Search results for: physical vapor deposition coating method
22826 Management of Non-Revenue Municipal Water
Authors: Habib Muhammetoglu, I. Ethem Karadirek, Selami Kara, Ayse Muhammetoglu
Abstract:
The problem of non-revenue water (NRW) from municipal water distribution networks is common in many countries such as Turkey, where the average yearly water losses are around 50% . Water losses can be divided into two major types namely: 1) Real or physical water losses, and 2) Apparent or commercial water losses. Total water losses in Antalya city, Turkey is around 45%. Methods: A research study was conducted to develop appropriate methodologies to reduce NRW. A pilot study area of about 60 thousands inhabitants was chosen to apply the study. The pilot study area has a supervisory control and data acquisition (SCADA) system for the monitoring and control of many water quantity and quality parameters at the groundwater drinking wells, pumping stations, distribution reservoirs, and along the water mains. The pilot study area was divided into 18 District Metered Areas (DMAs) with different number of service connections that ranged between a few connections to less than 3000 connections. The flow rate and water pressure to each DMA were on-line continuously measured by an accurate flow meter and water pressure meter that were connected to the SCADA system. Customer water meters were installed to all billed and unbilled water users. The monthly water consumption as given by the water meters were recorded regularly. Water balance was carried out for each DMA using the well-know standard IWA approach. There were considerable variations in the water losses percentages and the components of the water losses among the DMAs of the pilot study area. Old Class B customer water meters at one DMA were replaced by more accurate new Class C water meters. Hydraulic modelling using the US-EPA EPANET model was carried out in the pilot study area for the prediction of water pressure variations at each DMA. The data sets required to calibrate and verify the hydraulic model were supplied by the SCADA system. It was noticed that a number of the DMAs exhibited high water pressure values. Therefore, pressure reducing valves (PRV) with constant head were installed to reduce the pressure up to a suitable level that was determined by the hydraulic model. On the other hand, the hydraulic model revealed that the water pressure at the other DMAs cannot be reduced when complying with the minimum pressure requirement (3 bars) as stated by the related standards. Results: Physical water losses were reduced considerably as a result of just reducing water pressure. Further physical water losses reduction was achieved by applying acoustic methods. The results of the water balances helped in identifying the DMAs that have considerable physical losses. Many bursts were detected especially in the DMAs that have high physical water losses. The SCADA system was very useful to assess the efficiency level of this method and to check the quality of repairs. Regarding apparent water losses reduction, changing the customer water meters resulted in increasing water revenue by more than 20%. Conclusions: DMA, SCADA, modelling, pressure management, leakage detection and accurate customer water meters are efficient for NRW.Keywords: NRW, water losses, pressure management, SCADA, apparent water losses, urban water distribution networks
Procedia PDF Downloads 40522825 Identification and Correlation of Structural Parameters and Gas Accumulation Capacity of Shales From Poland
Authors: Anna Pajdak, Mateusz Kudasik, Aleksandra Gajda, Katarzyna Kozieł
Abstract:
Shales are a type of fine-grained sedimentary rocks, which are composed of small grains of several to several dozen μm in size and consist of a variable mixture of clay minerals, quartz, feldspars, carbonates, sulphides, amorphous material and organic matter. The study involved an analysis of the basic physical properties of shale rocks from several research wells in Poland. The structural, sorption and seepage parameters of these rocks were determined. The total porosity of granular rock samples reached several percent, including the share of closed pores up to half a percent. The volume and distribution of pores, which are of significant importance in the context of the mechanisms of methane binding to the rock matrix and methods of stimulating its desorption and the possibility of CO₂ storage, were determined. The BET surface area of the samples ranged from a few to a dozen or so m²/g, and the share of micropores was dominant. In order to determine the interaction of rocks with gases, the sorption capacity in relation to CO₂ and CH₄ was determined at a pressure of 0-1.4 MPa. Sorption capacities, sorption isotherms and diffusion coefficients were also determined. Studies of competitive sorption of CO₂/CH₄ on shales showed a preference for CO₂ sorption over CH₄, and the selectivity of CO₂/CH₄ sorption decreased with increasing pressure. In addition to the pore structure, the adsorption capacity of gases in shale rocks is significantly influenced by the carbon content in their organic matter. The sorbed gas can constitute from 20% to 80% of the total gas contained in the shales. With the increasing depth of shale gas occurrence, the share of free gas to sorbed gas increases, among others, due to the increase in temperature and surrounding pressure. Determining the share of free gas to sorbed gas in shale, depending on the depth of its deposition, is one of the key elements of recognizing the gas/sorption exchange processes of CO₂/CH₄, which are the basis of CO₂-ESGR technology. The main objective of the work was to identify the correlation between different forms of gas occurrence in rocks and the parameters describing the pore space of shales.Keywords: shale, CH₄, CO₂, shale gas, CO₂ -ESGR, pores structure
Procedia PDF Downloads 1022824 Design, Development and Testing of Polymer-Glass Microfluidic Chips for Electrophoretic Analysis of Biological Sample
Authors: Yana Posmitnaya, Galina Rudnitskaya, Tatyana Lukashenko, Anton Bukatin, Anatoly Evstrapov
Abstract:
An important area of biological and medical research is the study of genetic mutations and polymorphisms that can alter gene function and cause inherited diseases and other diseases. The following methods to analyse DNA fragments are used: capillary electrophoresis and electrophoresis on microfluidic chip (MFC), mass spectrometry with electrophoresis on MFC, hybridization assay on microarray. Electrophoresis on MFC allows to analyse small volumes of samples with high speed and throughput. A soft lithography in polydimethylsiloxane (PDMS) was chosen for operative fabrication of MFCs. A master-form from silicon and photoresist SU-8 2025 (MicroChem Corp.) was created for the formation of micro-sized structures in PDMS. A universal topology which combines T-injector and simple cross was selected for the electrophoretic separation of the sample. Glass K8 and PDMS Sylgard® 184 (Dow Corning Corp.) were used for fabrication of MFCs. Electroosmotic flow (EOF) plays an important role in the electrophoretic separation of the sample. Therefore, the estimate of the quantity of EOF and the ways of its regulation are of interest for the development of the new methods of the electrophoretic separation of biomolecules. The following methods of surface modification were chosen to change EOF: high-frequency (13.56 MHz) plasma treatment in oxygen and argon at low pressure (1 mbar); 1% aqueous solution of polyvinyl alcohol; 3% aqueous solution of Kolliphor® P 188 (Sigma-Aldrich Corp.). The electroosmotic mobility was evaluated by the method of Huang X. et al., wherein the borate buffer was used. The influence of physical and chemical methods of treatment on the wetting properties of the PDMS surface was controlled by the sessile drop method. The most effective way of surface modification of MFCs, from the standpoint of obtaining the smallest value of the contact angle and the smallest value of the EOF, was the processing with aqueous solution of Kolliphor® P 188. This method of modification has been selected for the treatment of channels of MFCs, which are used for the separation of mixture of oligonucleotides fluorescently labeled with the length of chain with 10, 20, 30, 40 and 50 nucleotides. Electrophoresis was performed on the device MFAS-01 (IAI RAS, Russia) at the separation voltage of 1500 V. 6% solution of polydimethylacrylamide with the addition of 7M carbamide was used as the separation medium. The separation time of components of the mixture was determined from electropherograms. The time for untreated MFC was ~275 s, and for the ones treated with solution of Kolliphor® P 188 – ~ 220 s. Research of physical-chemical methods of surface modification of MFCs allowed to choose the most effective way for reducing EOF – the modification with aqueous solution of Kolliphor® P 188. In this case, the separation time of the mixture of oligonucleotides decreased about 20%. The further optimization of method of modification of channels of MFCs will allow decreasing the separation time of sample and increasing the throughput of analysis.Keywords: electrophoresis, microfluidic chip, modification, nucleic acid, polydimethylsiloxane, soft lithography
Procedia PDF Downloads 41322823 Oxidation Behavior of Ferritic Stainless Steel Interconnects Modified Using Nanoparticles of Rare-Earth Elements under Operating Conditions Specific to Solid Oxide Electrolyzer Cells
Authors: Łukasz Mazur, Kamil Domaradzki, Bartosz Kamecki, Justyna Ignaczak, Sebastian Molin, Aleksander Gil, Tomasz Brylewski
Abstract:
The rising global power consumption necessitates the development of new energy storage solutions. Prospective technologies include solid oxide electrolyzer cells (SOECs), which convert surplus electrical energy into hydrogen. An electrolyzer cell consists of a porous anode, and cathode, and a dense electrolyte. Power output is increased by connecting cells into stacks using interconnects. Interconnects are currently made from high-chromium ferritic steels – for example, Crofer 22 APU – which exhibit high oxidation resistance and a thermal expansion coefficient that is similar to that of electrode materials. These materials have one disadvantage – their area-specific resistance (ASR) gradually increases due to the formation of a Cr₂O₃ scale on their surface as a result of oxidation. The chromia in the scale also reacts with the water vapor present in the reaction media, forming volatile chromium oxyhydroxides, which in turn react with electrode materials and cause their deterioration. The electrochemical efficiency of SOECs thus decreases. To mitigate this, the interconnect surface can be modified with protective-conducting coatings of spinel or other materials. The high prices of SOEC components -especially the Crofer 22 APU- have prevented their widespread adoption. More inexpensive counterparts, therefore, need to be found, and their properties need to be enhanced to make them viable. Candidates include the Nirosta 4016/1,4016 low-chromium ferritic steel with a chromium content of just 16.3 wt%. This steel's resistance to high-temperature oxidation was improved by depositing Gd₂O₃ nanoparticles on its surface via either dip coating or electrolysis. Modification with CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles deposited by means of spray pyrolysis was also tested. These methods were selected because of their low cost and simplicity of application. The aim of this study was to investigate the oxidation kinetics of Nirosta 4016/1,4016 modified using the afore-mentioned methods and to subsequently measure the obtained samples' ASR. The samples were oxidized for 100 h in the air as well as air/H₂O and Ar/H₂/H₂O mixtures at 1073 K. Such conditions reflect those found in the anode and cathode operating space during real-life use of SOECs. Phase and chemical composition and the microstructure of oxidation products were determined using XRD and SEM-EDS. ASR was measured over the range of 623-1073 K using a four-point, two-probe DC technique. The results indicate that the applied nanoparticles improve the oxidation resistance and electrical properties of the studied layered systems. The properties of individual systems varied significantly depending on the applied reaction medium. Gd₂O₃ nanoparticles improved oxidation resistance to a greater degree than either CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles. On the other hand, the cerium-containing nanoparticles improved electrical properties regardless of the reaction medium. The ASR values of all surface-modified steel samples were below the 0.1 Ω.cm² threshold set for interconnect materials, which was exceeded in the case of the unmodified reference sample. It can be concluded that the applied modifications increased the oxidation resistance of Nirosta 4016/1.4016 to a level that allows its use as SOEC interconnect material. Acknowledgments: Funding of Research project supported by program "Excellence initiative – research university" for the AGH University of Krakow" is gratefully acknowledged (TB).Keywords: cerium oxide, ferritic stainless steel, gadolinium oxide, interconnect, SOEC
Procedia PDF Downloads 8722822 Numeric Modeling of Condensation of Water Vapor from Humid Air in a Room
Authors: Nguyen Van Que, Nguyen Huy The
Abstract:
This paper presents combined natural and forced convection of humid air flow. The film condensation of water vapour on a cold floor was investigated using ANSYS Fluent software. User-defined Functions(UDFs) were developed and added to address the issue of film condensation at the surface of the floor. Those UDFs were validated by analytical results on a flat plate. The film condensation model based on mass transfer was used to solve phase change. On the floor, condensation rate was obtained by mass fraction change near the floor. The study investigated effects of inlet velocity, inlet relative humidity and cold floor temperature on the condensation rate. The simulations were done in both 2D and 3D models to show the difference and need for 3D modeling of condensation.Keywords: heat and mass transfer, convection, condensation, relative humidity, user-defined functions
Procedia PDF Downloads 33122821 The Prediction of Sound Absorbing Coefficient for Multi-Layer Non-Woven
Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park
Abstract:
Automotive interior material consisting of several material layers has the sound-absorbing function. It is difficult to predict sound absorbing coefficient because of several material layers. So, many experimental tunings are required to achieve the target of sound absorption. Therefore, while the car interior materials are developed, so much time and money is spent. In this study, we present a method to predict the sound absorbing performance of the material with multi-layer using physical properties of each material. The properties are predicted by Foam-X software using the sound absorption coefficient data measured by impedance tube. Then, we will compare and analyze the predicted sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If the method is used instead of experimental tuning in the development of car interior material, the time and money can be saved, and then, the development effort can be reduced because it can be optimized by simulation.Keywords: multi-layer nonwoven, sound absorption coefficient, scaled reverberation chamber, impedance tubes
Procedia PDF Downloads 37622820 Facies, Diagenetic Analysis and Sequence Stratigraphy of Habib Rahi Formation Dwelling in the Vicinity of Jacobabad Khairpur High, Southern Indus Basin, Pakistan
Authors: Muhammad Haris, Syed Kamran Ali, Mubeen Islam, Tariq Mehmood, Faisal Shah
Abstract:
Jacobabad Khairpur High, part of a Sukkur rift zone, is the separating boundary between Central and Southern Indus Basin, formed as a result of Post-Jurassic uplift after the deposition of Middle Jurassic Chiltan Formation. Habib Rahi Formation of Middle to Late Eocene outcrops in the vicinity of Jacobabad Khairpur High, a section at Rohri near Sukkur is measured in detail for lithofacies, microfacies, diagenetic analysis and sequence stratigraphy. Habib Rahi Formation is richly fossiliferous and consists of mostly limestone with subordinate clays and marl. The total thickness of the formation in this section is 28.8m. The bottom of the formation is not exposed, while the upper contact with the Sirki Shale of the Middle Eocene age is unconformable in some places. A section is measured using Jacob’s Staff method, and traverses were made perpendicular to the strike. Four different lithofacies were identified based on outcrop geology which includes coarse-grained limestone facies (HR-1 to HR-5), massive bedded limestone facies (HR-6 HR-7), and micritic limestone facies (HR-8 to HR-13) and algal dolomitic limestone facie (HR-14). Total 14 rock samples were collected from outcrop for detailed petrographic studies, and thin sections of respective samples were prepared and analyzed under the microscope. On the basis of Dunham’s (1962) classification systems after studying textures, grain size, and fossil content and using Folk’s (1959) classification system after reviewing Allochems type, four microfacies were identified. These microfacies include HR-MF 1: Benthonic Foraminiferal Wackstone/Biomicrite Microfacies, HR-MF 2: Foramineral Nummulites Wackstone-Packstone/Biomicrite Microfacies HR-MF 3: Benthonic Foraminiferal Packstone/Biomicrite Microfacies, HR-MF 4: Bioclasts Carbonate Mudstone/Micrite Microfacies. The abundance of larger benthic Foraminifera’s (LBF), including Assilina sp., A. spiral abrade, A. granulosa, A. dandotica, A. laminosa, Nummulite sp., N. fabiani, N. stratus, N. globulus, Textularia, Bioclasts, and Red algae indicates shallow marine (Tidal Flat) environment of deposition. Based on variations in rock types, grain size, and marina fauna Habib Rahi Formation shows progradational stacking patterns, which indicates coarsening upward cycles. The second order of sea-level rise is identified (spanning from Y-Persian to Bartonian age) that represents the Transgressive System Tract (TST) and a third-order Regressive System Tract (RST) (spanning from Bartonian to Priabonian age). Diagenetic processes include fossils replacement by mud, dolomitization, pressure dissolution associated stylolites features and filling with dark organic matter. The presence of the microfossils includes Nummulite. striatus, N. fabiani, and Assilina. dandotica, signify Bartonian to Priabonian age of Habib Rahi Formation.Keywords: Jacobabad Khairpur High, Habib Rahi Formation, lithofacies, microfacies, sequence stratigraphy, diagenetic history
Procedia PDF Downloads 47322819 A Study of Effective Stereo Matching Method for Long-Wave Infrared Camera Module
Authors: Hyun-Koo Kim, Yonghun Kim, Yong-Hoon Kim, Ju Hee Lee, Myungho Song
Abstract:
In this paper, we have described an efficient stereo matching method and pedestrian detection method using stereo types LWIR camera. We compared with three types stereo camera algorithm as block matching, ELAS, and SGM. For pedestrian detection using stereo LWIR camera, we used that SGM stereo matching method, free space detection method using u/v-disparity, and HOG feature based pedestrian detection. According to testing result, SGM method has better performance than block matching and ELAS algorithm. Combination of SGM, free space detection, and pedestrian detection using HOG features and SVM classification can detect pedestrian of 30m distance and has a distance error about 30 cm.Keywords: advanced driver assistance system, pedestrian detection, stereo matching method, stereo long-wave IR camera
Procedia PDF Downloads 41422818 Formulation and Characterization of Active Edible Films from Cassava Starch for Snacks and Savories
Authors: P. Raajeswari, S. M. Devatha, S. Yuvajanani, U. Rashika
Abstract:
Edible food packaging are the need of the hour to save life on land and under water by eliminating waste cycle and replacing Single Use Plastics at grass root level as it can be eaten or composted as such. Cassava (Manihot esculenta) selected for making edible films are rich source of starch, and also it exhibit good sheeting propertiesdue to the high amylose: amylopectin content. Cassava starch was extracted by manual method at a laboratory scale and yielded 65 per cent. Edible films were developed by adding food grade plasticizers and water. Glycerol showed good plasticizing property as compared to sorbitol and polylactic acid in both manual (petri dish) and machine (film making machine) production. The thickness of the film is 0.25±0.03 mm. Essential oil and components from peels like pomegranate, orange, pumpkin, onion, and banana brat, and herbs like tulsi and country borage was extracted through the standardized aqueous and alkaline method. In the standardized film, the essential oil and components from selected peel and herbs were added to the casting solution separately and casted the film. It was added to improve the anti-oxidant, anti-microbial and optical properties. By inclusion of extracts, it reduced the bubble formation while casting. FTIR, Water Vapor and Oxygen Transmission Rate (WVTR and OTR), tensile strength, microbial load, shelf life, and degradability of the films were done to analyse the mechanical property of the standardized films. FTIR showed the presence of essential oil. WVTR and OTR of the film was improved after inclusion of essential oil and extracts from 1.312 to 0.811 cm₃/m₂ and 15.12 to 17.81 g/ m₂.d. Inclusion of essential oil from herbs showed better WVTR and OTR than the inclusion of peel extract and standard. Tensile strength and Elongation at break has not changed by essential oil and extracts at 0.86 ± 0.12 mpa and 14 ± 2 at 85 N force. By inclusion of extracts, an optical property of the film enhanced, and it increases the appearance of the packaging material. The films were completely degraded on 84thdays and partially soluble in water. Inclusion of essential oil does not have impact on degradability and solubility. The microbial loads of the active films were decreased from 15 cfu/gm to 7 cfu/gm. The films can be stored at frozen state for 24 days and 48 days at atmospheric temperature when packed with South Indian snacks and savories.Keywords: active films, cassava starch, plasticizer, characterization
Procedia PDF Downloads 8122817 Virtual Metering and Prediction of Heating, Ventilation, and Air Conditioning Systems Energy Consumption by Using Artificial Intelligence
Authors: Pooria Norouzi, Nicholas Tsang, Adam van der Goes, Joseph Yu, Douglas Zheng, Sirine Maleej
Abstract:
In this study, virtual meters will be designed and used for energy balance measurements of an air handling unit (AHU). The method aims to replace traditional physical sensors in heating, ventilation, and air conditioning (HVAC) systems with simulated virtual meters. Due to the inability to manage and monitor these systems, many HVAC systems have a high level of inefficiency and energy wastage. Virtual meters are implemented and applied in an actual HVAC system, and the result confirms the practicality of mathematical sensors for alternative energy measurement. While most residential buildings and offices are commonly not equipped with advanced sensors, adding, exploiting, and monitoring sensors and measurement devices in the existing systems can cost thousands of dollars. The first purpose of this study is to provide an energy consumption rate based on available sensors and without any physical energy meters. It proves the performance of virtual meters in HVAC systems as reliable measurement devices. To demonstrate this concept, mathematical models are created for AHU-07, located in building NE01 of the British Columbia Institute of Technology (BCIT) Burnaby campus. The models will be created and integrated with the system’s historical data and physical spot measurements. The actual measurements will be investigated to prove the models' accuracy. Based on preliminary analysis, the resulting mathematical models are successful in plotting energy consumption patterns, and it is concluded confidently that the results of the virtual meter will be close to the results that physical meters could achieve. In the second part of this study, the use of virtual meters is further assisted by artificial intelligence (AI) in the HVAC systems of building to improve energy management and efficiency. By the data mining approach, virtual meters’ data is recorded as historical data, and HVAC system energy consumption prediction is also implemented in order to harness great energy savings and manage the demand and supply chain effectively. Energy prediction can lead to energy-saving strategies and considerations that can open a window in predictive control in order to reach lower energy consumption. To solve these challenges, the energy prediction could optimize the HVAC system and automates energy consumption to capture savings. This study also investigates AI solutions possibility for autonomous HVAC efficiency that will allow quick and efficient response to energy consumption and cost spikes in the energy market.Keywords: virtual meters, HVAC, artificial intelligence, energy consumption prediction
Procedia PDF Downloads 10522816 Revisiting Pedestrians’ Appraisals of Urban Streets
Authors: Norhaslina Hassan, Sherina Rezvanipour, Amirhosein Ghaffarian Hoseini, Ng Siew Cheok
Abstract:
The walkability features of urban streets are prominent factors that are often focused on achieving a pedestrian-friendly environment. The limited attention that walkability enhancements devote to pedestrians' experiences or perceptions, on the other hand, raises the question of whether walkability enhancement is sufficient for pedestrians to enjoy using the streets. Thus, this paper evaluates the relationship between the socio-physical components of urban streets and pedestrians’ perceptions. A total of 1152 pedestrians from five urban streets in two major Malaysian cities, Kuala Lumpur, and George Town, Penang, participated in this study. In particular, this study used pedestrian preference scores towards socio-physical attributes that exist in urban streets to assess their impact on pedestrians’ appraisals of street likeability, comfort, and safety. Through analysis, the principal component analysis extracted eight socio-physical components, which were then tested via an ordinal regression model to identify their impact on pedestrian street likeability, comfort (visual, auditory, haptic and olfactory), and safety (physical safety, environmental safety, and security). Furthermore, a non-parametric Kruskal Wallis test was used to identify whether the results were subjected to any socio-demographic differences. The results found that all eight components had some degree of effect on the appraisals. It was also revealed that pedestrians’ preferences towards the attributes as well as their appraisals significantly varied based on their age, gender, ethnicity and education. These results and their implications for urban planning are further discussed in this paper.Keywords: pedestrian appraisal, pedestrian perception, street sociophysical attributes, walking experience
Procedia PDF Downloads 12422815 Structural and Magnetic Properties of Cr Doped Ni-Zn Nanoferrites Prepared by Co-Precipitation Method
Authors: E. Ateia, L. M. Salah, A. H. El-Bassuony
Abstract:
Physical properties of nanocrystalline Ni1-xZnxCryFe2-yO4, (x=0.3, 0.5 and y=0.0, 0.1) with estimated crystallite size of 16.4 nm have been studied. XRD pattern of all prepared systems shows that, the nanosamples without Cr3+ have a cubic spinel structure with the appearance of small peaks designated as a secondary phase. Magnetic constants such as saturation magnetization, (MS) remanent magnetization (Mr) and coercive field (Hc) were obtained and reported. The obtained data shows that, the addition of Cr3+ (0.1mol) decreases the saturation magnetization. This is due to the decrease of magnetic moment of Cr3+ ion (3.0 μB) with respect to Fe3+ ion (5.85 μB). The electrical properties of the investigated samples were also investigated.Keywords: electrical conductivity, ferrites, grain size, sintering
Procedia PDF Downloads 28922814 Kinetic and Thermodynamic Modified Pectin with Chitosan by Forming Polyelectrolyte Complex Adsorbent to Remediate of Pb(II)
Authors: Budi Hastuti, Mudasir, Dwi Siswanta, Triyono
Abstract:
Biosorbent, such as pectin and chitosan, are usually produced with low physical stability, thus the materials need to be modified. In this research, the physical characteristic of adsorbent was increased by grafting chitosan using acetate carboxymetyl chitosan (CC). Further, CC and Pectin (Pec) were crosslinked using cross-linking agent BADGE (bis phenol A diglycidyl ether) to get CC-Pec-BADGE (CPB) adsorbent. The cross-linking processes aim to form stable structure and resistance on acidic media. Furthermore, in order to increase the adsorption capacity in removing Pb(II), the adsorbent was added with NaCl to form macroporous adsorbent named CCPec-BADGE-Na (CPB-Na). The physical and chemical characteristics of the porogenic adsorbent structure were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The adsorption parameter of CPB-Na to adsorb Pb(II) ion was determined. The kinetics and thermodynamics of the bath sorption of Pb(II) on CPB-Na adsorbent and using chitosan and pectin as a comparison were also studied. The results showed that the CPB-Na biosorbent was stable on acidic media. It had a rough and porous surface area, increased and gave higher sorption capacity for removal of Pb(II) ion. The CPB-Na 1/1 and 1/3 adsorbent adsorbed Pb(II) with adsorption capacity of 45.48 mg/g and 45.97 mg/g respectively, whereas pectin and chitosan were of 39.20 mg /g and 24.67 mg /g respectively.Keywords: porogen, Pectin, Carboxymethyl Chitosan (CC), CC- Pec-BADGE-Na
Procedia PDF Downloads 15822813 Characterization of Bacteria by a Nondestructive Sample Preparation Method in a TEM System
Authors: J. Shiue, I. H. Chen, S. W. Y. Chiu, Y. L. Wang
Abstract:
In this work, we present a nondestructive method to characterize bacteria in a TEM system. Unlike the conventional TEM specimen preparation method, which needs to thin the specimen in a destructive way, or spread the samples on a tiny millimeter sized carbon grid, our method is easy to operate without the need of sample pretreatment. With a specially designed transparent chip that allows the electron beam to pass through, and a custom made chip holder to fit into a standard TEM sample holder, the bacteria specimen can be easily prepared on the chip without any pretreatment, and then be observed under TEM. The centimeter-sized chip is covered with Au nanoparticles in the surface as the markers which allow the bacteria to be observed easily on the chip. We demonstrate the success of our method by using E. coli as an example, and show that high-resolution TEM images of E. coli can be obtained with the method presented. Some E. coli morphology characteristics imaged using this method are also presented.Keywords: bacteria, chip, nanoparticles, TEM
Procedia PDF Downloads 31422812 Setting the Baseline for a Sentinel System for the Identification of Occupational Risk Factors in Africa
Authors: Menouni Aziza, Chbihi Kaoutar, Duca Radu Corneliu, Gilissen Liesbeth, Bounou Salim, Godderis Lode, El Jaafari Samir
Abstract:
In Africa, environmental and occupational health risks are mostly underreported. The aim of this research is to develop and implement a sentinel surveillance system comprising training and guidance of occupational physicians (OC) who will report new work-related diseases in African countries. A group of 30 OC are recruited and trained in each of the partner countries (Morocco, Benin and Ethiopia). Each committed OC is asked to recruit 50 workers during a consultation in a time-frame of 6 months (1500 workers per country). Workers are asked to fill out an online questionnaire about their health status and work conditions, including exposure to 20 chemicals. Urine and blood samples are then collected for human biomonitoring of common exposures. Some preliminary results showed that 92% of the employees surveyed are exposed to physical constraints, 44% to chemical agents, and 24% to biological agents. The most common physical constraints are manual handling of loads, noise pollution and thermal pollution. The most frequent chemical risks are exposure to pesticides and fuels. This project will allow a better understanding of effective sentinel systems as a promising method to gather high quality data, which can support policy-making in terms of preventing emerging work-related diseases.Keywords: sentinel system, occupational diseases, human biomonitoring, Africa
Procedia PDF Downloads 8222811 The Effect of Using Water Wireless Aqua Com System on the Development of Dolphin Kick Movements on the Female Swimming Team at the Faculty of Physical Education
Authors: Wisal Alrabadi
Abstract:
The study's goal was to see how the use of water wireless Aqua Com System and its accompanying music affected the Female Swimming Team at the Faculty of Physical Education's development of dolphin kick movements. To that end, a training program consisting of (12) training units spread out over four weeks, three units per week, was created and applied to a study sample of (10) students from the swimming pool enrolled in the first semester of the academic year 2022. Pre-measuring and timing the movements of dolphins kicking with and without fins above and below, measuring the water's surface over a distance of 25 meters. The results showed that there are statistically significant differences in favor of telemetry from the start within the limits of the area specified for a distance of 15 m after the comparison between the pre and post-measurement using the test (T) of the double samples, and this indicates the impact of the training program using the Aqua Com System in the swimming team(Female) at Faculty of Physical Education, and in light of this a set of recommendations was developed.Keywords: aqua com system training program, accompanying music, dolphin kick movements, swimming team female
Procedia PDF Downloads 15522810 Reframing Physical Activity for Health
Authors: M. Roberts
Abstract:
We Are Undefeatable - is a mass marketing behaviour change campaign that aims to support the least active people living with long term health conditions to be more active. This is an important issue to address because people with long term conditions are an historically underserved community for the sport and physical activity sector and the least active of those with long term conditions have the most to gain in health and wellbeing benefits. The campaign has generated a significant change in the way physical activity is communicated and people with long term conditions are represented in the media and marketing. The goal is to create a social norm around being active. The campaign is led by a unique partnership of organisations: the Richmond Group of Charities (made up of Age UK, Alzheimer’s Society, Asthma + Lung UK, Breast Cancer Now, British Heart Foundation, British Red Cross, Diabetes UK, Macmillan Cancer Support, Rethink Mental Illness, Royal Voluntary Service, Stroke Association, Versus Arthritis) along with Mind, MS Society, Parkinson’s UK and Sport England, with National Lottery Funding. It is underpinned by the COM-B model of behaviour change. It draws on the lived experience of people with multiple long term conditions to shape the look and feel of the campaign and all the resources available. People with long term conditions are the campaign messengers, central to the ethos of the campaign by telling their individual stories of overcoming barriers to be active with their health conditions. The central messaging is about finding a way to be active that works for the individual. We Are Undefeatable is evaluated through a multi-modal approach, including regular qualitative focus groups and a quantitative evaluation tracker undertaken three times a year. The campaign has highlighted the significant barriers to physical activity for people with long term conditions. This has changed the way our partnership talks about physical activity but has also had an impact on the wider sport and physical activity sector, prompting an increasing departure from traditional messaging and marketing approaches for this audience of people with long term conditions. The campaign has reached millions of people since its launch in 2019, through multiple marketing and partnership channels including primetime TV advertising and promotion through health professionals and in health settings. Its diverse storytellers make it relatable to its target audience and the achievable activities highlighted and inclusive messaging inspire our audience to take action as a result of seeing the campaign. The We Are Undefeatable campaign is a blueprint for physical activity campaigns; it not only addresses individual behaviour change but plays a role in addressing systemic barriers to physical activity by sharing the lived experience insight to shape policy and professional practice.Keywords: behaviour change, long term conditions, partnership, relatable
Procedia PDF Downloads 6522809 Simultaneous Detection of Cd⁺², Fe⁺², Co⁺², and Pb⁺² Heavy Metal Ions by Stripping Voltammetry Using Polyvinyl Chloride Modified Glassy Carbon Electrode
Authors: Sai Snehitha Yadavalli, K. Sruthi, Swati Ghosh Acharyya
Abstract:
Heavy metal ions are toxic to humans and all living species when exposed in large quantities or for long durations. Though Fe acts as a nutrient, when intake is in large quantities, it becomes toxic. These toxic heavy metal ions, when consumed through water, will cause many disorders and are harmful to all flora and fauna through biomagnification. Specifically, humans are prone to innumerable diseases ranging from skin to gastrointestinal, neurological, etc. In higher quantities, they even cause cancer in humans. Detection of these toxic heavy metal ions in water is thus important. Traditionally, the detection of heavy metal ions in water has been done by techniques like Inductively Coupled Plasma Mass Spectroscopy (ICPMS) and Atomic Absorption Spectroscopy (AAS). Though these methods offer accurate quantitative analysis, they require expensive equipment and cannot be used for on-site measurements. Anodic Stripping Voltammetry is a good alternative as the equipment is affordable, and measurements can be made at the river basins or lakes. In the current study, Square Wave Anodic Stripping Voltammetry (SWASV) was used to detect the heavy metal ions in water. Literature reports various electrodes on which deposition of heavy metal ions was carried out like Bismuth, Polymers, etc. The working electrode used in this study is a polyvinyl chloride (PVC) modified glassy carbon electrode (GCE). Ag/AgCl reference electrode and Platinum counter electrode were used. Biologic Potentiostat SP 300 was used for conducting the experiments. Through this work of simultaneous detection, four heavy metal ions were successfully detected at a time. The influence of modifying GCE with PVC was studied in comparison with unmodified GCE. The simultaneous detection of Cd⁺², Fe⁺², Co⁺², Pb⁺² heavy metal ions was done using PVC modified GCE by drop casting 1 wt.% of PVC dissolved in Tetra Hydro Furan (THF) solvent onto GCE. The concentration of all heavy metal ions was 0.2 mg/L, as shown in the figure. The scan rate was 0.1 V/s. Detection parameters like pH, scan rate, temperature, time of deposition, etc., were optimized. It was clearly understood that PVC helped in increasing the sensitivity and selectivity of detection as the current values are higher for PVC-modified GCE compared to unmodified GCE. The peaks were well defined when PVC-modified GCE was used.Keywords: cadmium, cobalt, electrochemical sensing, glassy carbon electrodes, heavy metal Ions, Iron, lead, polyvinyl chloride, potentiostat, square wave anodic stripping voltammetry
Procedia PDF Downloads 10322808 Cryptocurrency-Based Mobile Payments with Near-Field Communication-Enabled Devices
Authors: Marko Niinimaki
Abstract:
Cryptocurrencies are getting increasingly popular, but very few of them can be conveniently used in daily mobile phone purchases. To solve this problem, we demonstrate how to build a functional prototype of a mobile cryptocurrency-based e-commerce application the communicates with Near-Field Communication (NFC) tags. Using the system, users are able to purchase physical items with an NFC tag that contains an e-commerce URL. The payment is done simply by touching the tag with a mobile device and accepting the payment. Our method is constructive: we describe the design and technologies used in the implementation and evaluate the security and performance of the solution. Our main finding is that the analysis and measurements show that our solution is feasible for e-commerce.Keywords: cryptocurrency, e-commerce, NFC, mobile devices
Procedia PDF Downloads 18422807 The Analysis of the Two Dimensional Huxley Equation Using the Galerkin Method
Authors: Pius W. Molo Chin
Abstract:
Real life problems such as the Huxley equation are always modeled as nonlinear differential equations. These problems need accurate and reliable methods for their solutions. In this paper, we propose a nonstandard finite difference method in time and the Galerkin combined with the compactness method in the space variables. This coupled method, is used to analyze a two dimensional Huxley equation for the existence and uniqueness of the continuous solution of the problem in appropriate spaces to be defined. We proceed to design a numerical scheme consisting of the aforementioned method and show that the scheme is stable. We further show that the stable scheme converges with the rate which is optimal in both the L2 as well as the H1-norms. Furthermore, we show that the scheme replicates the decaying qualities of the exact solution. Numerical experiments are presented with the help of an example to justify the validity of the designed scheme.Keywords: Huxley equations, non-standard finite difference method, Galerkin method, optimal rate of convergence
Procedia PDF Downloads 21522806 Competence on Learning Delivery Modes and Performance of Physical Education Teachers in Senior High Schools in Davao
Authors: Juvanie C. Lapesigue
Abstract:
Worldwide school closures result from a significant public health crisis that has affected the nation and the entire world. It has affected students, educators, educational organizations globally, and many other aspects of society. Academic institutions worldwide teach students using diverse approaches of various learning delivery modes. This paper investigates the competence and performance of physical education teachers using various learning delivery modes, including Distance learning, Blended Learning, and Homeschooling during online distance education. To identify the Gap between their age generation using various learning delivery that affects teachers' preparation for distance learning and evaluates how these modalities impact teachers’ competence and performance in the case of a pandemic. The respondents were the Senior High School teachers of the Department of Education who taught in Davao City before and during the pandemic. Purposive sampling was utilized on 61 Senior High School Teachers in Davao City Philippines. The result indicated that teaching performance based on pedagogy and assessment has significantly affected teaching performance in teaching physical education, particularly those Non-PE teachers teaching physical education subjects. It should be supplied with enhancement training workshops to help them be more successful in preparation in terms of teaching pedagogy and assessment in the following norm. Hence, a proposed unique training design for non-P.E. Teachers has been created to improve the teachers’ performance in terms of pedagogy and assessment in teaching P.E subjects in various learning delivery modes in the next normal.Keywords: distance learning, learning delivery modes, P.E teachers, senior high school, teaching competence, teaching performance
Procedia PDF Downloads 9322805 Influence of the Cooking Technique on the Iodine Content of Frozen Hake
Authors: F. Deng, R. Sanchez, A. Beltran, S. Maestre
Abstract:
The high nutritional value associated with seafood is related to the presence of essential trace elements. Moreover, seafood is considered an important source of energy, proteins, and long-chain polyunsaturated fatty acids. Generally, seafood is consumed cooked. Consequently, the nutritional value could be degraded. Seafood, such as fish, shellfish, and seaweed, could be considered as one of the main iodine sources. The deficient or excessive consumption of iodine could cause dysfunction and pathologies related to the thyroid gland. The main objective of this work is to evaluated iodine stability in hake (Merluccius) undergone different culinary techniques. The culinary process considered were: boiling, steaming, microwave cooking, baking, cooking en papillote (twisted cover with the shape of a sweet wrapper) and coating with a batter of flour and deep-frying. The determination of iodine was carried by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Regarding sample handling strategies, liquid-liquid extraction has demonstrated to be a powerful pre-concentration and clean-up approach for trace metal analysis by ICP techniques. Extraction with tetramethylammonium hydroxide (TMAH reagent) was used as a sample preparation method in this work. Based on the results, it can be concluded that the stability of iodine was degraded with the cooking processes. The major degradation was observed for the boiling and microwave cooking processes. The content of iodine in hake decreased up to 60% and 52%, respectively. However, if the boiling cooking liquid is preserved, this loss that has been generated during cooking is reduced. Only when the fish was cooked by following the cooking en papillote process the iodine content was preserved.Keywords: cooking process, ICP-MS, iodine, hake
Procedia PDF Downloads 14122804 On Radially Symmetric Vibrations of Bi-Directional Functionally Graded Circular Plates on the Basis of Mindlin’s Theory and Neutral Axis
Authors: Rahul Saini, Roshan Lal
Abstract:
The present paper deals with the free axisymmetric vibrations of bi-directional functionally graded circular plates using Mindlin’s plate theory and physical neutral surface. The temperature-dependent, as well as temperature-independent mechanical properties of the plate material, varies in radial and transverse directions. Also, temperature profile for one- and two-dimensional temperature variations has been obtained from the heat conduction equation. A simple computational formulation for the governing differential equation of motion for such a plate model has been derived using Hamilton's principle for the clamped and simply supported plates at the periphery. Employing the generalized differential quadrature method, the corresponding frequency equations have been obtained and solved numerically to retain their lowest three roots as the natural frequencies for the first three modes. The effect of various other parameters such as temperature profile, functionally graded indices, and boundary conditions on the vibration characteristics has been presented. In order to validate the accuracy and efficiency of the method, the results have been compared with those available in the literature.Keywords: bi-directionally FG, GDQM, Mindlin’s circular plate, neutral axis, vibrations
Procedia PDF Downloads 13122803 Study on Hydrophilicity of Anodic Aluminum Oxide Templates with TiO2-NTs
Authors: Yu-Wei Chang, Hsuan-Yu Ku, Jo-Shan Chiu, Shao-Fu Chang, Chien-Chon Chen
Abstract:
This paper aims to discuss the hydrophilicity about the anodic aluminum oxide (AAO) template with titania nanotubes (NTs). The AAO templates with pore size diameters of 20-250 nm were generated by anodizing 6061 aluminum alloy substrates in acid solution of sulfuric acid (H2SO4), oxalic acid (COOH)2, and phosphoric acid (H3PO4), respectively. TiO2-NTs were grown on AAO templates by the sol-gel deposition process successfully. The water contact angle on AAO/TiO2-NTs surface was lower compared to the water contact angle on AAO surface. So, the characteristic of hydrophilicity was significantly associated with the AAO pore size and what kinds of materials were immersed variables.Keywords: AAO, nanotube, sol-gel, anodization, hydrophilicity
Procedia PDF Downloads 35622802 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling
Authors: Florin Leon, Silvia Curteanu
Abstract:
Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression
Procedia PDF Downloads 30422801 The Role of Hemoglobin in Psychological Well Being and Academic Achievement of College Female Students
Authors: Ramesh Adsul, Vikas Minchekar
Abstract:
The present study attempts to explore the differences in academic achievement and psychological well being and its components – satisfaction, efficiency, sociability, mental health, interpersonal relations in low and moderate level of hemoglobin of college female students. It also tries to find out how hemoglobin, psychological well –being and academic achievement correlate to each other. For this study 200 (100 low hemoglobin level and 100 moderate hemoglobin level) college female students were selected by random sampling method. This sample is collected from the project ‘Health awareness and hemoglobin improvement programme’, which is being collaboratively conducted by ‘Akshyabhasha, MESA, U.S.A. and Smt. M.G. Kanya Mahavidyalaya, Sangli, Maharashtra, India. Psychological Well-Being Scale was used to collect the data. Students’ academic achievement was collected through college record, and hemoglobin level of female students was collected from project record. Data was analyzed by using independent ‘t’ test and Pearson’s correlation coefficient. The finding of the study revealed significant differences between low hemoglobin and moderate hemoglobin groups regarding efficiency and mental health. No significant difference was observed on satisfaction, sociability and interpersonal relations. It is also found that there is significant difference between low hemoglobin and moderate hemoglobin groups on academic achievement. The study revealed positive correlation between hemoglobin and academic achievement and psychological well-being and academic achievement. Moderate hemoglobin level create more efficiency, better mental health and good academic achievement in female students. One could say that there is significant role hemoglobin plays in psychological well being and academic achievement of college female students. Anemia is widely prevalent in all the states if India among all age groups. In India, college girls contribute major portion of population. It has been reported that 80% female population has hemoglobin deficiency, due to illiteracy of female, family structure, status of women, diet habits, gender discrimination and various superstitions. The deficiency of hemoglobin affects physical and mental health, general behavior and academic performance of students. This study is useful to educational managements, counselors, parents, students and Government also. In the development of personality physical as well as psychological health is essential. This research findings will create awareness about physical and mental health among people and society.Keywords: academic achievement, college female students, hemoglobin, psychological well-being
Procedia PDF Downloads 29322800 Atomic Layer Deposition of Metal Oxide Inverse Opals: A Tailorable Platform for Unprecedented Photocatalytic Performance
Authors: Hamsasew Hankebo Lemago, Dóra Hessz, Zoltán Erdélyi, Imre Miklós Szilágyi
Abstract:
Metal oxide inverse opals are a unique class of photocatalysts with a hierarchical structure that mimics the natural opal gemstone. They are composed of a network of interconnected pores, which provides a large surface area and efficient pathways for the transport of light and reactants. Atomic layer deposition (ALD) is a versatile technique for the synthesis of high-precision metal oxide thin films, including inverse opals. ALD allows for precise control over the thickness, composition, and morphology of the synthesized films, making it an ideal technique for the fabrication of photocatalysts with tailored properties. In this study, we report the synthesis of TiO2, ZnO, and Al2O3 inverse opal photocatalysts using thermal or plasma-enhanced ALD. The synthesized photocatalysts were characterized using a variety of techniques, including scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL), ellipsometry, and UV-visible spectroscopy. The results showed that the ALD-synthesized metal oxide inverse opals had a highly ordered structure and a tunable pore size. The PL spectroscopy results showed low recombination rates of photogenerated electron-hole pairs, while the ellipsometry and UV-visible spectroscopy results showed tunable optical properties and band gap energies. The photocatalytic activity of the samples was evaluated by the degradation of methylene blue under visible light irradiation. The results showed that the ALD-synthesized metal oxide inverse opals exhibited high photocatalytic activity, even under visible light irradiation. The composites photocatalysts showed even higher activity than the individual metal oxide inverse opals. The enhanced photocatalytic activity of the composites can be attributed to the synergistic effect between the different metal oxides. For example, Al2O3 can act as a charge carrier scavenger, which can reduce the recombination of photogenerated electron-hole pairs. The ALD-synthesized metal oxide inverse opals and their composites are promising photocatalysts for a variety of applications, such as wastewater treatment, air purification, and energy production. For example, they can be used to remove organic pollutants from wastewater, decompose harmful gases in the air, and produce hydrogen fuel from water.Keywords: ALD, metal oxide inverse opals, composites, photocatalysis
Procedia PDF Downloads 8422799 Layersomes for Oral Delivery of Amphotericin B
Authors: A. C. Rana, Abhinav Singh Rana
Abstract:
Layer by layer coating of biocompatible polyelectrolytes converts the liposomes into stable version i.e 'layersomes'. This system was further used to deliver the Amphotericin B through the oral route. Extensive optimization of different process variables resulted in the formation of layersomes with the particle size of 238.4±5.1, PDI of 0.24±0.16, the zeta potential of 34.6±1.3, and entrapment efficiency of 71.3±1.2. TEM analysis further confirmed the formation of spherical particles. Trehalose (10% w/w) resulted in the formation of fluffy and easy to redisperse cake in freeze dried layersomes. Controlled release up to 50 % within 24 h was observed in the case of layersomes. The layersomes were found stable in simulated biological fluids and resulted in the 3.59 fold higher bioavailability in comparison to free Amp-B. Furthermore, the developed formulation was found to be safe in comparison to Fungizone as indicated by blood urea nitrogen (BUN) and creatinine level.Keywords: amphotericin B, layersomes, liposomes, toxicity
Procedia PDF Downloads 52722798 Adsorption of Acetone Vapors by SBA-16 and MCM-48 Synthesized from Rice Husk Ash
Authors: Wanting Zeng, Hsunling Bai
Abstract:
Silica was extracted from agriculture waste rice husk ash (RHA) and was used as the silica source for synthesis of RMCM-48 and RSBA-16. An alkali fusion process was utilized to separate silicate supernatant and the sediment effectively. The CTAB/Si and F127/Si molar ratio was employed to control the structure properties of the obtained RMCM-48 and RSBA-16 materials. The N2 adsorption-desorption results showed the micro-mesoporous RSBA-16 possessed high specific surface areas (662-1001 m2/g). All the obtained RSBA-16 materials were applied as the adsorbents for acetone adsorption. And the breakthrough tests clearly revealed that the RSBA-16(0.004) materials could achieve the highest acetone adsorption capacity of 186 mg/g under 1000 ppmv acetone vapor concentration at 25oC, which was also superior to ZSM-5 (71mg/g) and MCM-41 (157mg/g) under same test conditions. This can help to reduce the solid waste and the high adsorption performance of the obtained materials could consider as potential adsorbents for acetone adsorption.Keywords: acetone, adsorption, micro-mesoporous material, rice husk ash (RHA), RSBA-16
Procedia PDF Downloads 34222797 Review the Concept of Context in Modernization of Rural Architecture Case Study: Baliran Village
Authors: Neda Najafi, Mehran Allalhesabi
Abstract:
At present, the natural, geographical, physical contexts of the rural textures, which play a crucial role in making the concept behind their body, are not considered in the new designs. Despite the fundamental differences in contexts, this issue has caused that, the new rural textures in our country become similar to each other and the cohesive structure of many villages in the development of rural areas are exposed to deterioration. The villages of northern Iran are not immune from this situation and nothing have remained from their physical characteristic, and the new sections of rural areas are designed heterogeneously and regardless to the concepts behind the region's architecture, which destroys the originality of the environment. The purpose of this study is to extract the concepts and criteria that differentiate the body of the village and reveal its similarity with the same structures. In this way, understanding the underlying values is extremely useful and is considered very important to approach the new model. In the first part, the subject matters of the research (context, village and rural architecture) are defined and then the characteristics of context-oriented rural architecture and criteria that can be examined from the perspective of contextualism approach are presented. In the second part, by selecting 3 samples from the houses of Baliran village, these concepts and criteria have been evaluated in the houses of the village. The results of this study show that the characteristics of contextual rural architecture have the ability to adapt to the body of the village and can be the best model to achieve contextual architecture in this area. Therefore, by using these concepts and criteria, it is possible to achieve a type of architecture that is located along with the past architecture and, with the help of the modern facilities and environmental potentials, creates a logical and correct flow in the physical development of the rural textures.Keywords: context, village, rural architecture, concepts and criteria of physical contextualism
Procedia PDF Downloads 156