Search results for: energy intensive industries
9019 Energy Separation Mechanism in Uni-Flow Vortex Tube Using Compressible Vortex Flow
Authors: Hiroshi Katanoda, Mohd Hazwan bin Yusof
Abstract:
A theoretical investigation from the viewpoint of gas-dynamics and thermodynamics was carried out, in order to clarify the energy separation mechanism in a viscous compressible vortex, as a primary flow element in a uni-flow vortex tube. The mathematical solutions of tangential velocity, density and temperature in a viscous compressible vortical flow were used in this study. It is clear that a total temperature in the vortex core falls well below that distant from the vortex core in the radial direction, causing a region with higher total temperature, compared to the distant region, peripheral to the vortex core.Keywords: energy separation mechanism, theoretical analysis, vortex tube, vortical flow
Procedia PDF Downloads 3999018 An Equivalence between a Harmonic Form and a Closed Co-Closed Differential Form in L^Q and Non-L^Q Spaces
Abstract:
An equivalent relation between a harmonic form and a closed co-closed form is established on a complete non-compact manifold. This equivalence has been generalized for a differential k-form ω from Lq spaces to non-Lq spaces when q=2 in the context of p-balanced growth where p=2. Especially for a simple differential k-form on a complete non-compact manifold, the equivalent relation has been verified with the extended scope of q for from finite q-energy in Lq spaces to infinite q-energy in non-Lq spaces when with 2-balanced growth. Generalized Hadamard Theorem, Cauchy-Schwarz Inequality, and Calculus skills including Integration by Parts as well as Convergent Series have been applied as estimation techniques to evaluate growth rates for a differential form. In particular, energy growth rates as indicated by an appropriate power range in a selected test function lead to a balance between a harmonic differential form and a closed co-closed differential form. Research ideas and computational methods in this paper could provide an innovative way in the study of broadening Lq spaces to non-Lq spaces with a wide variety of infinite energy growth for a differential form.Keywords: closed forms, co-closed forms, harmonic forms, L^q spaces, p-balanced growth, simple differential k-forms
Procedia PDF Downloads 4519017 Gold, Power, Protest, Examining How Digital Media and PGIS are Used to Protest the Mining Industry in Colombia
Authors: Doug Specht
Abstract:
This research project sought to explore the links between digital media, PGIS and social movement organisations in Tolima, Colombia. The primary aim of the research was to examine how knowledge is created and disseminated through digital media and GIS in the region, and whether there exists the infrastructure to allow for this. The second strand was to ascertain if this has had a significant impact on the way grassroots movements work and produce collective actions. The third element is a hypothesis about how digital media and PGIS could play a larger role in activist activities, particularly in reference to the extractive industries. Three theoretical strands have been brought together to provide a basis for this research, namely (a) the politics of knowledge, (b) spatial management and inclusion, and (c) digital media and political engagement. Quantitative data relating to digital media and mobile internet use was collated alongside qualitative data relating to the likelihood of using digital media in activist campaigns, with particular attention being given to grassroots movements working against extractive industries in the Tolima region of Colombia. Through interviews, surveys and GIS analysis it has been possible to build a picture of online activism and the role of PPGIS within protest movement in the region of Tolima, Colombia. Results show a gap between the desires of social movements to use digital media and the skills and finances required to implement programs that utilise it. Maps and GIS are generally reserved for legal cases rather than for informing the lay person. However, it became apparent that the combination of digital/social media and PPGIS could play a significant role in supporting the work of grassroots movements.Keywords: PGIS, GIS, social media, digital media, mining, colombia, social movements, protest
Procedia PDF Downloads 4279016 Heating Demand Reduction in Single Family Houses Community through Home Energy Management: Putting Users in Charge
Authors: Omar Shafqat, Jaime Arias, Cristian Bogdan, Björn Palm
Abstract:
Heating constitutes a major part of the overall energy consumption in Sweden. In 2013 heating and hot water accounted for about 55% of the total energy use in the housing sector. Historically, the end users have not been able to make a significant impact on their consumption on account of traditional control systems that do not facilitate interaction and control of the heating systems. However, in recent years internet connected home energy management systems have become increasingly available which allow users to visualize the indoor temperatures as well as control the heating system. However, the adoption of these systems is still in its nascent stages. This paper presents the outcome of a study carried out in a community of single-family houses in Stockholm. Heating in the area is provided through district heating, and the neighbourhood is connected through a local micro thermal grid, which is owned and operated by the local community. Heating in the houses is accomplished through a hydronic system equipped with radiators. The system installed offers the households to control the indoor temperature through a mobile application as well as through a physical thermostat. It was also possible to program the system to, for instance, lower the temperatures during night time and when the users were away. The users could also monitor the indoor temperatures through the application. It was additionally possible to create different zones in the house with their own individual programming. The historical heating data (in the form of billing data) was available for several previous years and has been used to perform quantitative analysis for the study after necessary normalization for weather variations. The experiment involved 30 households out of a community of 178 houses. The area was selected due to uniform construction profile in the area. It was observed that despite similar design and construction period there was a large variation in the heating energy consumption in the area which can for a large part be attributed to user behaviour. The paper also presents qualitative analysis done through survey questions as well as a focus group carried out with the participants. Overall, considerable energy savings were accomplished during the trial, however, there was a considerable variation between the participating households. The paper additionally presents recommendations to improve the impact of home energy management systems for heating in terms of improving user engagement and hence the energy impact.Keywords: energy efficiency in buildings, energy behavior, heating control system, home energy management system
Procedia PDF Downloads 1739015 Evaluation of Possible Application of Cold Energy in Liquefied Natural Gas Complexes
Authors: А. I. Dovgyalo, S. O. Nekrasova, D. V. Sarmin, A. A. Shimanov, D. A. Uglanov
Abstract:
Usually liquefied natural gas (LNG) gasification is performed due to atmospheric heat. In order to produce a liquefied gas a sufficient amount of energy is to be consumed (about 1 kW∙h for 1 kg of LNG). This study offers a number of solutions, allowing using a cold energy of LNG. In this paper it is evaluated the application turbines installed behind the evaporator in LNG complex due to its work additional energy can be obtained and then converted into electricity. At the LNG consumption of G=1000kg/h the expansion work capacity of about 10 kW can be reached. Herewith-open Rankine cycle is realized, where a low capacity cryo-pump (about 500W) performs its normal function, providing the cycle pressure. Additionally discussed an application of Stirling engine within the LNG complex also gives a possibility to realize cold energy. Considering the fact, that efficiency coefficient of Stirling engine reaches 50 %, LNG consumption of G=1000 kg/h may result in getting a capacity of about 142 kW of such a thermal machine. The capacity of the pump, required to compensate pressure losses when LNG passes through the hydraulic channel, will make 500 W. Apart from the above-mentioned converters, it can be proposed to use thermoelectric generating packages (TGP), which are widely used now. At present, the modern thermoelectric generator line provides availability of electric capacity with coefficient of efficiency up to 15%. In the proposed complex, it is suggested to install the thermoelectric generator on the evaporator surface is such a way, that the cold end is contacted with the evaporator’s surface, and the hot one – with the atmosphere. At the LNG consumption of G=1000 kgг/h and specified coefficient of efficiency the capacity of the heat flow Qh will make about 32 kW. The derivable net electric power will be P=4,2 kW, and the number of packages will amount to about 104 pieces. The carried out calculations demonstrate the research perceptiveness in this field of propulsion plant development, as well as allow realizing the energy saving potential with the use of liquefied natural gas and other cryogenics technologies.Keywords: cold energy, gasification, liquefied natural gas, electricity
Procedia PDF Downloads 2739014 Use of Cow Dung Residues of Biogas Plants for Sustainable Development of Rural Communities in Pakistan
Authors: Sumra Siddique Abbasi, Cheng Shikun
Abstract:
Biogas technology has rapidly developed in agriculture sector to upgrade and improve the life of farmers by providing them alternative and cost-effective energy source. Main purpose of this study is to understand the advantages of biogas plants by livestock owners either they are household-based livestock owners or may own farms for livestock. Similarly, a pertinent and major purpose of this research is to examine the factors affecting the decision to adopt biogas technologies at the household level. Based on the result, both public and private sector organization can make decisions related to the installation of biogas projects. Biogas is major energy source which can be used as an alternative and renewable energy source. This energy production technology can contribute in uplifting the lifestyle of farmers and can contribute into sustainable development of rural communities in Pakistan. People with livestock in any community in Pakistan can get benefit from biogas plants and it will contribute in sustainable development program which generates socio economic benefits, heath upgradation, cost effective energy source and positive impact on climate change or environmental issues. This study was conductive using survey method and descriptive analysis. One hundred fifty (150) farmers were the respondents who participated in survey. These farmers were from Layyah district of Punjab and were selected using snowball sampling technique. To generate the results, SPSS tool was used for data analysis.Keywords: biogas plant, animal dunk, renewable energy, pakistan
Procedia PDF Downloads 719013 Relationship between Relational Energy, Emotional Labour and Cognitive Flexibility of Cabin Crew
Authors: Rithi Baruah
Abstract:
The aviation industry is one such sectors whose primary aim is to work for the safety and comfort of their clients and customers. The crew members in the aviation industry include pilots, flight attendants, air traffic controllers, baggage personnel and maintenance personnel. This study will concentrate on the frontline employees of the aviation industry, the flight attendants. Flight attendants belong to the niche group of population who are paid to smile. Although the profession seems to be very glamorous, it is physically and psychologically very taxing. Energy at workplace is a fairly new concept and is an organizational resource which helps employee attain their goals. Therefore, the researcher will aim to establish the relationship between relational energy and the major issue of emotional labor and cognitive flexibility among flight attendants. The researcher will hypothesize that there will be a negative relationship between relational energy and emotional labour, and a positive relationship between relational energy and cognitive flexibility. Also, a positive relationship will be expected between cognitive flexibility and emotional labour of cabin crew. A quantitative research design will be used to study the relationship among 50 flight attendants in India. The findings of the research will not only help the aviation sector but will be a major contribution to the existing literature of aviation psychology in India which is scanty. The relationships can also provide scope to develop a model using the same. From crew resource management and aviation psychology perspectives, relationships among the study variables will not only provide scope for helping the aviation employees in particular but also develop the performance and safety of aviation sector at large.Keywords: cabin crew, cognitive flexibility, emotional labour, relational energy
Procedia PDF Downloads 3039012 Energy Storage Modelling for Power System Reliability and Environmental Compliance
Authors: Rajesh Karki, Safal Bhattarai, Saket Adhikari
Abstract:
Reliable and economic operation of power systems are becoming extremely challenging with large scale integration of renewable energy sources due to the intermittency and uncertainty associated with renewable power generation. It is, therefore, important to make a quantitative risk assessment and explore the potential resources to mitigate such risks. Probabilistic models for different energy storage systems (ESS), such as the flywheel energy storage system (FESS) and the compressed air energy storage (CAES) incorporating specific charge/discharge performance and failure characteristics suitable for probabilistic risk assessment in power system operation and planning are presented in this paper. The proposed methodology used in FESS modelling offers flexibility to accommodate different configurations of plant topology. It is perceived that CAES has a high potential for grid-scale application, and a hybrid approach is proposed, which embeds a Monte-Carlo simulation (MCS) method in an analytical technique to develop a suitable reliability model of the CAES. The proposed ESS models are applied to a test system to investigate the economic and reliability benefits of the energy storage technologies in system operation and planning, as well as to assess their contributions in facilitating wind integration during different operating scenarios. A comparative study considering various storage system topologies are also presented. The impacts of failure rates of the critical components of ESS on the expected state of charge (SOC) and the performance of the different types of ESS during operation are illustrated with selected studies on the test system. The paper also applies the proposed models on the test system to investigate the economic and reliability benefits of the different ESS technologies and to evaluate their contributions in facilitating wind integration during different operating scenarios and system configurations. The conclusions drawn from the study results provide valuable information to help policymakers, system planners, and operators in arriving at effective and efficient policies, investment decisions, and operating strategies for planning and operation of power systems with large penetrations of renewable energy sources.Keywords: flywheel energy storage, compressed air energy storage, power system reliability, renewable energy, system planning, system operation
Procedia PDF Downloads 1309011 Biomass Carbon Credit Estimation for Sustainable Urban Planning and Micro-climate Assessment
Authors: R. Niranchana, K. Meena Alias Jeyanthi
Abstract:
As a result of the present climate change dilemma, the energy balancing strategy is to construct a sustainable environment has become a top concern for researchers worldwide. The environment itself has always been a solution from the earliest days of human evolution. Carbon capture begins with its accurate estimation and monitoring credit inventories, and its efficient use. Sustainable urban planning with deliverables of re-use energy models might benefit from assessment methods like biomass carbon credit ranking. The term "biomass energy" refers to the various ways in which living organisms can potentially be converted into a source of energy. The approaches that can be applied to biomass and an algorithm for evaluating carbon credits are presented in this paper. The micro-climate evaluation using Computational Fluid dynamics was carried out across the location (1 km x1 km) at Dindigul, India (10°24'58.68" North, 77°54.1.80 East). Sustainable Urban design must be carried out considering environmental and physiological convection, conduction, radiation and evaporative heat exchange due to proceeding solar access and wind intensities.Keywords: biomass, climate assessment, urban planning, multi-regression, carbon estimation algorithm
Procedia PDF Downloads 949010 Investigation of Structural and Optical Properties of Coal Fly Ash Thin Film Doped with T𝒊O₂ Nanoparticles
Authors: Rawan Aljabbari, Thamer Alomayri, Faisal G. Al-Maqate, Abeer Al Suwat
Abstract:
For environmentally friendly innovative technologies and a sustainable future, fly ash/TiO₂ thin film nanocomposites are essential. Fly ash will be doped with titanium dioxide in this work in order to better understand its optical characteristics and employ it in semiconductor electrical devices. This study focused on the structure, morphology, and optical properties of fly ash/TiO₂ thin films. The spin-coating technique was used to create thin coatings of fly ash/TiO₂. For the first time, the doping of TiO₂ in the fly ash host at ratios of 1, 2, and 3 wt% was investigated with the thickness of all samples fixed. When compared to undoped thin films, the surface morphology of the doped thin films was improved. The weakly crystalline structure of the doped fly ash films was verified by XRD. The optical bandgap energy of these films was successfully reduced by the TiO₂ doping, going from 3.9 to 3.5 eV. With increasing dopant concentration, the value of Urbach energy is increasing. The optical band gap is clearly in opposition to the disorder. While it considerably improved the optical conductivity to a value of 4.1 x 10^9 s^(-1), it also raised the refractive index and extinction coefficient. Depending on the TiO₂ doping ratio, the transmittance decreased, and the reflection increased. As the TiO₂ concentration rises, the absorption of photon energy rises, and the absorption coefficient of photon energy is reduced. results in their possible use as solar energy and semiconductor materials.Keywords: fly ash, structural analysis, optical properties, morphology
Procedia PDF Downloads 869009 Energy Certification Labels and Comfort Assessment for Dwellings Located in a Mild Climate
Authors: Silvia A. Magalhaes, Vasco P. De Freitas, Jose L. Alexandre
Abstract:
Most of the European literature concerning energy efficiency and thermal comfort of dwellings assumes permanent heating and focuses on energy-saving measures. European National regulations are designed for those permanent comfort conditions. On the other hand, very few studies focus on the effect of the improvement measures in comfort reduction, for free-floating conditions or intermittent heating, in fuel poverty vulnerable countries. In Portugal, only 21% of the household energy consumptions (and 10% of the cost) are spent in space heating, while, on average European bills, this value rises to 67%. The mild climate, but mainly fuel poverty and cultural background, justifies these low heating practices. This study proposes a “passive discomfort” index definition, considering free-floating temperatures or with intermittent heating profiles (more realistic conditions), putting the focus on comfort rather than energy consumption (which is low for these countries). The aim is to compare both energy (regarding the legal framework of national regulation) and comfort (considering realistic conditions of use) to identify some correlation. It was developed an experimental campaign of indoor thermal conditions in a 19th building located in Porto with several apartments. One dwelling was chosen as a case study to carry out a sensitivity analysis. The results are discussed comparing both theoretical energy consumption (energy rates from national regulation) and discomfort (new index defined), for different insulation thicknesses, orientations, and intermittent heating profiles. The results show that the different passive options (walls insulation and glazing options) have a small impact on winter discomfort, which is always high for low heating profiles. Moreover, it was shown that the insulation thickness on walls has no influence, and the minimum insulation thickness considered is enough to achieve the same impact on discomfort reduction. Plus, for these low heating profiles, other conditions are critical, as the orientation. Finally, there isn’t an unequivocal relation between the energy label and the discomfort index. These and other results are surprising when compared with the most usual approaches, which assume permanent heating.Keywords: dwellings in historical buildings, low-heating countries, mild climates, thermal comfort
Procedia PDF Downloads 1499008 Marketing Practices of the Urban and Recycled Wood Industry in the United States
Authors: Robert Smith, Omar Espinoza, Anna Pitta
Abstract:
In the United States, trees felled in urban areas and wood generated through construction and demolition are primarily disposed of as low-value resources, such as biomass for energy, landscaping mulch, composting, or landfilled. An emerging industry makes use of these underutilized resources to produce high value-added products, with associated benefits for the environment, the local economy, and consumers. For the circular economy to be successful, markets must be created for sustainable, reusable natural materials. Research was carried out to increase the understanding of the marketing practices of urban and reclaimed wood industries. This paper presents the results of a nationwide survey of these companies. The results indicate that a majority of companies in this industry are small firms, operating for less than 10 years, which produce mostly to order and sell their products at comparatively higher prices than competing products made from virgin natural resources. Promotional messages included quality, aesthetics, and customization, conveyed through company webpages, word of mouth, and social media. Distribution channels used include direct sales, online sales, and retail sales. Partnerships are critical for effective raw material procurement. Respondents indicated optimistic growth expectations, despite barriers associated with urban and reclaimed wood materials and production.Keywords: urban and reclaimed wood, circular economy, marketing, wood products
Procedia PDF Downloads 1259007 The Relationship between the Speed of Light and Cosmic Background Potential
Authors: Youping Dai, Xinping Dai, Xiaoyun Li
Abstract:
In this paper, the effect of Cosmic Background Gravitational Potential (CBGP) was discussed. It is helpful to reveal the equivalence of gravitational and inertial mass, and to understand the origin of inertia. The derivation is similar to the classic approach adopted by Landau in the book 'Classical Theory of Fields'.The main differences are that we used CBGP = Lambda^2 instead of c^2, and used CBGP energy E = m*Lambda^2 instead of kinetic energy E = (1/2)m*v^2 as initial assumptions (where Lambda has the same units for measuring velocity). It showed that Lorentz transformation, rest energy and Newtonian mechanics are all affected by $CBGP$, and the square of the speed of light is equal to CBGP too. Finally, the top value of cosmic mass density and cosmic radius were discussed.Keywords: the origin of inertia, Mach's principle, equivalence principle, cosmic background potential
Procedia PDF Downloads 3769006 Assessment of Airtightness Through a Standardized Procedure in a Nearly-Zero Energy Demand House
Authors: Mar Cañada Soriano, Rafael Royo-Pastor, Carolina Aparicio-Fernández, Jose-Luis Vivancos
Abstract:
The lack of insulation, along with the existence of air leakages, constitute a meaningful impact on the energy performance of buildings. Both of them lead to increases in the energy demand through additional heating and/or cooling loads. Additionally, they cause thermal discomfort. In order to quantify these uncontrolled air currents, pressurization and depressurization tests can be performed. Among them, the Blower Door test is a standardized procedure to determine the airtightness of a space which characterizes the rate of air leakages through the envelope surface, calculating to this purpose an air flow rate indicator. In this sense, the low-energy buildings complying with the Passive House design criteria are required to achieve high levels of airtightness. Due to the invisible nature of air leakages, additional tools are often considered to identify where the infiltrations take place. Among them, the infrared thermography entails a valuable technique to this purpose since it enables their detection. The aim of this study is to assess the airtightness of a typical Mediterranean dwelling house located in the Valencian orchad (Spain) restored under the Passive House standard using to this purpose the blower-door test. Moreover, the building energy performance modelling tools TRNSYS (TRaNsient System Simulation program) and TRNFlow (TRaNsient Flow) have been used to determine its energy performance, and the infiltrations’ identification was carried out by means of infrared thermography. The low levels of infiltrations obtained suggest that this house may comply with the Passive House standard.Keywords: airtightness, blower door, trnflow, infrared thermography
Procedia PDF Downloads 1239005 Effects of China's Urban Form on Urban Carbon Emission
Authors: Lu Lin
Abstract:
Urbanization has reshaped physical environment, energy consumption and carbon emission of the urban area. China is a typical developing country under a rapid urbanization process and is the world largest carbon emission country. This study aims to explore the correlation between urban form and carbon emission caused by urban energy consumption in China. 287 provincial-level and prefecture-level cities are studied in 2000, 2005, and 2010. Compact ratio index, shape index, and fractal dimension index are used to quantify urban form. Geographically weighted regression (GWR) model is employed to explore the relationship between urban form, energy consumption, and related carbon emission. The results show the average compact ratio index decreased from 2000 to 2010 which indicates urban in China sprawled. The average fractal dimension index increases by 3%, indicating the spatial layouts of China's cities were more complicated. The results by the GWR model show that shape index and fractal dimension index had a non-significant relationship with carbon emission by urban energy consumption. However, compact urban form reduced carbon emission. The findings of this study will help policy-makers make sustainable urban planning and reduce urban carbon emission.Keywords: carbon emission, GWR model, urban energy consumption, urban form
Procedia PDF Downloads 3399004 Hourly Solar Radiations Predictions for Anticipatory Control of Electrically Heated Floor: Use of Online Weather Conditions Forecast
Authors: Helene Thieblemont, Fariborz Haghighat
Abstract:
Energy storage systems play a crucial role in decreasing building energy consumption during peak periods and expand the use of renewable energies in buildings. To provide a high building thermal performance, the energy storage system has to be properly controlled to insure a good energy performance while maintaining a satisfactory thermal comfort for building’s occupant. In the case of passive discharge storages, defining in advance the required amount of energy is required to avoid overheating in the building. Consequently, anticipatory supervisory control strategies have been developed forecasting future energy demand and production to coordinate systems. Anticipatory supervisory control strategies are based on some predictions, mainly of the weather forecast. However, if the forecasted hourly outdoor temperature may be found online with a high accuracy, solar radiations predictions are most of the time not available online. To estimate them, this paper proposes an advanced approach based on the forecast of weather conditions. Several methods to correlate hourly weather conditions forecast to real hourly solar radiations are compared. Results show that using weather conditions forecast allows estimating with an acceptable accuracy solar radiations of the next day. Moreover, this technique allows obtaining hourly data that may be used for building models. As a result, this solar radiation prediction model may help to implement model-based controller as Model Predictive Control.Keywords: anticipatory control, model predictive control, solar radiation forecast, thermal storage
Procedia PDF Downloads 2719003 PV Module as a Design Element of Barriers for Protection against Noise
Authors: Budimir S. Sudimac, Andjela N. Dubljevic
Abstract:
The aim of thisresearch paper is to consider possibilities for improving the street lighting on the E75 highway, which passes through Serbia, using renewable sources of energy. In this paper, we analyzed the possibilities for installing sound barriers along the highway and integrating photovoltaic (PV) modules, which would generate electrical energy to power the lighting on the section of the highway running through Belgrade. The main aim of this paper is to analyze, show and promote innovative, hybrid, multi-functional solar technology using PV modules as an element of sound barriers in urban areas. The paper seeks to show the hybridity of using sustainable technologies in solving environmental issues. This structure solves the problem of noise in populated areas and provides the electricity from renewable source.Keywords: noise, PV modules, solar energy, sound barriers
Procedia PDF Downloads 4739002 Propagation of Ultra-High Energy Cosmic Rays through Extragalactic Magnetic Fields: An Exploratory Study of the Distance Amplification from Rectilinear Propagation
Authors: Rubens P. Costa, Marcelo A. Leigui de Oliveira
Abstract:
The comprehension of features on the energy spectra, the chemical compositions, and the origins of Ultra-High Energy Cosmic Rays (UHECRs) - mainly atomic nuclei with energies above ~1.0 EeV (exa-electron volts) - are intrinsically linked to the problem of determining the magnitude of their deflections in cosmic magnetic fields on cosmological scales. In addition, as they propagate from the source to the observer, modifications are expected in their original energy spectra, anisotropy, and the chemical compositions due to interactions with low energy photons and matter. This means that any consistent interpretation of the nature and origin of UHECRs has to include the detailed knowledge of their propagation in a three-dimensional environment, taking into account the magnetic deflections and energy losses. The parameter space range for the magnetic fields in the universe is very large because the field strength and especially their orientation have big uncertainties. Particularly, the strength and morphology of the Extragalactic Magnetic Fields (EGMFs) remain largely unknown, because of the intrinsic difficulty of observing them. Monte Carlo simulations of charged particles traveling through a simulated magnetized universe is the straightforward way to study the influence of extragalactic magnetic fields on UHECRs propagation. However, this brings two major difficulties: an accurate numerical modeling of charged particles diffusion in magnetic fields, and an accurate numerical modeling of the magnetized Universe. Since magnetic fields do not cause energy losses, it is important to impose that the particle tracking method conserve the particle’s total energy and that the energy changes are results of the interactions with background photons only. Hence, special attention should be paid to computational effects. Additionally, because of the number of particles necessary to obtain a relevant statistical sample, the particle tracking method must be computationally efficient. In this work, we present an analysis of the propagation of ultra-high energy charged particles in the intergalactic medium. The EGMFs are considered to be coherent within cells of 1 Mpc (mega parsec) diameter, wherein they have uniform intensities of 1 nG (nano Gauss). Moreover, each cell has its field orientation randomly chosen, and a border region is defined such that at distances beyond 95% of the cell radius from the cell center smooth transitions have been applied in order to avoid discontinuities. The smooth transitions are simulated by weighting the magnetic field orientation by the particle's distance to the two nearby cells. The energy losses have been treated in the continuous approximation parameterizing the mean energy loss per unit path length by the energy loss length. We have shown, for a particle with the typical energy of interest the integration method performance in the relative error of Larmor radius, without energy losses and the relative error of energy. Additionally, we plotted the distance amplification from rectilinear propagation as a function of the traveled distance, particle's magnetic rigidity, without energy losses, and particle's energy, with energy losses, to study the influence of particle's species on these calculations. The results clearly show when it is necessary to use a full three-dimensional simulation.Keywords: cosmic rays propagation, extragalactic magnetic fields, magnetic deflections, ultra-high energy
Procedia PDF Downloads 1279001 Life Cycle Assessment of Bioethanol from Feedstocks in Thailand
Authors: Thanapat Chaireongsirikul, Apichit Svang-Ariyaskul
Abstract:
An analysis of mass balance, energy performance, and environmental impact assessment were performed to evaluate bioethanol production in Thailand. Thailand is an agricultural country. Thai government plans to increase the use of alternative energy to 20 percent by 2022. One of the primary campaigns is to promote a bioethanol production from abundant biomass resources such as bitter cassava, molasses and sugarcane. The bioethanol production is composed of three stages: cultivation, pretreatment, and bioethanol conversion. All of mass, material, fuel, and energy were calculated to determine the environmental impact of three types of bioethanol production: bioethanol production from cassava (CBP), bioethanol production from molasses (MBP), and bioethanol production from rice straw (RBP). The results showed that bioethanol production from cassava has the best environmental performance. CBP contributes less impact when compared to the other processes.Keywords: bioethanol production, biofuel, LCA, chemical engineering
Procedia PDF Downloads 3689000 Automated Irrigation System with Programmable Logic Controller and Photovoltaic Energy
Authors: J. P. Reges, L. C. S. Mazza, E. J. Braga, J. A. Bessa, A. R. Alexandria
Abstract:
This paper proposes the development of control and automation of irrigation system located sunflower harvest in the Teaching Unit, Research and Extension (UEPE), the Apodi Plateau in Limoeiro do Norte. The sunflower extraction, which in turn serves to get the produced oil from its seeds, animal feed, and is widely used in human food. Its nutritional potential is quite high what makes of foods produced from vegetal, very rich and healthy. The focus of research is to make the autonomous irrigation system sunflower crop from programmable logic control energized with alternative energy sources, solar photovoltaics. The application of automated irrigation system becomes interesting when it provides convenience and implements new forms of managements of the implementation of irrigated cropping systems. The intended use of automated addition to irrigation quality and consequently brings enormous improvement for production of small samples. Addition to applying the necessary and sufficient features of water management in irrigation systems, the system (PLC + actuators + Renewable Energy) will enable to manage the quantitative water required for each crop, and at the same time, insert the use of sources alternative energy. The entry of the automated collection will bring a new format, and in previous years, used the process of irrigation water wastage base and being the whole manual irrigation process.Keywords: automation, control, sunflower, irrigation, programming, renewable energy
Procedia PDF Downloads 3998999 A Concept in Addressing the Singularity of the Emerging Universe
Authors: Mahmoud Reza Hosseini
Abstract:
The universe is in a continuous expansion process, resulting in the reduction of its density and temperature. Also, by extrapolating back from its current state, the universe at its early times has been studied known as the big bang theory. According to this theory, moments after creation, the universe was an extremely hot and dense environment. However, its rapid expansion due to nuclear fusion led to a reduction in its temperature and density. This is evidenced through the cosmic microwave background and the universe structure at a large scale. However, extrapolating back further from this early state reaches singularity which cannot be explained by modern physics and the big bang theory is no longer valid. In addition, one can expect a nonuniform energy distribution across the universe from a sudden expansion. However, highly accurate measurements reveal an equal temperature mapping across the universe which is contradictory to the big bang principles. To resolve this issue, it is believed that cosmic inflation occurred at the very early stages of the birth of the universe According to the cosmic inflation theory, the elements which formed the universe underwent a phase of exponential growth due to the existence of a large cosmological constant. The inflation phase allows the uniform distribution of energy so that an equal maximum temperature could be achieved across the early universe. Also, the evidence of quantum fluctuations of this stage provides a means for studying the types of imperfections the universe would begin with. Although well-established theories such as cosmic inflation and the big bang together provide a comprehensive picture of the early universe and how it evolved into its current state, they are unable to address the singularity paradox at the time of universe creation. Therefore, a practical model capable of describing how the universe was initiated is needed. This research series aims at addressing the singularity issue by introducing an energy conversion mechanism. This is accomplished by establishing a state of energy called a “neutral state”, with an energy level which is referred to as “base energy” capable of converting into other states. Although it follows the same principles, the unique quanta state of the base energy allows it to be distinguishable from other states and have a uniform distribution at the ground level. Although the concept of base energy can be utilized to address the singularity issue, to establish a complete picture, the origin of the base energy should be also identified. This matter is the subject of the first study in the series “A Conceptual Study for Investigating the Creation of Energy and Understanding the Properties of Nothing” which is discussed in detail. Therefore, the proposed concept in this research series provides a road map for enhancing our understating of the universe's creation from nothing and its evolution and discusses the possibility of base energy as one of the main building blocks of this universe.Keywords: big bang, cosmic inflation, birth of universe, energy creation
Procedia PDF Downloads 898998 A Comprehensive Analysis of the Rheological Properties of Polymer Hydrogels in Order to Explore Their Potential for Practical Utilization in Industries
Authors: Raana Babadi Fathipour
Abstract:
Hydrogels are three-dimensional structures formed by the interweaving of polymeric materials, possessing the remarkable ability to imbibe copious amounts of water. Numerous methodologies have been devised for examining and understanding the properties of these synthesized gels. Amongst them, spectroscopic techniques such as ultraviolet/visible (UV/Vis) and Fourier-transform infrared (FTIR) spectroscopy offer a glimpse into molecular and atomic aspects. Additionally, diffraction methods like X-ray diffraction (XRD) enable one to measure crystallinity within the gel's structure, while microscopy tools encompassing scanning electron microscopy (SEM) and transmission electron microscopy (TEM) provide insights into surface texture and morphology. Furthermore, rheology serves as an invaluable tool for unraveling the viscoelastic behavior inherent in hydrogels—a parameter crucial not only to numerous industries, including pharmaceuticals, cosmetics, food processing, agriculture and water treatment, but also pivotal to related fields of research. Likewise, the ultimate configuration of the product is contingent upon its characterization at a microscopic scale in order to comprehend the intricacies of the hydrogel network's structure and interaction dynamics in response to external forces. Within this present scrutiny, our attention has been devoted to unraveling the intricate rheological tendencies exhibited by materials founded on synthetic, natural, and semi-synthetic hydrogels. We also explore their practical utilization within various facets of everyday life from an industrial perspective.Keywords: rheology, hydrogels characterization, viscoelastic behavior, application
Procedia PDF Downloads 508997 Dynamic Environmental Impact Study during the Construction of the French Nuclear Power Plants
Authors: A. Er-Raki, D. Hartmann, J. P. Belaud, S. Negny
Abstract:
This paper has a double purpose: firstly, a literature review of the life cycle analysis (LCA) and secondly a comparison between conventional (static) LCA and multi-level dynamic LCA on the following items: (i) inventories evolution with time (ii) temporal evolution of the databases. The first part of the paper summarizes the state of the art of the static LCA approach. The different static LCA limits have been identified and especially the non-consideration of the spatial and temporal evolution in the inventory, for the characterization factors (FCs) and into the databases. Then a description of the different levels of integration of the notion of temporality in life cycle analysis studies was made. In the second part, the dynamic inventory has been evaluated firstly for a single nuclear plant and secondly for the entire French nuclear power fleet by taking into account the construction durations of all the plants. In addition, the databases have been adapted by integrating the temporal variability of the French energy mix. Several iterations were used to converge towards the real environmental impact of the energy mix. Another adaptation of the databases to take into account the temporal evolution of the market data of the raw material was made. An identification of the energy mix of the time studied was based on an extrapolation of the production reference values of each means of production. An application to the construction of the French nuclear power plants from 1971 to 2000 has been performed, in which a dynamic inventory of raw material has been evaluated. Then the impacts were characterized by the ILCD 2011 characterization method. In order to compare with a purely static approach, a static impact assessment was made with the V 3.4 Ecoinvent data sheets without adaptation and a static inventory considering that all the power stations would have been built at the same time. Finally, a comparison between static and dynamic LCA approaches was set up to determine the gap between them for each of the two levels of integration. The results were analyzed to identify the contribution of the evolving nuclear power fleet construction to the total environmental impacts of the French energy mix during the same period. An equivalent strategy using a dynamic approach will further be applied to identify the environmental impacts that different scenarios of the energy transition could bring, allowing to choose the best energy mix from an environmental viewpoint.Keywords: LCA, static, dynamic, inventory, construction, nuclear energy, energy mix, energy transition
Procedia PDF Downloads 1058996 Towards Renewable Energy: A Qualitative Study of Biofuel Development Policy in Indonesia
Authors: Arie Yanwar Kapriadi
Abstract:
This research is aiming to develop deeper understanding of the scale of power that shaped the biofuel policy. This research is important for the following reasons. Firstly, this research will enrich the body of literature within the field of political ecology, scale and environmental governance. Secondly, by focussing on energy transition policies, this research offers a critical perspective on how government policy, aimed at delivering low carbon sustainable energy systems, being scaled and implemented through multi variate stakeholders. Finally, the research could help the government of Indonesia as a policy evaluation on delivering low carbon sustainable energy systems at the macro level that (possibility) being unable to be delivered at different scale and instead being perceived differently by different stakeholders. Qualitative method is applied particularly an in depth interview with government officials as well as policy stakeholders outside of government and people in positions of responsibility with regards to policy delivery. There are 4 field study location where interview took place as well as sites visit to some biofuel refining facilities. There are some major companies which involve on the production and distribution of biofuel and its relation with biofuel feedstock industry as the source of data. The research investigates how the government biofuel policies correlated with other policy issues such as land reclassification and carbon emission reduction which also influenced plantations expansion as well as its impact on the local people. The preliminary result shows tension of power between governing authorities caused the Indonesian biofuel policy being unfocused which led to failing to meet its mandatory blending target despite the abundance of its feedstock.Keywords: biofuel, energy transition, renewable energy, political ecology
Procedia PDF Downloads 1978995 Damage of Laminated Corrugated Sandwich Panels under Inclined Impact Loading
Authors: Muhammad Kamran, Xue Pu, Naveed Ahmed
Abstract:
Sandwich foam structures are efficient in impact energy absorption and making components lightweight; however their efficient use require a detailed understanding of its mechanical response. In this study, the foam core, laminated facings’ sandwich panel with internal triangular rib configuration is impacted by a spherical steel projectile at different angles using ABAQUS finite element package and damage mechanics is studied. Laminated ribs’ structure is sub-divided into three formations; all zeros, all 45 and optimized combination of zeros and 45 degrees. Impact velocity is varied from 250 m/s to 500 m/s with an increment of 50 m/s. The impact damage can significantly demolish the structural integrity and energy absorption due to fiber breakage, matrix cracking, and de-bonding. Macroscopic fracture study of the panel and core along with load-displacement responses and failure modes are the key parameters in the design of smart ballistic resistant structures. Ballistic impact characteristics of panels are studied on different speed, different inclination angles and its dependency on the base, and core materials, ribs formation, and cross-sectional spaces among them are determined. Impact momentum, penetration and kinetic energy absorption data and curves are compiled to predict the first and proximity impact in an effort to enhance the dynamic energy absorption.Keywords: dynamic energy absorption, proximity impact, sandwich panels, impact momentum
Procedia PDF Downloads 3888994 Energy Efficient Clustering with Reliable and Load-Balanced Multipath Routing for Wireless Sensor Networks
Authors: Alamgir Naushad, Ghulam Abbas, Shehzad Ali Shah, Ziaul Haq Abbas
Abstract:
Unlike conventional networks, it is particularly challenging to manage resources efficiently in Wireless Sensor Networks (WSNs) due to their inherent characteristics, such as dynamic network topology and limited bandwidth and battery power. To ensure energy efficiency, this paper presents a routing protocol for WSNs, namely, Enhanced Hybrid Multipath Routing (EHMR), which employs hierarchical clustering and proposes a next hop selection mechanism between nodes according to a maximum residual energy metric together with a minimum hop count. Load-balancing of data traffic over multiple paths is achieved for a better packet delivery ratio and low latency rate. Reliability is ensured in terms of higher data rate and lower end-to-end delay. EHMR also enhances the fast-failure recovery mechanism to recover a failed path. Simulation results demonstrate that EHMR achieves a higher packet delivery ratio, reduced energy consumption per-packet delivery, lower end-to-end latency, and reduced effect of data rate on packet delivery ratio when compared with eminent WSN routing protocols.Keywords: energy efficiency, load-balancing, hierarchical clustering, multipath routing, wireless sensor networks
Procedia PDF Downloads 858993 Permanent Reduction of Arc Flash Energy to Safe Limit on Line Side of 480 Volt Switchgear Incomer Breaker
Authors: Abid Khan
Abstract:
A recognized engineering challenge is related to personnel protection from fatal arc flash incident energy in the line side of the 480-volt switchgear incomer breakers during maintenance activities. The incident energy is typically high due to slow fault clearance, and it can be higher than the available personnel protective equipment (PPE) ratings. A fault in this section of the switchgear is cleared by breakers or fuses in the upstream higher voltage system (4160 Volt or higher). The current reflection in the higher voltage upstream system for a fault in the 480-volt switchgear is low, the clearance time is slower, and the inversely proportional incident energy is hence higher. The installation of overcurrent protection at a 480-volt system upstream of the incomer breaker will operate fast enough and trips the upstream higher voltage breaker when a fault develops at the incomer breaker. Therefore, fault current reduction as reflected in the upstream higher voltage system is eliminated. Since the fast overcurrent protection is permanently installed, it is always functional, does not require human interventions, and eliminates exposure to human errors. It is installed at the maintenance activities location, and its operations can be locally monitored by craftsmen during maintenance activities.Keywords: arc flash, mitigation, maintenance switch, energy level
Procedia PDF Downloads 1948992 Wind Speed Prediction Using Passive Aggregation Artificial Intelligence Model
Authors: Tarek Aboueldahab, Amin Mohamed Nassar
Abstract:
Wind energy is a fluctuating energy source unlike conventional power plants, thus, it is necessary to accurately predict short term wind speed to integrate wind energy in the electricity supply structure. To do so, we present a hybrid artificial intelligence model of short term wind speed prediction based on passive aggregation of the particle swarm optimization and neural networks. As a result, improvement of the prediction accuracy is obviously obtained compared to the standard artificial intelligence method.Keywords: artificial intelligence, neural networks, particle swarm optimization, passive aggregation, wind speed prediction
Procedia PDF Downloads 4508991 Estimating Occupancy in Residential Context Using Bayesian Networks for Energy Management
Authors: Manar Amayri, Hussain Kazimi, Quoc-Dung Ngo, Stephane Ploix
Abstract:
A general approach is proposed to determine occupant behavior (occupancy and activity) in residential buildings and to use these estimates for improved energy management. Occupant behaviour is modelled with a Bayesian Network in an unsupervised manner. This algorithm makes use of domain knowledge gathered via questionnaires and recorded sensor data for motion detection, power, and hot water consumption as well as indoor CO₂ concentration. Two case studies are presented which show the real world applicability of estimating occupant behaviour in this way. Furthermore, experiments integrating occupancy estimation and hot water production control show that energy efficiency can be increased by roughly 5% over known optimal control techniques and more than 25% over rule-based control while maintaining the same occupant comfort standards. The efficiency gains are strongly correlated with occupant behaviour and accuracy of the occupancy estimates.Keywords: energy, management, control, optimization, Bayesian methods, learning theory, sensor networks, knowledge modelling and knowledge based systems, artificial intelligence, buildings
Procedia PDF Downloads 3708990 Studies on the Feasibility of Cow’s Urine as Non-Conventional Energy Sources
Authors: Raj Kumar Rajak, Bharat Mishra
Abstract:
Bio-batteries represent an entirely new long-term, reasonable, reachable, and eco-friendly approach to generation of sustainable energy. In the present experimental work, we have studied the effect of the generation of power by bio-battery using different electrode pairs. The tests show that it is possible to generate electricity using cow’s urine as an electrolyte. C-Mg electrode pair shows maximum Voltage and Short Circuit Current (SCC), while C-Zn electrode pair shows less Open Circuit Voltage (OCV) and SCC. By the studies of cow urine and different electrodes, it is found that C-Zn electrode battery is more economical. The cow urine battery with C-Zn electrode provides maximum power (707.4 mW) and durability (up to 145 h). This result shows that the bio-batteries have the potency to full fill the need of electricity demand for lower energy equipment.Keywords: bio-batteries, cow's urine, electrodes, non-conventional
Procedia PDF Downloads 202