Search results for: brand image transfer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5746

Search results for: brand image transfer

3826 Study on Monitoring Techniques Developed for a City Railway Construction

Authors: Myoung-Jin Lee, Sung-Jin Lee, Young-Kon Park, Jin-Wook Kim, Bo-Kyoung Kim, Song-Hun Chong, Sun-Il Kim

Abstract:

Currently, sinkholes may occur due to natural or unknown causes. When the sinkhole is an instantaneous phenomenon, most accidents occur because of significant damage. Thus, methods of monitoring are being actively researched, such that the impact of the accident can be mitigated. A sinkhole can severely affect and wreak havoc in community-based facilities such as a city railway construction. Therefore, the development of a laser / scanning system and an image-based tunnel is one method of pre-monitoring that it stops the accidents. The laser scanning is being used but this has shortcomings as it involves the development of expensive equipment. A laser / videobased scanning tunnel is being developed at Korea Railroad Research Institute. This is designed to automatically operate the railway. The purpose of the scanning is to obtain an image of the city such as of railway structures (stations, tunnel). At the railway structures, it has developed 3D laser scanning that can find a micro-crack can not be distinguished by the eye. An additional aim is to develop technology to monitor the status of the railway structure without the need for expensive post-processing of 3D laser scanning equipment, by developing corresponding software.

Keywords: 3D laser scanning, sinkhole, tunnel, city railway construction

Procedia PDF Downloads 417
3825 Spectroscopic Investigations of Nd³⁺ Doped Lithium Lead Alumino Borate Glasses for 1.06μM Laser Applications

Authors: Nisha Deopa, A. S. Rao

Abstract:

Neodymium doped lithium lead alumino borate glasses were synthesized with the molar composition 10Li₂O – 10PbO – (10-x) Al₂O₃ – 70B₂O₃ – xNd₂O₃ (where, x = 0.1, 0.5, 1.0, 1.5, 2.0 and 2.5 mol %) via conventional melt quenching technique to understand their lasing potentiality. From the absorption spectra, Judd-Ofelt intensity parameters along with various spectroscopic parameters have been estimated. The emission spectra recorded for the as-prepared glasses under investigation exhibit two emission transitions, ⁴F₃/₂→⁴I₁₁/₂ (1063 nm) and ⁴F₃/₂→⁴I₉/₂ (1350 nm) for which radiative parameters have been evaluated. The emission intensity increases with increase in Nd³⁺ ion concentration up to 1 mol %, and beyond concentration quenching took place. The decay profile shows single exponential nature for lower Nd³⁺ ions concentration and non-exponential for higher concentration. To elucidate the nature of energy transfer process, non-exponential decay curves were well fitted to Inokuti-Hirayama model. The relatively high values of emission cross-section, branching ratio, lifetimes and quantum efficiency suggest that 1.0 mol% of Nd³⁺ in LiPbAlB glasses is aptly suitable to generate lasing action in NIR region at 1063 nm.

Keywords: energy transfer, glasses, J-O parameters, photoluminescence

Procedia PDF Downloads 178
3824 Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature

Authors: Luther Ollier, Sylvie Thiria, Anastase Charantonis, Carlos E. Mejia, Michel Crépon

Abstract:

Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory.

Keywords: deep-learning, altimetry, sea surface temperature, forecast

Procedia PDF Downloads 73
3823 Understanding the Influence of Social Media on Individual’s Quality of Life Perceptions

Authors: Biljana Marković

Abstract:

Social networks are an integral part of our everyday lives, becoming an indispensable medium for communication in personal and business environments. New forms and ways of communication change the general mindset and significantly affect the quality of life of individuals. Quality of life is perceived as an abstract term, but often people are not aware that they directly affect the quality of their own lives, making minor but significant everyday choices and decisions. Quality of life can be defined broadly, but in the widest sense, it involves a subjective sense of satisfaction with one's life. Scientific knowledge about the impact of social networks on self-assessment of the quality of life of individuals is only just beginning to be researched. Available research indicates potential benefits as well as a number of disadvantages. In the context of the previous claims, the focus of the study conducted by the authors of this paper focuses on analyzing the impact of social networks on individual’s self-assessment of quality of life and the correlation between time spent on social networks, and the choice of content that individuals choose to share to present themselves. Moreover, it is aimed to explain how much and in what ways they critically judge the lives of others online. The research aspires to show the positive as well as negative aspects that social networks, primarily Facebook and Instagram, have on creating a picture of individuals and how they compare themselves with others. The topic of this paper is based on quantitative research conducted on a representative sample. An analysis of the results of the survey conducted online has elaborated a hypothesis which claims that content shared by individuals on social networks influences the image they create about themselves. A comparative analysis of the results obtained with the results of similar research has led to the conclusion about the synergistic influence of social networks on the feeling of the quality of life of respondents. The originality of this work is reflected in the approach of conducting research by examining attitudes about an individual's life satisfaction, the way he or she creates a picture of himself/herself through social networks, the extent to which he/she compares herself/himself with others, and what social media applications he/she uses. At the cognitive level, scientific contributions were made through the development of information concepts on quality of life, and at the methodological level through the development of an original methodology for qualitative alignment of respondents' attitudes using statistical analysis. Furthermore, at the practical level through the application of concepts in assessing the creation of self-image and the image of others through social networks.

Keywords: quality of life, social media, self image, influence of social media

Procedia PDF Downloads 110
3822 Investigating Concentration of Multi-Walled Carbon Nanotubes on Electrochemical Sensors

Authors: Mohsen Adabi, Mahdi Adabi, Reza Saber

Abstract:

The recent advancements in nanomaterials have provided a platform to develop efficient transduction matrices for sensors. Modified electrodes allow to electrochemists to enhance the property of electrode surface and provide desired properties such as improved sensing capabilities, higher electron transfer rate and prevention of undesirable reactions competing kinetically with desired electrode process. Nanostructured electrodes including arrays of carbon nanotubes have demonstrated great potential for the development of electrochemical sensors and biosensors. The aim of this work is to evaluate the concentration of multi-walled carbon nanotubes (MWCNTs) on the conductivity of gold electrode. For this work, raw MWCNTs was functionalized and shortened. Raw and shorten MWCNTs were characterized using transfer electron microscopy (TEM). Next, 0.5, 2 and 3.5 mg of Shortened and functionalized MWCNTs were dispersed in 2 mL Dimethyl formamide (DMF) and cysteamine modified gold electrodes were incubated in the different concentrations of MWCNTs for 8 hours. Then, the immobilization of MWCNTs on cysteamine modified gold electrode was characterized by scanning electron microscopy (SEM) and the effect of MWCNT concentrations on electron transfer of modified electrodes was investigated by cyclic voltammetry (CV). The results demonstrated that CV response of ferricyanide redox at modified gold electrodes increased as concentration of MWCNTs enhanced from 0.5 to 2 mg in 2 mL DMF. This increase can be attributed to the number of MWCNTs which enhance on the surface of cysteamine modified gold electrode as the MWCNTs concentration increased whereas CV response of ferricyanide redox at modified gold electrodes did not changed significantly as the MWCNTs concentration increased from 2 to 3.5 mg in 2 mL DMF. The reason may be that amine groups of cysteamine modified gold electrodes are limited to a given number which can interact with the given number of carboxylic groups of MWCNTs and CV response of ferricyanide redox at modified gold do not enhance after amine groups of cysteamine are saturated with carboxylic groups of MWCNTs.

Keywords: carbon nanotube, cysteamine, electrochemical sensor, gold electrode

Procedia PDF Downloads 454
3821 Investigate and Control Thermal Spectra in Nanostructures and 2D Van der Waals Materials

Authors: Joon Sang Kang, Ming Ke, Yongjie Hu

Abstract:

Controlling heat transfer and thermal properties of materials is important to many fields such as energy efficiency and thermal management of integrated circuits. Significant progress over the past decade has been made to improve material performance through structuring at the nanoscale, however a clear relationship between structure dimensions, interfaces, and thermal properties remains to be established. The main challenge comes from the unknown intrinsic spectral contribution from different phonons. Here, we describe our current progress on quantifying and controlling thermal spectra based on our recently developed technical approach using ultrafast optical spectroscopy. Our work brings further the promise of rational material design to achieve high performance through a synergistic experimental-modeling approach. This approach can be broadly applicable to a wide range of materials and energy systems. In particular, we demonstrate in-situ characterization and tunable thermal properties of 2D van der waals materials through ionic intercalations. The significant impacts of this research in improving the efficiency of thermal energy conversion and management will also be illustrated.

Keywords: energy, mean free path, nanoscale heat transfer, nanostructure, phonons, TDTR, thermoelectrics, 2D materials

Procedia PDF Downloads 277
3820 Spectral Mixture Model Applied to Cannabis Parcel Determination

Authors: Levent Basayigit, Sinan Demir, Yusuf Ucar, Burhan Kara

Abstract:

Many research projects require accurate delineation of the different land cover type of the agricultural area. Especially it is critically important for the definition of specific plants like cannabis. However, the complexity of vegetation stands structure, abundant vegetation species, and the smooth transition between different seconder section stages make vegetation classification difficult when using traditional approaches such as the maximum likelihood classifier. Most of the time, classification distinguishes only between trees/annual or grain. It has been difficult to accurately determine the cannabis mixed with other plants. In this paper, a mixed distribution models approach is applied to classify pure and mix cannabis parcels using Worldview-2 imagery in the Lakes region of Turkey. Five different land use types (i.e. sunflower, maize, bare soil, and cannabis) were identified in the image. A constrained Gaussian mixture discriminant analysis (GMDA) was used to unmix the image. In the study, 255 reflectance ratios derived from spectral signatures of seven bands (Blue-Green-Yellow-Red-Rededge-NIR1-NIR2) were randomly arranged as 80% for training and 20% for test data. Gaussian mixed distribution model approach is proved to be an effective and convenient way to combine very high spatial resolution imagery for distinguishing cannabis vegetation. Based on the overall accuracies of the classification, the Gaussian mixed distribution model was found to be very successful to achieve image classification tasks. This approach is sensitive to capture the illegal cannabis planting areas in the large plain. This approach can also be used for monitoring and determination with spectral reflections in illegal cannabis planting areas.

Keywords: Gaussian mixture discriminant analysis, spectral mixture model, Worldview-2, land parcels

Procedia PDF Downloads 183
3819 Molecular Electrostatic Potential in Z-3N(2-Ethoxyphenyl), 2-N'(2-Ethoxyphenyl) Imino Thiazolidin-4-one Molecule by Ab Initio and DFT Methods

Authors: Manel Boulakoud, Abdelkader Chouaih, Fodil Hamzaoui

Abstract:

In the present work we are interested in the determination of the Molecular electrostatic potential (MEP) in Z-3N(2-Ethoxyphenyl), 2-N’(2-Ethoxyphenyl) imino thiazolidin-4-one molecule by ab initio and Density Functional Theory (DFT) in the ground state. The MEP is related to the electronic density and is a very useful descriptor in understanding sites for electrophilic attack and nucleophilic reactions as well as hydrogen bonding interactions. First, geometry optimization was carried out using Hartree–Fock (HF) and DFT methods with 6-311G(d,p) basis set. In order to get more information on the molecule, its stability has been analyzed by natural bond orbital (NBO) analysis. Mulliken population analyses have been calculated. Finally, the molecular electrostatic potential (MEP) and HOMO-LUMO energy levels have been performed. The calculated HOMO and LUMO energies show also the charge transfer within the molecule. The energy gap obtained is about 4 eV which explain the stability of the studied compound. The obtained molecular electrostatic potential from the two methods confirms the nature of the electron charge transfer at the molecular shell and locate the electropositive part and the electronegative part in molecular scale of the title compound.

Keywords: DFT, ab initio, HOMO-LUMO, organic compounds

Procedia PDF Downloads 519
3818 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network

Authors: Hozaifa Zaki, Ghada Soliman

Abstract:

In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.

Keywords: computer vision, deep learning, image processing, character recognition

Procedia PDF Downloads 60
3817 Modelling of Heat Transfer during Controlled Cooling of Thermo-Mechanically Treated Rebars Using Computational Fluid Dynamics Approach

Authors: Rohit Agarwal, Mrityunjay K. Singh, Soma Ghosh, Ramesh Shankar, Biswajit Ghosh, Vinay V. Mahashabde

Abstract:

Thermo-mechanical treatment (TMT) of rebars is a critical process to impart sufficient strength and ductility to rebar. TMT rebars are produced by the Tempcore process, involves an 'in-line' heat treatment in which hot rolled bar (temperature is around 1080°C) is passed through water boxes where it is quenched under high pressure water jets (temperature is around 25°C). The quenching rate dictates composite structure consisting (four non-homogenously distributed phases of rebar microstructure) pearlite-ferrite, bainite, and tempered martensite (from core to rim). The ferrite and pearlite phases present at core induce ductility to rebar while martensitic rim induces appropriate strength. The TMT process is difficult to model as it brings multitude of complex physics such as heat transfer, highly turbulent fluid flow, multicomponent and multiphase flow present in the control volume. Additionally the presence of film boiling regime (above Leidenfrost point) due to steam formation adds complexity to domain. A coupled heat transfer and fluid flow model based on computational fluid dynamics (CFD) has been developed at product technology division of Tata Steel, India which efficiently predicts temperature profile and percentage martensite rim thickness of rebar during quenching process. The model has been validated with 16 mm rolling of New Bar mill (NBM) plant of Tata Steel Limited, India. Furthermore, based on the scenario analyses, optimal configuration of nozzles was found which helped in subsequent increase in rolling speed.

Keywords: boiling, critical heat flux, nozzles, thermo-mechanical treatment

Procedia PDF Downloads 192
3816 The Acquisition of Spanish L4 by Learners with Croatian L1, English L2 and Italian L3

Authors: Barbara Peric

Abstract:

The study of acquiring a third and additional language has garnered significant focus within second language acquisition (SLA) research. Initially, it was commonly viewed as merely an extension of second language acquisition (SLA). However, in the last two decades, numerous researchers have emphasized the need to recognize the unique characteristics of third language acquisition (TLA). This recognition is crucial for understanding the intricate cognitive processes that arise from the interaction of more than two linguistic systems in the learner's mind. This study investigates cross-linguistic influences in the acquisition of Spanish as a fourth language by students who have Croatian as a first language (L1). English as a second language (L2), and Italian as a third language (L3). Observational data suggests that influence or transfer of linguistic elements can arise not only from one's native language (L1) but also from non-native languages. This implies that, for individuals proficient in multiple languages, the native language doesn't consistently hold a superior position. Instead, it should be examined alongside other potential sources of linguistic transfer. Earlier studies have demonstrated that high proficiency in a second language can significantly impact cross-linguistic influences when acquiring a third and additional language. Among the extensively examined factors, the typological relationship stands out as one of the most scrutinized variables. The goal of the present study was to explore whether language typology and formal similarity or proficiency in the second language had a more significant impact on L4 acquisition. Participants in this study were third-year undergraduate students at Rochester Institute of Technology’s subsidiary in Croatia (RIT Croatia). All the participants had exclusively Croatian as L1, English as L2, Italian as L3 and were learning Spanish as L4 at the time of the study. All the participants had a high level of proficiency in English and low level of proficiency in Italian. Based on the error analysis the findings indicate that for some types of lexical errors such as coinage, language typology had a more significant impact and Italian language was the preferred source of transfer despite the law proficiency in that language. For some other types of lexical errors, such as calques, second language proficiency had a more significant impact, and English language was the preferred source of transfer. On the other hand, Croatian, Italian, and Spanish are more similar in the area of morphology due to higher degree of inflection compared to English and the strongest influence of the Croatian language was precisely in the area of morphology. The results emphasize the need to consider linguistic resemblances between the native language (L1) and the third and additional language as well as the learners' proficiency in the second language when developing successful teaching strategies for acquiring the third and additional language. These conclusions add to the expanding knowledge in the realm of Second Language Acquisition (SLA) and offer practical insights for language educators aiming to enhance the effectiveness of learning experiences in acquiring a third and additional language.

Keywords: third and additional language acquisition, cross-linguistic influences, language proficiency, language typology

Procedia PDF Downloads 34
3815 Transfer Function Model-Based Predictive Control for Nuclear Core Power Control in PUSPATI TRIGA Reactor

Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha

Abstract:

The 1MWth PUSPATI TRIGA Reactor (RTP) in Malaysia Nuclear Agency has been operating more than 35 years. The existing core power control is using conventional controller known as Feedback Control Algorithm (FCA). It is technically challenging to keep the core power output always stable and operating within acceptable error bands for the safety demand of the RTP. Currently, the system could be considered unsatisfactory with power tracking performance, yet there is still significant room for improvement. Hence, a new design core power control is very important to improve the current performance in tracking and regulating reactor power by controlling the movement of control rods that suit the demand of highly sensitive of nuclear reactor power control. In this paper, the proposed Model Predictive Control (MPC) law was applied to control the core power. The model for core power control was based on mathematical models of the reactor core, MPC, and control rods selection algorithm. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The proposed MPC was presented in a transfer function model of the reactor core according to perturbations theory. The transfer function model-based predictive control (TFMPC) was developed to design the core power control with predictions based on a T-filter towards the real-time implementation of MPC on hardware. This paper introduces the sensitivity functions for TFMPC feedback loop to reduce the impact on the input actuation signal and demonstrates the behaviour of TFMPC in term of disturbance and noise rejections. The comparisons of both tracking and regulating performance between the conventional controller and TFMPC were made using MATLAB and analysed. In conclusion, the proposed TFMPC has satisfactory performance in tracking and regulating core power for controlling nuclear reactor with high reliability and safety.

Keywords: core power control, model predictive control, PUSPATI TRIGA reactor, TFMPC

Procedia PDF Downloads 224
3814 Effects of Narghile Smoking in Tongue, Trachea and Lung

Authors: Sarah F. M. Pilati, Carolina S. Flausino, Guilherme F. Hoffmeister, Davi R. Tames, Telmo J. Mezadri

Abstract:

The effects that may be related to narghile smoking in the tissues of the oral cavity, trachea and lung and associated inflammation has been the question raised lately. The objective of this study was to identify histopathological changes and the presence of inflammation through the exposure of mice to narghile smoking through a whole-body study. The animals were divided in 4 groups with 5 animals in each group, being: one control group, one with 7 days of exposure, 15 days and the last one with 30 days. The animals were exposed to the conventional hookah smoke from Mizo brand with 0.5% percentage of unwashed tobacco and the EcOco brand coconut fiber having a dimension of 2cm × 2cm. The duration of the session was 30 minutes / day per 7, 15 and 30 days. The tobacco smoke concentration at which test animals were exposed was 35 ml every two seconds while the remaining 58 seconds were pure air. Afterward, the mice were sacrificed and submitted to histological evaluation through slices. It was found in the tongue of the 7-day group the presence in epithelium areas with acanthosis, hyperkeratosis and epithelial projections. In-depth, more intense inflammation was observed. All alteration processes increased significantly as the days of exposure increased. In trachea, with the 7-day group, there was a decrease in thickening of the pseudostratified epithelium and a slight decrease in lashes, giving rise to the metaplasia process, a process that was established in the 31-day sampling when the epithelium became stratified. In the conjunctive tissue, it was observed the presence of defense cells and formation of new vessels, evidencing the chronic inflammatory process, which decreased in the course of the samples due to the deposition of collagen fibers as seen in the 15 and 31 days groups. Among the structures of the lung, the study focused on the bronchioles and alveoli. From the 7-day group, intra-alveolar septum thickness increased, alveolar space decreased, inflammatory infiltrate with mononuclear and defense cells and new vessels formation were observed, increasing the number of red blood cells in the region. The results showed that with the passing of the days a progressive increase of the signs of changes in the region was observed, a factor that shows that narghile smoking stimulates alterations mainly in the alveoli (place where gas exchanges occur that should not present alterations) calling attention to the harmful and aggressive effect of narghile smoking. These data also highlighted the harmful effect of smoking, since the presence of acanthosis, hyperkeratosis, epithelial projections and inflammation evidences the cellular alteration process for the tongue tissue protection. Also, the narghile smoking stimulates both epithelial and inflammatory changes in the trachea, in addition to a process of metaplasia, a factor that reinforces the harmful effect and the carcinogenic potential of the narghile smoking.

Keywords: metaplasia, inflammation, pathological constriction, hyperkeratosis

Procedia PDF Downloads 153
3813 Simulation of Wet Scrubbers for Flue Gas Desulfurization

Authors: Anders Schou Simonsen, Kim Sorensen, Thomas Condra

Abstract:

Wet scrubbers are used for flue gas desulfurization by injecting water directly into the flue gas stream from a set of sprayers. The water droplets will flow freely inside the scrubber, and flow down along the scrubber walls as a thin wall film while reacting with the gas phase to remove SO₂. This complex multiphase phenomenon can be divided into three main contributions: the continuous gas phase, the liquid droplet phase, and the liquid wall film phase. This study proposes a complete model, where all three main contributions are taken into account and resolved using OpenFOAM for the continuous gas phase, and MATLAB for the liquid droplet and wall film phases. The 3D continuous gas phase is composed of five species: CO₂, H₂O, O₂, SO₂, and N₂, which are resolved along with momentum, energy, and turbulence. Source terms are present for four species, energy and momentum, which are affecting the steady-state solution. The liquid droplet phase experiences breakup, collisions, dynamics, internal chemistry, evaporation and condensation, species mass transfer, energy transfer and wall film interactions. Numerous sub-models have been implemented and coupled to realise the above-mentioned phenomena. The liquid wall film experiences impingement, acceleration, atomization, separation, internal chemistry, evaporation and condensation, species mass transfer, and energy transfer, which have all been resolved using numerous sub-models as well. The continuous gas phase has been coupled with the liquid phases using source terms by an approach, where the two software packages are couples using a link-structure. The complete CFD model has been verified using 16 experimental tests from an existing scrubber installation, where a gradient-based pattern search optimization algorithm has been used to tune numerous model parameters to match the experimental results. The CFD model needed to be fast for evaluation in order to apply this optimization routine, where approximately 1000 simulations were needed. The results show that the complex multiphase phenomena governing wet scrubbers can be resolved in a single model. The optimization routine was able to tune the model to accurately predict the performance of an existing installation. Furthermore, the study shows that a coupling between OpenFOAM and MATLAB is realizable, where the data and source term exchange increases the computational requirements by approximately 5%. This allows for exploiting the benefits of both software programs.

Keywords: desulfurization, discrete phase, scrubber, wall film

Procedia PDF Downloads 242
3812 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries

Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows

Abstract:

Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.

Keywords: biomagnetic fluid, FHD, MHD, nonlinear stretching sheet

Procedia PDF Downloads 146
3811 Hedgerow Detection and Characterization Using Very High Spatial Resolution SAR DATA

Authors: Saeid Gharechelou, Stuart Green, Fiona Cawkwell

Abstract:

Hedgerow has an important role for a wide range of ecological habitats, landscape, agriculture management, carbon sequestration, wood production. Hedgerow detection accurately using satellite imagery is a challenging problem in remote sensing techniques, because in the special approach it is very similar to line object like a road, from a spectral viewpoint, a hedge is very similar to a forest. Remote sensors with very high spatial resolution (VHR) recently enable the automatic detection of hedges by the acquisition of images with enough spectral and spatial resolution. Indeed, recently VHR remote sensing data provided the opportunity to detect the hedgerow as line feature but still remain difficulties in monitoring the characterization in landscape scale. In this research is used the TerraSAR-x Spotlight and Staring mode with 3-5 m resolution in wet and dry season in the test site of Fermoy County, Ireland to detect the hedgerow by acquisition time of 2014-2015. Both dual polarization of Spotlight data in HH/VV is using for detection of hedgerow. The varied method of SAR image technique with try and error way by integration of classification algorithm like texture analysis, support vector machine, k-means and random forest are using to detect hedgerow and its characterization. We are applying the Shannon entropy (ShE) and backscattering analysis in single and double bounce in polarimetric analysis for processing the object-oriented classification and finally extracting the hedgerow network. The result still is in progress and need to apply the other method as well to find the best method in study area. Finally, this research is under way to ahead to get the best result and here just present the preliminary work that polarimetric image of TSX potentially can detect the hedgerow.

Keywords: TerraSAR-X, hedgerow detection, high resolution SAR image, dual polarization, polarimetric analysis

Procedia PDF Downloads 222
3810 Consumer Innovativeness and Shopping Styles: An Empirical Study in Turkey

Authors: Hande Begum Bumin Doyduk, Elif Okan Yolbulan

Abstract:

Innovation is very important for success and competitiveness of countries, as well as business sectors and individuals' firms. In order to have successful and sustainable innovations, the other side of the game, consumers, should be aware of the innovations and appreciate them. In this study, the consumer innovativeness is focused and the relationship between motivated consumer innovativeness and consumer shopping styles is analyzed. Motivated consumer innovativeness scale by (Vandecasteele & Geuens, 2010) and consumer shopping styles scale by (Sproles & Kendall, 1986) is used. Data is analyzed by SPSS 20 program through realibility, factor, and correlation analysis. According to the findings of the study, there are strong positive relationships between hedonic innovativeness and recreational shopping style; social innovativeness and brand consciousness; cognitive innovativeness and price consciousness and functional innovativeness and perfectionistic high-quality conscious shopping styles.

Keywords: consumer innovativeness, consumer decision making, shopping styles, innovativeness

Procedia PDF Downloads 409
3809 Synthesis, Inhibitory Activity, and Molecular Modelling of 2-Hydroxy-3-Oxo-3-Phenylpropionate Derivatives as HIV-1-Integrase Inhibitors

Authors: O. J. Jesumoroti, Faridoon, R. Klein, K. A. Iobb, D. Mnkadhla, H. C. Hoppe, P. T. Kaye

Abstract:

The 1, 3-aryl diketo acids (DKA) based agents represent an important class of HIV integrase (IN) strand transfer inhibitors. In other to study the chelating role of the divalent metal ion in the inhibition of IN strand transfer, we designed and synthesized a series of 2-hydroxy-3-oxo-3-phenyl propionate derivatives with the notion that such compounds could interact with the divalent ion in the active site of IN. The synthetic sequence to the desired compounds involves the concept of Doebner knoevenagel condensation, Fischer esterification and ketohydroxylation using neuclophilic re-oxidant; compounds were characterized by their IR, IHNMR, 13CNMR, HRMS spectroscopic data and melting point determination. Also, molecular docking was employed in this study and it was revealed that there is interaction with the active site of the enzyme. However, there is disparity in the corresponding anti-HIV activity determined by the experimental bioassay. These compounds lack potency at low micromolar concentration when compared to the results of the docking studies. Nevertheless, the results of the study suggest modification of the aryl ring with one or two hydroxyl groups to improve the inhibitory activity.

Keywords: anti-HIV-1 integrase, ketohydroxylation, molecular docking, propionate derivatives

Procedia PDF Downloads 179
3808 Employer Branding and Its Influence in Employee Retention in the Non Governmental Organizations in Jordan

Authors: Wasfi Alrawabdeh

Abstract:

Abstract The prime purpose of this study was to investigate whether employers use branding in their organizations, and how employer branding influence the attraction and retention of employees in the Non Governmental Organizations (NGOs) in Jordan. The descriptive survey design was adopted for the study. 500 random NGOs employees', including junior and senior staff were conveniently sampled for the study. Data was analyzed using both descriptive and inferential statistics. The results of the study suggest that organizations use employer-branding processes in their business to attract employees and customers. It was also found that brand names of organizations might significantly influence the decision of employees to join and stay in the organizations. It was therefore suggested that employers need to create conducive work environment with conditions to enable employees feel comfortable and remain in the organization.

Keywords: Employer branding, Employee attraction , and retention , Trust , Satisfaction.

Procedia PDF Downloads 146
3807 Numerical Simulations of Electronic Cooling with In-Line and Staggered Pin Fin Heat Sinks

Authors: Yue-Tzu Yang, Hsiang-Wen Tang, Jian-Zhang Yin, Chao-Han Wu

Abstract:

Three-dimensional incompressible turbulent fluid flow and heat transfer of pin fin heat sinks using air as a cooling fluid are numerically studied in this study. Two different kinds of pin fins are compared in the thermal performance, including circular and square cross sections, both are in-line and staggered arrangements. The turbulent governing equations are solved using a control-volume- based finite-difference method. Subsequently, numerical computations are performed with the realizable k - ԑ turbulence for the parameters studied, the fin height H, fin diameter D, and Reynolds number (Re) in the range of 7 ≤ H ≤ 10, 0.75 ≤ D ≤ 2, 2000 ≤ Re ≤ 126000 respectively. The numerical results are validated with available experimental data in the literature and good agreement has been found. It indicates that circular pin fins are streamlined in comparing with the square pin fins, the pressure drop is small than that of square pin fins, and heat transfer is not as good as the square pin fins. The thermal performance of the staggered pin fins is better than that of in-line pin fins because the staggered arrangements produce large disturbance. Both in-line and staggered arrangements show the same behavior for thermal resistance, pressure drop, and the entropy generation.

Keywords: pin-fin, heat sinks, simulations, turbulent flow

Procedia PDF Downloads 302
3806 A Sociological Exploration of How Chinese Highly Educated Women Respond to the Gender Stereotype in China

Authors: Qian Wang

Abstract:

In this study, Chinese highly educated women referred to those women who are currently doing their Ph.D. studies, and those who have already had Ph.D. degrees. In ancient Chinese society, women were subordinated to men. The only gender role of women was to be a wife and a mother. With the rapid development of China, women are encouraged to pursue higher education. As a result of this, the number of highly educated women is growing very quickly. However, people, especially men, believe that highly educated women are challenging the traditional image of Chinese women. It is thus believed that highly educated women are very different with the traditional women. They are demonstrating an image of independent and confident women with promising careers. Plus, with the reinforcement of mass media, highly educated women are regarded as non-traditional women. People stigmatize them as the 'third gender' on the basis of male and female. Now, the 'third gender' has become a gender stereotype of highly educated women. In this study, 20 participants were interviewed to explore their perceptions of self and how these highly educated women respond to the stereotype. The study finds that Chinese highly educated women are facing a variety of problems and difficulties in their daily life, and they believe that one of the leading causes is the contradiction between patriarchal values and the views of gender equality in contemporary China. This study gives rich qualitative data in the research of Chinese women and will help to extend the current Chinese gender studies.

Keywords: Chinese highly educated women, gender stereotype, self, the ‘third gender’

Procedia PDF Downloads 176
3805 Knowledge Management as Tool for Environmental Management System Implementation in Higher Education Institutions

Authors: Natalia Marulanda Grisales

Abstract:

The most significant changes in the characteristics of consumers have contributed to the development and adoption of methodologies and tools that enable organizations to be more competitive in the marketplace. One of these methodologies is the integration of Knowledge Management (KM) phases and Environmental Management Systems (EMS). This integration allows companies to manage and share the required knowledge for EMS adoption, from the place where it is generated to the place where it is going to be exploited. The aim of this paper is to identify the relationship between KM phases as a tool for the adoption of EMS in HEI. The methodology has a descriptive scope and a qualitative approach. It is based on a case study and a review of the literature about KM and EMS. We conducted 266 surveys to students, professors and staff at Minuto de Dios University (Colombia). Data derived from the study indicate that if a HEI wants to achieve an adequate knowledge acquisition and knowledge transfer, it must have clear goals for implementing an EMS. Also, HEI should create empowerment and training spaces for students, professors and staff. In the case study, HEI must generate alternatives that enhance spaces of knowledge appropriation. It was found that 85% of respondents have not received any training from HEI about EMS. 88% of respondents believe that the actions taken by the university are not efficient to knowledge transfer in order to develop an EMS.

Keywords: environmental management systems, higher education institutions, knowledge management, training

Procedia PDF Downloads 352
3804 Re-Presenting the Egyptian Informal Urbanism in Films between 1994 and 2014

Authors: R. Mofeed, N. Elgendy

Abstract:

Cinema constructs mind-spaces that reflect inherent human thoughts and emotions. As a representational art, Cinema would introduce comprehensive images of life phenomena in different ways. The term “represent” suggests verity of meanings; bring into presence, replace or typify. In that sense, Cinema may present a phenomenon through direct embodiment, or introduce a substitute image that replaces the original phenomena, or typify it by relating the produced image to a more general category through a process of abstraction. This research is interested in questioning the type of images that Egyptian Cinema introduces to informal urbanism and how these images were conditioned and reshaped in the last twenty years. The informalities/slums phenomenon first appeared in Egypt and, particularly, Cairo in the early sixties, however, this phenomenon was completely ignored by the state and society until the eighties, and furthermore, its evident representation in Cinema was by the mid-nineties. The Informal City represents the illegal housing developments, and it is a fast growing form of urbanization in Cairo. Yet, this expanding phenomenon is still depicted as the minority, exceptional and marginal through the Cinematic lenses. This paper aims at tracing the forms of representations of the urban informalities in the Egyptian Cinema between 1994 and 2014, and how did that affect the popular mind and its perception of these areas. The paper runs two main lines of inquiry; the first traces the phenomena through a chronological and geographical mapping of the informal urbanism has been portrayed in films. This analysis is based on an academic research work at Cairo University in Fall 2014. The visual tracing through maps and timelines allowed a reading of the phases of ignorance, presence, typifying and repetition in the representation of this huge sector of the city through more than 50 films that has been investigated. The analysis clearly revealed the “portrayed image” of informality by the Cinema through the examined period. However, the second part of the paper explores the “perceived image”. A designed questionnaire is applied to highlight the main features of that image that is perceived by both inhabitants of informalities and other Cairenes based on watching selected films. The questionnaire covers the different images of informalities proposed in the Cinema whether in a comic or a melodramatic background and highlight the descriptive terms used, to see which of them resonate with the mass perceptions and affected their mental images. The two images; “portrayed” and “perceived” are then to be encountered to reflect on issues of repetitions, stereotyping and reality. The formulated stereotype of informal urbanism is finally outlined and justified in relation to both production consumption mechanisms of films and the State official vision of informalities.

Keywords: cinema, informal urbanism, popular mind, representation

Procedia PDF Downloads 284
3803 Numerical Design and Characterization of MOVPE Grown Nitride Based Semiconductors

Authors: J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski

Abstract:

In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S are addressed. The aim of this study was to design the optimal fluid flow and thermal conditions for obtaining the most homogeneous product. Since there are many agents influencing reactions on the crystal growth area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. Variations of process pressure and hydrogen mass flow rates have been considered. According to the fact that it’s impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, detailed 3D modeling has been used to get an insight of the process conditions. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in the numerical model allows to calculate the growth rate of the substrate. The present approach has been applied to enhance the performance of AIX-200/4RF-S reactor.

Keywords: computational fluid dynamics, finite volume method, epitaxial growth, gallium nitride

Procedia PDF Downloads 441
3802 Influence of Bed Depth on Performance of Wire Screen Packed Bed Solar Air Heater

Authors: Vimal Kumar Chouksey, S. P. Sharma

Abstract:

This paper deals with theoretical analysis of performance of solar air collector having its duct packed with blackened wire screen matrices. The heat transfer equations for two-dimensional fully developed fluid flows under quasi-steady-state conditions have been developed in order to analyze the effect of bed depth on performance. A computer programme is developed in C++ language to estimate the temperature rise of entering air for evaluation of performance by solving the governing equations numerically using relevant correlations for heat transfer coefficient for packed bed systems. Results of air temperature rise and thermal efficiency obtained from the analysis have been compared with available experimental results and results have been found fairly in closed agreement. It has been found that there is considerable enhancement in performance with packed bed collector upto a certain total bed depth. Effect of total bed depth on efficiency show that there is an upper limiting value of total bed depth beyond which the thermal efficiency begins to fall again and this type of characteristics behavior is observed at all mass flow rate.

Keywords: plane collector, solar air heater, solar energy, wire screen packed bed

Procedia PDF Downloads 221
3801 Glenoid Osteotomy with Various Tendon Transfers for Brachial Plexus Birth Palsy: Clinical Outcomes

Authors: Ramin Zargarbashi, Hamid Rabie, Behnam Panjavi, Hooman Kamran, Seyedarad Mosalamiaghili, Zohre Erfani, Seyed Peyman Mirghaderi, Maryam Salimi

Abstract:

Background: Posterior shoulder dislocation is one of the disabling complications of brachial plexus birth injury (BPBI), and various treatment options, including capsule and surrounding muscles release for open reduction, humeral derotational osteotomy, and tendon transfers, have been recommended to manage it. In the present study, we aimed to determine the clinical outcome of open reduction with soft tissue release, tendon transfer, and glenoid osteotomy inpatients with BPBI and posterior shoulder dislocation or subluxation. Methods: From 2018 to 2020, 33 patients that underwent open reduction, glenoid osteotomy, and tendon transfer were included. The glenohumeral deformity was classified according to the Waters radiographic classification. Functional assessment was performed using the Mallet grading system before and at least two years after the surgery. Results: The patients were monitored for 26.88± 5.47 months. Their average age was 27.5±14 months. Significant improvement was seen in the overall Mallet score (from 13.5 to 18.91 points) and its segments, including hand to mouth, hand to the neck, global abduction, global external rotation, abduction degree, and external rotation degree. Hand-to-back score and the presence of trumpet sign were significantly decreased in the post-operation phase (all p values<0.001). The above-mentioned variables significantly changed for both infantile and non-infantile dislocations. Conclusion: Our study demonstrated that open reduction along with glenoid osteotomy improves retroversion, and muscle strengthening with different muscle transfers is an effective technique for BPBI.

Keywords: birth injuries, nerve injury, brachial plexus birth palsy, Erb palsy, tendon transfer

Procedia PDF Downloads 84
3800 An Experimental Study on the Coupled Heat Source and Heat Sink Effects on Solid Rockets

Authors: Vinayak Malhotra, Samanyu Raina, Ajinkya Vajurkar

Abstract:

Enhancing the rocket efficiency by controlling the external factors in solid rockets motors has been an active area of research for most of the terrestrial and extra-terrestrial system operations. Appreciable work has been done, but the complexity of the problem has prevented thorough understanding due to heterogenous heat and mass transfer. On record, severe issues have surfaced amounting to irreplaceable loss of mankind, instruments, facilities, and huge amount of money being invested every year. The coupled effect of an external heat source and external heat sink is an aspect yet to be articulated in combustion. Better understanding of this coupled phenomenon will induce higher safety standards, efficient missions, reduced hazard risks, with better designing, validation, and testing. The experiment will help in understanding the coupled effect of an external heat sink and heat source on the burning process, contributing in better combustion and fire safety, which are very important for efficient and safer rocket flights and space missions. Safety is the most prevalent issue in rockets, which assisted by poor combustion efficiency, emphasizes research efforts to evolve superior rockets. This signifies real, engineering, scientific, practical, systems and applications. One potential application is Solid Rocket Motors (S.R.M). The study may help in: (i) Understanding the effect on efficiency of core engines due to the primary boosters if considered as source, (ii) Choosing suitable heat sink materials for space missions so as to vary the efficiency of the solid rocket depending on the mission, (iii) Giving an idea about how the preheating of the successive stage due to previous stage acting as a source may affect the mission. The present work governs the temperature (resultant) and thus the heat transfer which is expected to be non-linear because of heterogeneous heat and mass transfer. The study will deepen the understanding of controlled inter-energy conversions and the coupled effect of external source/sink(s) surrounding the burning fuel eventually leading to better combustion thus, better propulsion. The work is motivated by the need to have enhanced fire safety and better rocket efficiency. The specific objective of the work is to understand the coupled effect of external heat source and sink on propellant burning and to investigate the role of key controlling parameters. Results as of now indicate that there exists a singularity in the coupled effect. The dominance of the external heat sink and heat source decides the relative rocket flight in Solid Rocket Motors (S.R.M).

Keywords: coupled effect, heat transfer, sink, solid rocket motors, source

Procedia PDF Downloads 206
3799 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy

Authors: Kemal Polat

Abstract:

In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.

Keywords: machine learning, data weighting, classification, data mining

Procedia PDF Downloads 314
3798 Semi-Automatic Segmentation of Mitochondria on Transmission Electron Microscopy Images Using Live-Wire and Surface Dragging Methods

Authors: Mahdieh Farzin Asanjan, Erkan Unal Mumcuoglu

Abstract:

Mitochondria are cytoplasmic organelles of the cell, which have a significant role in the variety of cellular metabolic functions. Mitochondria act as the power plants of the cell and are surrounded by two membranes. Significant morphological alterations are often due to changes in mitochondrial functions. A powerful technique in order to study the three-dimensional (3D) structure of mitochondria and its alterations in disease states is Electron microscope tomography. Detection of mitochondria in electron microscopy images due to the presence of various subcellular structures and imaging artifacts is a challenging problem. Another challenge is that each image typically contains more than one mitochondrion. Hand segmentation of mitochondria is tedious and time-consuming and also special knowledge about the mitochondria is needed. Fully automatic segmentation methods lead to over-segmentation and mitochondria are not segmented properly. Therefore, semi-automatic segmentation methods with minimum manual effort are required to edit the results of fully automatic segmentation methods. Here two editing tools were implemented by applying spline surface dragging and interactive live-wire segmentation tools. These editing tools were applied separately to the results of fully automatic segmentation. 3D extension of these tools was also studied and tested. Dice coefficients of 2D and 3D for surface dragging using splines were 0.93 and 0.92. This metric for 2D and 3D for live-wire method were 0.94 and 0.91 respectively. The root mean square symmetric surface distance values of 2D and 3D for surface dragging was measured as 0.69, 0.93. The same metrics for live-wire tool were 0.60 and 2.11. Comparing the results of these editing tools with the results of automatic segmentation method, it shows that these editing tools, led to better results and these results were more similar to ground truth image but the required time was higher than hand-segmentation time

Keywords: medical image segmentation, semi-automatic methods, transmission electron microscopy, surface dragging using splines, live-wire

Procedia PDF Downloads 156
3797 Control of Belts for Classification of Geometric Figures by Artificial Vision

Authors: Juan Sebastian Huertas Piedrahita, Jaime Arturo Lopez Duque, Eduardo Luis Perez Londoño, Julián S. Rodríguez

Abstract:

The process of generating computer vision is called artificial vision. The artificial vision is a branch of artificial intelligence that allows the obtaining, processing, and analysis of any type of information especially the ones obtained through digital images. Actually the artificial vision is used in manufacturing areas for quality control and production, as these processes can be realized through counting algorithms, positioning, and recognition of objects that can be measured by a single camera (or more). On the other hand, the companies use assembly lines formed by conveyor systems with actuators on them for moving pieces from one location to another in their production. These devices must be previously programmed for their good performance and must have a programmed logic routine. Nowadays the production is the main target of every industry, quality, and the fast elaboration of the different stages and processes in the chain of production of any product or service being offered. The principal base of this project is to program a computer that recognizes geometric figures (circle, square, and triangle) through a camera, each one with a different color and link it with a group of conveyor systems to organize the mentioned figures in cubicles, which differ from one another also by having different colors. This project bases on artificial vision, therefore the methodology needed to develop this project must be strict, this one is detailed below: 1. Methodology: 1.1 The software used in this project is QT Creator which is linked with Open CV libraries. Together, these tools perform to realize the respective program to identify colors and forms directly from the camera to the computer. 1.2 Imagery acquisition: To start using the libraries of Open CV is necessary to acquire images, which can be captured by a computer’s web camera or a different specialized camera. 1.3 The recognition of RGB colors is realized by code, crossing the matrices of the captured images and comparing pixels, identifying the primary colors which are red, green, and blue. 1.4 To detect forms it is necessary to realize the segmentation of the images, so the first step is converting the image from RGB to grayscale, to work with the dark tones of the image, then the image is binarized which means having the figure of the image in a white tone with a black background. Finally, we find the contours of the figure in the image to detect the quantity of edges to identify which figure it is. 1.5 After the color and figure have been identified, the program links with the conveyor systems, which through the actuators will classify the figures in their respective cubicles. Conclusions: The Open CV library is a useful tool for projects in which an interface between a computer and the environment is required since the camera obtains external characteristics and realizes any process. With the program for this project any type of assembly line can be optimized because images from the environment can be obtained and the process would be more accurate.

Keywords: artificial intelligence, artificial vision, binarized, grayscale, images, RGB

Procedia PDF Downloads 365