proposed by Robert D. Putnam. The two-level games suggest that actors involved in negotiations face cross-pressures and are constrained both by the expectations of the domestic audience and their counterpart’s zone of possible agreement. This paper will take the cross pressures for both sides as the permissive factors for the entire process of negotiations. However, there will be a slight aberration in the application of Putnam’s two-level games. In this case, it is not inter-state negotiations but between an all-powerful state and the unyielding non-state actors. The study concludes that both the parties faced domestic as well as international pressure which compelled them to sign a deal that could lead to an end of the two-decade-long war. Furthermore, it looks at the potential prospects and challenges of the deal following the U.S. withdrawal.

Keywords: neo-Taliban insurgency, negotiations, two-level game, U.S.-Taliban peace deal, U.S. withdrawal

Procedia PDF Downloads 203
861 Pale, Firm and Non-Exudative (PFN): An Emerging Major Broiler Breast Meat Group

Authors: Cintia Midori Kaminishikawahara, Fernanda Jéssica Mendonça, Moisés Grespan, Elza Iouko Ida, Massami Shimokomaki, Adriana Lourenço Soares

Abstract:

The quality of broiler breast meat is changing as a result of continuing emphasis on genetically bird’s selection for efficiently higher meat production. The consumer is experiencing a cooked product that is drier and less juicy when consumed. Breast meat has been classified as PSE (pale, soft, exudative), DFD (dark, firm, dry) and normal color meat. However, recently variations of this color have been observed and they are not in line with the specificity of the meat functional properties. Thus, the objective of this work was to report the finding of a new pale meat color group characterized as Pale, Firm and Non-exudative (PFN) based on its pH, color, meat functional properties and micro structural evaluation. Breast meat fillets samples (n=1045) from commercial line were classified into PSE (pH ≤5.8, L* ≥ 53.0), PFN (pH > 5.8 and L* ≥ 53.0) and Normal (pH >5.8 and L* < 53.0), based on pH and L* values. In sequence, a total of 30 samples of each group were analyzed for the water holding capacity (WHC) and shear force (SF). The incidence was 9.1% for PSE meat, 85.7% for PFN and 5.2% for Normal meat. The PSE meat presented lower values of WHC (P ≤ 0.05) followed in sequence by PFN and Normal samples and also the SF values of fresh PFN was higher than PSE meat (P ≤ 0.05) and similar to Normal samples. Under optical microscopy, the cell diameter was 10% higher for PFN in relation to PSE meat and similar to Normal meat. These preliminary results indicate an emerging group of breast meat and it should be considered that the Pale, Firm and Non-exudative should be considered as an ideal broiler breast meat quality.

Keywords: broiler PSE meat, light microscopy, texture, water holding capacity

Procedia PDF Downloads 352