Search results for: wheatstone bridge load cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6988

Search results for: wheatstone bridge load cell

5098 Novel Steviosides Analogs Induced Apoptosis in Breast Cancers

Authors: Ahmed Malki

Abstract:

Breast cancer has been identified as the most lethal form of cancer today. In our study, we designed and screened 16 steviosides derivatives for their cytotoxic activities in MCF-7human breast cancer cells and normal MCF-12a cells. Our data indicated that steviosides derivatives 9 and 15 decreased cell proliferation and induced apoptosis in MCF-7 breast cancer cells more thannormal breast cells epithelial cells. Flow cytometric analysis showed that both steviosides, derivatives 9 and 15 arrested the MCF-7 cells in G1 phase, which is further confirmed by the increased expression level of p21. Moreover, both steviosides derivatives increased caspase-9 activity, and the induction of apoptosis was significantly reduced after treating cells with caspase-9 inhibitor LEHD-CHO. Both steviosides derivatives increased Caspase 3 activities and induced Parp-1 cleavage in H1299 cells. Based on previous results, we have identified two novel steviosides derivatives which provoked apoptosis in breast cancer cells by arresting cells in G1 phase and increasing caspase-9 and caspase-3 activities which merits further development and investigations.

Keywords: steviosides, breast cancer, p53, cell cycle

Procedia PDF Downloads 124
5097 Implementation of Industrial Ecology Principles in the Production and Recycling of Solar Cells and Solar Modules

Authors: Julius Denafas, Irina Kliopova, Gintaras Denafas

Abstract:

Three opportunities for implementation of industrial ecology principles in the real industrial production of c-Si solar cells and modules are presented in this study. It includes: material flow dematerialisation, product modification and industrial symbiosis. Firstly, it is shown how the collaboration between R&D institutes and industry helps to achieve significant reduction of material consumption by a) refuse from phosphor silicate glass cleaning process and b) shortening of silicon nitride coating production step. Secondly, it was shown how the modification of solar module design can reduce the CO2 footprint for this product and enhance waste prevention. It was achieved by implementing a frameless glass/glass solar module design instead of glass/backsheet with aluminium frame. Such a design change is possible without purchasing new equipment and without loss of main product properties like efficiency, rigidity and longevity. Thirdly, industrial symbiosis in the solar cell production is possible in such case when manufacturing waste (silicon wafer and solar cell breakage) also used solar modules are collected, sorted and supplied as raw-materials to other companies involved in the production chain of c-Si solar cells. The obtained results showed that solar cells produced from recycled silicon can have a comparable electrical parameters like produced from standard, commercial silicon wafers. The above mentioned work was performed at solar cell producer Soli Tek R&D in the frame of H2020 projects CABRISS and Eco-Solar.

Keywords: manufacturing, process optimisation, recycling, solar cells, solar modules, waste prevention

Procedia PDF Downloads 147
5096 Deciphering Electrochemical and Optical Properties of Folic Acid for the Applications of Tissue Engineering and Biofuel Cell

Authors: Sharda Nara, Bansi Dhar Malhotra

Abstract:

Investigation of the vitamins as an electron transfer mediator could significantly assist in merging the area of tissue engineering and electronics required for the implantable therapeutic devices. The present study report that the molecules of folic acid released by Providencia rettgeri via fermentation route under the anoxic condition of the microbial fuel cell (MFC) exhibit characteristic electrochemical and optical properties, as indicated by absorption spectroscopy, photoluminescence (PL), and cyclic voltammetry studies. The absorption spectroscopy has depicted an absorption peak at 263 nm with a small bulge around 293 nm on day two of bacterial culture, whereas an additional peak was observed at 365 nm on the twentieth day. Furthermore, the PL spectra has indicated that the maximum emission occurred at various wavelengths 420, 425, 440, and 445 nm when excited by 310, 325, 350, and 365 nm. The change of emission spectra with varying excitation wavelength might be indicating the presence of tunable optical bands in the folic acid molecules co-related with the redox activity of the molecules. The results of cyclic voltammetry studies revealed that the oxidation and reduction occurred at 0.25V and 0.12V, respectively, indicating the electrochemical behavior of the folic acid. This could be inferred that the released folic acid molecules in a MFC might undergo inter as well as intra molecular electron transfer forming different intermediate states while transferring electrons to the electrode surface. Synchronization of electrochemical and optical properties of folic acid molecules could be potentially promising for the designing of electroactive scaffold and biocompatible conductive surface for the applications of tissue engineering and biofuel cells, respectively.

Keywords: biofuel cell, electroactivity, folic acid, tissue engineering

Procedia PDF Downloads 136
5095 Development and Characterization of Cathode Materials for Sodium-Metal Chloride Batteries

Authors: C. D’Urso, L. Frusteri, M. Samperi, G. Leonardi

Abstract:

Solid metal halides are used as active cathode ingredients in the case of Na-NiCl2 batteries that require a fused secondary electrolyte, sodium tetrachloraluminate (NaAlCl4), to facilitate the movement of the Na+ ion into the cathode. The sodium-nickel chloride (Na - NiCl2) battery has been extensively investigated as a promising system for large-scale energy storage applications. The growth of Ni and NaCl particles in the cathodes is one of the most important factors that degrade the performance of the Na-NiCl2 battery. The larger the particles of active ingredients contained in the cathode, the smaller the active surface available for the electrochemical reaction. Therefore, the growth of Ni and NaCl particles can lead to an increase in cell polarization resulting from the reduced active area. A higher current density, a higher state of charge (SOC) at the end of the charge (EOC) and a lower Ni / NaCl ratio are the main parameters that result in the rapid growth of Ni particles. In light of these problems, cathode and chemistry Nano-materials with recognized and well-documented electrochemical functions have been studied and manufactured to simultaneously improve battery performance and develop less expensive and more performing, sustainable and environmentally friendly materials. Starting from the well-known cathodic material (Na-NiCl2), the new electrolytic materials have been prepared on the replacement of nickel with iron (10-90%substitution of Nichel with Iron), to obtain a new material with potential advantages compared to current battery technologies; for example,, (1) lower cost of cathode material compared to state of the art as well as (2) choices of cheaper materials (stainless steels could be used for cell components, including cathode current collectors and cell housings). The study on the particle size of the cathode and the physicochemical characterization of the cathode was carried out in the test cell using, where possible, the GITT method (galvanostatic technique of intermittent titration). Furthermore, the impact of temperature on the different cathode compositions of the positive electrode was studied. Especially the optimum operating temperature is an important parameter of the active material.

Keywords: critical raw materials, energy storage, sodium metal halide, battery

Procedia PDF Downloads 123
5094 Indenyl and Allyl Palladates: Synthesis, Bonding, and Anticancer Activity

Authors: T. Scattolin, E. Cavarzerani, F. Visentin, F. Rizzolio

Abstract:

Organopalladium compounds have recently attracted attention for their high stability even under physiological conditions and, above all, for their remarkable in vitro cytotoxicity towards cisplatin-resistant cell lines. Among the organopalladium derivatives, those bearing at least one N-heterocyclic carbene ligand (NHC) and the Pd(II)-η³-allyl fragment have exhibited IC₅₀ values in the micro and sub-micromolar range towards several cancer cell lines in vitro and in some cases selectivity towards cancerous vs. non-tumorigenic cells. Herein, a selection of allyl and indenyl palladates were synthesized using a solvent-free method consisting of grinding the corresponding palladium precursors with different saturated and unsaturated azolium salts. All compounds have been fully characterized by NMR, XRD and elemental analyses. The intramolecular H, Cl interaction has been elucidated and quantified using the Voronoi Deformation Density scheme. Most of the complexes showed excellent cytotoxicity towards ovarian cancer cell lines, with I₅₀ values comparable to or even lower than cisplatin. Interestingly, the potent anticancer activity was also confirmed in a high-serous ovarian cancer (HGSOC) patient-derived tumoroid, with a clear superiority of this class of compounds over classical platinum-based agents. Finally, preliminary enzyme inhibition studies of the synthesized palladate complexes against the model TrxR show that the compounds have high activity comparable to or even higher than auranofin and classical Au(I) NHC complexes. Based on such promising data, further in vitro and in vivo experiments and in-depth mechanistic studies are ongoing in our laboratories.

Keywords: anticancer activity, palladium complexes, organoids, indenyl and allyl ligands

Procedia PDF Downloads 98
5093 Characterization of Transmembrane Proteins with Five Alpha-Helical Regions

Authors: Misty Attwood, Helgi Schioth

Abstract:

Transmembrane proteins are important components in many essential cell processes such as signal transduction, cell-cell signalling, transport of solutes, structural adhesion activities, and protein trafficking. Due to their involvement in diverse critical activities, transmembrane proteins are implicated in different disease pathways and hence are the focus of intense interest in understanding functional activities, their pathogenesis in disease, and their potential as pharmaceutical targets. Further, as the structure and function of proteins are correlated, investigating a group of proteins with the same tertiary structure, i.e., the same number of transmembrane regions, may give understanding about their functional roles and potential as therapeutic targets. In this in silico bioinformatics analysis, we identify and comprehensively characterize the previously unstudied group of proteins with five transmembrane-spanning regions (5TM). We classify nearly 60 5TM proteins in which 31 are members of ten families that contain two or more family members and all members are predicted to contain the 5TM architecture. Furthermore, nine singlet proteins that contain the 5TM architecture without paralogues detected in humans were also identifying, indicating the evolution of single unique proteins with the 5TM structure. Interestingly, more than half of these proteins function in localization activities through movement or tethering of cell components and more than one-third are involved in transport activities, particularly in the mitochondria. Surprisingly, no receptor activity was identified within this family in sharp contrast with other TM families. Three major 5TM families were identified and include the Tweety family, which are pore-forming subunits of the swelling-dependent volume regulated anion channel in astrocytes; the sidoreflexin family that acts as mitochondrial amino acid transporters; and the Yip1 domain family engaged in vesicle budding and intra-Golgi transport. About 30% of the proteins have enhanced expression in the brain, liver, or testis. Importantly, 60% of these proteins are identified as cancer prognostic markers, where they are associated with clinical outcomes of various tumour types, indicating further investigation into the function and expression of these proteins is important. This study provides the first comprehensive analysis of proteins with 5TM regions and provides details of the unique characteristics and application in pharmaceutical development.

Keywords: 5TM, cancer prognostic marker, drug targets, transmembrane protein

Procedia PDF Downloads 114
5092 Experimental Investigation for Reducing Emissions in Maritime Industry

Authors: Mahmoud Ashraf Farouk

Abstract:

Shipping transportation is the foremost imperative mode of transportation in universal coordination. At display, more than 2/3 of the full worldwide exchange volume accounts for shipping transportation. Ships are utilized as an implies of marine transportation, introducing large-power diesel motors with exhaust containing nitrogen oxide NOx, sulfur oxide SOx, carbo di-oxide CO₂, particular matter PM10, hydrocarbon HC and carbon mono-oxide CO which are the most dangerous contaminants found in exhaust gas from ships. Ships radiating a large amount of exhaust gases have become a significant cause of pollution in the air in coastal areas, harbors and oceans. Therefore, IMO (the International Maritime Organization) has established rules to reduce this emission. This experiment shows the measurement of the exhaust gases emitted from the Aida IV ship's main engine using marine diesel oil fuel (MDO). The measurement is taken by the Sensonic2000 device on 85% load, which is the main sailing load. Moreover, the paper studies different emission reduction technologies as an alternative fuel, which as liquefied natural gas (LNG) applied to the system and reduction technology which is represented as selective catalytic reduction technology added to the marine diesel oil system (MDO+SCR). The experiment calculated the amount of nitrogen oxide NOx, sulfur oxide SOx, carbon-di-oxide CO₂, particular matter PM10, hydrocarbon HC and carbon mono-oxide CO because they have the most effect on the environment. The reduction technologies are applied on the same ship engine with the same load. Finally, the study found that MDO+SCR is the more efficient technology for the Aida IV ship as a training and supply ship due to low consumption and no need to modify the engine. Just add the SCR system to the exhaust line, which is easy and cheapest. Moreover, the differences between them in the emission are not so big.

Keywords: marine, emissions, reduction, shipping

Procedia PDF Downloads 79
5091 Maneuvering Modelling of a One-Degree-of-Freedom Articulated Vehicle: Modeling and Experimental Verification

Authors: Mauricio E. Cruz, Ilse Cervantes, Manuel J. Fabela

Abstract:

The evaluation of the maneuverability of road vehicles is generally carried out through the use of specialized computer programs due to the advantages they offer compared to the experimental method. These programs are based on purely geometric considerations of the characteristics of the vehicles, such as main dimensions, the location of the axles, and points of articulation, without considering parameters such as weight distribution and magnitude, tire properties, etc. In this paper, we address the problem of maneuverability in a semi-trailer truck to navigate urban streets, maneuvering yards, and parking lots, using the Ackerman principle to propose a kinematic model that, through geometric considerations, it is possible to determine the space necessary to maneuver safely. The model was experimentally validated by conducting maneuverability tests with an articulated vehicle. The measurements were made through a GPS that allows us to know the position, trajectory, and speed of the vehicle, an inertial motion unit (IMU) that allows measuring the accelerations and angular speeds in the semi-trailer, and an instrumented steering wheel that allows measuring the angle of rotation of the flywheel, the angular velocity and the torque applied to the flywheel. To obtain the steering angle of the tires, a parameterization of the complete travel of the steering wheel and its equivalent in the tires was carried out. For the tests, 3 different angles were selected, and 3 turns were made for each angle in both directions of rotation (left and right turn). The results showed that the proposed kinematic model achieved 95% accuracy for speeds below 5 km / h. The experiments revealed that that tighter maneuvers increased significantly the space required and that the vehicle maneuverability was limited by the size of the semi-trailer. The maneuverability was also tested as a function of the vehicle load and 3 different load levels we used: light, medium, and heavy. It was found that the internal turning radii also increased with the load, probably due to the changes in the tires' adhesion to the pavement since heavier loads had larger contact wheel-road surfaces. The load was found as an important factor affecting the precision of the model (up to 30%), and therefore I should be considered. The model obtained is expected to be used to improve maneuverability through a robust control system.

Keywords: articuled vehicle, experimental validation, kinematic model, maneuverability, semi-trailer truck

Procedia PDF Downloads 119
5090 hsa-miR-1204 and hsa-miR-639 Prominent Role in Tamoxifen's Molecular Mechanisms on the EMT Phenomenon in Breast Cancer Patients

Authors: Mahsa Taghavi

Abstract:

In the treatment of breast cancer, tamoxifen is a regularly prescribed medication. The effect of tamoxifen on breast cancer patients' EMT pathways was studied. In this study to see if it had any effect on the cancer cells' resistance to tamoxifen and to look for specific miRNAs associated with EMT. In this work, we used continuous and integrated bioinformatics analysis to choose the optimal GEO datasets. Once we had sorted the gene expression profile, we looked at the mechanism of signaling, the ontology of genes, and the protein interaction of each gene. In the end, we used the GEPIA database to confirm the candidate genes. after that, I investigated critical miRNAs related to candidate genes. There were two gene expression profiles that were categorized into two distinct groups. Using the expression profile of genes that were lowered in the EMT pathway, the first group was examined. The second group represented the polar opposite of the first. A total of 253 genes from the first group and 302 genes from the second group were found to be common. Several genes in the first category were linked to cell death, focal adhesion, and cellular aging. Two genes in the second group were linked to cell death, focal adhesion, and cellular aging. distinct cell cycle stages were observed. Finally, proteins such as MYLK, SOCS3, and STAT5B from the first group and BIRC5, PLK1, and RAPGAP1 from the second group were selected as potential candidates linked to tamoxifen's influence on the EMT pathway. hsa-miR-1204 and hsa-miR-639 have a very close relationship with the candidates genes according to the node degrees and betweenness index. With this, the action of tamoxifen on the EMT pathway was better understood. It's important to learn more about how tamoxifen's target genes and proteins work so that we can better understand the drug.

Keywords: tamoxifen, breast cancer, bioinformatics analysis, EMT, miRNAs

Procedia PDF Downloads 132
5089 Study of Mechanical Properties of Large Scale Flexible Silicon Solar Modules on the Various Substrates

Authors: M. Maleczek, Leszek Bogdan, Kazimierz Drabczyk, Agnieszka Iwan

Abstract:

Crystalline silicon (Si) solar cells are the main product in the market among the various photovoltaic technologies concerning such advantages as: material richness, high carrier mobilities, broad spectral absorption range and established technology. However, photovoltaic technology on the stiff substrates are heavier, more fragile and less cost-effective than devices on the flexible substrates to be applied in special applications. The main goal of our work was to incorporate silicon solar cells into various fabric, without any change of the electrical and mechanical parameters of devices. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management. In our work, the polyamide or polyester fabrics were used as a flexible substrate in the created devices. Applied fabrics differ in tensile and tear strength. All investigated polyamide fabrics are resistant to weathering and UV, while polyester ones is resistant to ozone, water and ageing. The examined fabrics are tight at 100 cm water per 2 hours. In our work, commercial silicon solar cells with the size 156 × 156 mm were cut into nine parts (called single solar cells) by diamond saw and laser. Gap and edge after cutting of solar cells were checked by transmission electron microscope (TEM) to study morphology and quality of the prepared single solar cells. Modules with the size of 160 × 70 cm (containing about 80 single solar cells) were created and investigated by electrical and mechanical methods. Weight of constructed module is about 1.9 kg. Three types of solar cell architectures such as: -fabric/EVA/Si solar cell/EVA/film for lamination, -backsheet PET/EVA/Si solar cell/EVA/film for lamination, -fabric/EVA/Si solar cell/EVA/tempered glass, were investigated taking into consideration type of fabric and lamination process together with the size of solar cells. In investigated devices EVA, it is ethylene-vinyl acetate, while PET - polyethylene terephthalate. Depend on the lamination process and compatibility of textile with solar cell an efficiency of investigated flexible silicon solar cells was in the range of 9.44-16.64 %. Multi folding and unfolding of flexible module has no impact on its efficiency as was detected by Instron equipment. Power (P) of constructed solar module is 30 W, while voltage about 36 V. Finally, solar panel contains five modules with the polyamide fabric and tempered glass will be produced commercially for different applications (dual use).

Keywords: flexible devices, mechanical properties, silicon solar cells, textiles

Procedia PDF Downloads 177
5088 Anti -proliferative and Apoptotic Effects of Selected Saudi Herbs from the Rhamnaceae, Polygonaceae, and Apocynaceae Families Against Various Cancer Cell Lines

Authors: Allulu Yousef Alturki, Raghad Abdullah Alshafi, Sara Abdulaziz Alghashem, Sahar Saleh Alghamdi, Rasha Saad Suliman, Zeyad Alehaideb, Rizwan Ali

Abstract:

Cancer is recognized as a worldwide public health concern. Therefore, there is a continuous quest to discover new effective medications with less side-effects. In recent years, researchers have shown an increased interest in medicinal plants as several plant species have shown promising biological activities. Thus, we seek to investigate three medicinal herbs that are commonly-found in the Middle Easternregion and yet have not been explored in depth, including plants belonging to the Rhamnaceae, Polygonaceae, and Apocynaceaeplant families. Initially, we investigated using three types of cancer cell lines for breast, colorectal, and liver cancers. We performed high Content Imaging (HCI)-Apoptosis Assay and ApoTox-Glo™ Triplex Assay on KAIMRC2 and HCT8 cell lines. The highest activity of HCI-Apoptosis Assay was with Calligonumcomosum and Ziziphusnummularia in ethanol, followed by Calotropis procera and Ziziphusnummularia in ethyl acetate. The IC50values for the families of Rhamnaceae, Polygonaceae, and Apocynaceae in HepG2 and HCT8 cell lines ranged from 0.089 to 9.84mg/mL and 0.080to 15.08mg/mL, respectively. Further screening was conducted on an additional two cell lines, namely the MDA-MB-231 and KAIMRC2, for selected seven extracts with the highest activity having IC50values ranged from 0.058 to0.51mg/mL and 0.029 to0.19mg/mL, respectively. Continuous scientific investigations to isolate and characterize the potent bioactive phytochemical(s) are warranted. Funding: The authors acknowledge financial support from King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia. Institutional Review Board Statement: The study was approved by the Institutional Review Board of the Institutional Review Board of King Abdullah International Medical Research Center (SP21R/463/12, 24 January 2022). Acknowledgments: The authors want to express their gratitude to the College of Pharmacy (COP) at King Saud bin Abdulaziz University for Health Sciences (KSAU-HS) and King Abdullah International Medical Research Center (KAIMRC) for their continued support.

Keywords: rhamnaceae, polygonaceae, apocynaceae, natural products

Procedia PDF Downloads 121
5087 Hydrogen, a Novel Therapeutic Molecule, in Osteosarcoma Disease

Authors: Priyanka Sharma, Rajeshwar Nath Srivastava

Abstract:

Hydrogen has a high level of efficacy in suppressing tumour growth. The role of hydrogen in cancer treatment is unclear. This groundbreaking research will focus on the most effective therapeutic approach for osteosarcoma. Recent data reveals that hydrogen, a naturally occurring gaseous chemical, can protect cells from death. However, little is known about the signalling pathways that regulate cardiac cell death and individual apoptosis signalling by H2 and its downstream targets. According to certain research, the anti-tumor effect of H2 released by magnesium-based biomaterials is mediated by the P53-mediated lysosome-mitochondria apoptosis signalling pathway, bolstering the biomaterial's therapeutic potential as a localised anti-tumor treatment. The role of the H2 molecule in the signalling of apoptotic, autophagic, necroptotic, and pyroptotic cell death in Osteosarcoma is discussed in this paper. Potential Hydrogen-based therapy techniques will broaden the treatment horizon for Osteosarcoma.

Keywords: osteosarcoma, metastasis, hhydrogen, therapeutic

Procedia PDF Downloads 143
5086 Culture of Primary Cortical Neurons on Hydrophobic Nanofibers Induces the Formation of Organoid-Like Structures

Authors: Nick Weir, Robert Stevens, Alan Hargreaves, Martin McGinnity, Chris Tinsley

Abstract:

Hydrophobic materials have previously demonstrated the ability to elevate cell-cell interactions and promote the formation of neural networks whilst aligned nanofibers demonstrate the ability to induce extensive neurite outgrowth in an aligned manner. Hydrophobic materials typically elicit an immune response upon implantation and thus materials used for implantation are typically hydrophilic. Poly-L-lactic acid (PLLA) is a hydrophobic, non-immunogenic, FDA approved material that can be electrospun to form aligned nanofibers. Primary rat cortical neurons cultured for 10 days on aligned PLLA nanofibers formed 3D cell clusters, approximately 800 microns in diameter. Neurites that extended from these clusters were highly aligned due to the alignment of the nanofibers they were cultured upon and fasciculation was also evident. Plasma treatment of the PLLA nanofibers prior to seeding of cells significantly reduced the hydrophobicity and abolished the cluster formation and neurite fasciculation, whilst reducing the extent and directionality of neurite outgrowth; it is proposed that hydrophobicity induces the changes to cellular behaviors. Aligned PLLA nanofibers induced the formation of a structure that mimics the grey-white matter compartmentalization that is observed in vivo and thus represents a step forward in generating organoids or biomaterial-based implants. Upon implantation into the brain, the biomaterial architectures described here may provide a useful platform for both brain repair and brain remodeling initiatives.

Keywords: hydrophobicity, nanofibers, neurite fasciculation, neurite outgrowth, PLLA

Procedia PDF Downloads 164
5085 MAGE-A3 and PRAME Gene Expression and EGFR Mutation Status in Non-Small-Cell Lung Cancer

Authors: Renata Checiches, Thierry Coche, Nicolas F. Delahaye, Albert Linder, Fernando Ulloa Montoya, Olivier Gruselle, Karen Langfeld, An de Creus, Bart Spiessens, Vincent G. Brichard, Jamila Louahed, Frédéric F. Lehmann

Abstract:

Background: The RNA-expression levels of cancer-testis antigens MAGE A3 and PRAME were determined in resected tissue from patients with primary non-small-cell lung cancer (NSCLC) and related to clinical outcome. EGFR, KRAS and BRAF mutation status was determined in a subset to investigate associations with MAGE A3 and PRAME expression. Methods: We conducted a single-centre, uncontrolled, retrospective study of 1260 tissue-bank samples from stage IA-III resected NSCLC. The prognostic value of antigen expression (qRT-PCR) was determined by hazard-ratio and Kaplan-Meier curves. Results: Thirty-seven percent (314/844) of tumours expressed MAGE-A3, 66% (723/1092) expressed PRAME and 31% (239/839) expressed both. Respective frequencies in squamous-cell tumours and adenocarcinomas were 43%/30% for MAGE A3 and 80%/44% for PRAME. No correlation with stage, tumour size or patient age was found. Overall, no prognostic value was identified for either antigen. A trend to poorer overall survival was associated with MAGE-A3 in stage IIIB and with PRAME in stage IB. EGFR and KRAS mutations were found in 10.1% (28/311) and 33.8% (97/311) of tumours, respectively. EGFR (but not KRAS) mutation status was negatively associated with PRAME expression. Conclusion: No clear prognostic value for either PRAME or MAGE A3 was observed in the overall population, although some observed trends may warrant further investigation.

Keywords: MAGE A3, PRAME, cancer-testis gene, NSCLC, survival, EGFR

Procedia PDF Downloads 387
5084 Polymer Spiral Film Gas-Liquid Heat Exchanger for Waste Heat Recovery in Exhaust Gases

Authors: S. R. Parthiban, C. Elajchet Senni

Abstract:

Spiral heat exchangers are known as excellent heat exchanger because of far compact and high heat transfer efficiency. An innovative spiral heat exchanger based on polymer materials is designed for waste heat recovery process. Such a design based on polymer film technology provides better corrosion and chemical resistance compared to conventional metal heat exchangers. Due to the smooth surface of polymer film fouling is reduced. A new arrangement for flow of hot flue gas and cold fluid is employed for design, flue gas flows in axial path while the cold fluid flows in a spiral path. Heat load recovery achieved with the presented heat exchanger is in the range of 1.5 kW thermic but potential heat recovery about 3.5kW might be achievable. To measure the performance of the spiral tube heat exchanger, its model is suitably designed and fabricated so as to perform experimental tests. The paper gives analysis of spiral tube heat exchanger.

Keywords: spiral heat exchanger, polymer based materials, fouling factor, heat load

Procedia PDF Downloads 373
5083 Flexural Behavior of Voided Slabs Reinforced With Basalt Bars

Authors: Jazlah Majeed Sulaiman, Lakshmi P.

Abstract:

Concrete slabs are considered to be very ductile structural members. Openings in reinforced slabs are necessary so as to install the mechanical, electrical and pumping (MEP) conduits and ducts. However, these openings reduce the load-carrying capacity, stiffness, energy, and ductility of the slabs. To resolve the undesirable effects of openings in the slab behavior, it is significant to achieve the desired strength against the loads acting on it. The use of Basalt Fiber Reinforcement Polymers (BFRP) as reinforcement has become a valid sustainable option as they produce less greenhouse gases, resist corrosion and have higher tensile strength. In this paper, five slab models are analyzed using non-linear static analysis in ANSYS Workbench to study the effect of openings on slabs reinforced with basalt bars. A parametric numerical study on the loading condition and the shape and size of the opening is conducted, and their load and displacement values are compared. One of the models is validated experimentally.

Keywords: concrete slabs, openings, BFRP, sustainable, corrosion resistant, non-linear static analysis, ANSYS

Procedia PDF Downloads 116
5082 A Case Study on the Field Surveys and Repair of a Marine Approach-Bridge

Authors: S. H. Park, D. W. You

Abstract:

This study is about to the field survey and repair works in a marine approach-bride. In order to evaluate the stability of the ground and the structure, field surveys such as exterior inspection, non-destructive inspection, measurement, and geophysical exploration are carried out. Numerical analysis is conducted to investigate the cause of the abutment displacement at the same time. In addition, repair works are practiced to the region damaged with intent to sustain long-term safety.

Keywords: field survey, expansion joint, repair, maintenance

Procedia PDF Downloads 294
5081 The Application of the Biopsychosocial-Spiritual Model to the Quality of Life of People Living with Sickle Cell Disease

Authors: Anita Paddy, Millicent Obodai, Lebbaeus Asamani

Abstract:

The management of sickle cell disease requires a multidisciplinary team for better outcomes. Thus, literature on the application of the biopsychosocial model for the management and explanation of chronic pain in sickle cell disease (SCD) and other chronic diseases abound. However, there is limited research on the use of the biopsychosocial model, together with a spiritual component (biopsychosocial-spiritual model). The study investigated the extent to which healthcare providers utilized the biopsychosocial-spiritual model in the management of chronic pain to improve the quality of life (QoL) of patients with SCD. This study employed the descriptive survey design involving a consecutive sampling of 261 patients with SCD who were between the ages of 18 to 79 years and were accessing hematological services at the Clinical Genetics Department of the Korle Bu Teaching Hospital. These patients willingly consented to participate in the study by appending their signatures. The theory of integrated quality of life, the gate control theory of pain and the biopsychosocial(spiritual) model were tested. An instrument for the biopsychosocial-spiritual model was developed, with a basis from the literature reviewed, while the World Health Organisation Quality of Life BREF (WHOQoLBref) and the spirituality rating scale were adapted and used for data collection. Data were analyzed using descriptive statistics (means, standard deviations, frequencies, and percentages) and partial least square structural equation modeling. The study revealed that healthcare providers had a great leaning toward the biological domain of the model compared to the other domains. Hence, participants’ QoL was not fully improved as suggested by the biopsychosocial(spiritual) model. Again, the QoL and spirituality of patients with SCD were quite high. A significant negative impact of spirituality on QoL was also found. Finally, the biosocial domain of the biopsychosocial-spiritual model was the most significant predictor of QoL. It was recommended that policymakers train healthcare providers to integrate the psychosocial-spiritual component in health services. Also, education on SCD and its resultant impact from the domains of the model should be intensified while health practitioners consider utilizing these components fully in the management of the condition.

Keywords: biopsychosocial (spritual), sickle cell disease, quality of life, healthcare, accra

Procedia PDF Downloads 80
5080 Very First Synthesis of Carbazole Conjugates with Efflux Pump Inhibitor as Dual Action Hybrids

Authors: Ghazala Yaqub, Zubi Sadiq, Almas Hamid, Saira Iqbal

Abstract:

This paper is the very first report of three dual action hybrids synthesized by covalent linkage of carbazole based novel antibacterial compounds with efflux pump inhibitors i.e., indole acetic acid/gallic acid. Novel carbazole based antibacterial compounds were prepared first and then these were covalently linked with efflux pump inhibitors which leads to the successful formation of hybrids. All prepared compounds were evaluated for their bacterial cell killing capability against Escherichia coli, Staphylococcus aureus, Pasteurella multocida and Bacillus subtilis. Compound were effective against all tested bacterial strains at different concentrations. But when these compounds were linked with efflux pump inhibitors they showed dramatic enhancement in their bacterial cell killing potential and minimum inhibitory concentration of all hybrids ranges from 7.250 µg/mL to 0.0283 µg/mL.

Keywords: antimicrobial assay, carbazole, dual action hybrids, efflux pump inhibitors

Procedia PDF Downloads 2107
5079 Cytotoxic and Biocompatible Evaluation of Silica Coated Silver Nanoparticle Against Nih-3t3 Cells

Authors: Chen-En Lin, Lih-Rou Rau, Jiunn-Woei Liaw, Shiao-Wen Tsai

Abstract:

The unique optical properties of plasmon resonance metallic particles have attracted considerable applications in the fields of physics, chemistry and biology. Metal-Enhanced Fluorescence (MEF) effect is one of the useful applications. MEF effect stated that fluorescence intensity can be quenched or be enhanced depending on the distance between fluorophores and the metal nanoparticles. Silver nanoparticles have used widely in antibacterial studies. However, the major limitation for silver nanoparticles (AgNPs) in biomedical application is well-known cytotoxicity on cells. There were numerous literatures have been devoted to overcome the disadvantage. The aim of the study is to evaluate the cytotoxicity and biocompatibility of silica coated AgNPs against NIH-3T3 cells. The results were shown that NIH-3T3 cells started to detach, shrink, become rounded and finally be irregular in shape after 24 h of exposure at 10 µg/ml AgNPs. Besides, compared with untreated cells, the cell viability significantly decreased to 60% and 40% which were exposed to 10 µg/ml and 20 µg/ml AgNPs respectively. The result was consistent with previously reported findings that AgNPs induced cytotoxicity was concentration dependent. However, the morphology and cell viability of cells appeared similar to the control group when exposed to 20 µg/ml of silica coated AgNPs. We further utilized the dark-field hyperspectral imaging system to analysis the optical properties of the intracellular nanoparticles. The image displayed that the red shift of the surface plasmonic resonances band of the enclosed AgNPs further confirms the agglomerate of the AgNPs rather than their distribution in cytoplasm. In conclusion, the study demonstrated the silica coated of AgNPs showed well biocompatibility and significant lower cytotoxicity compared with bare AgNPs.

Keywords: silver nanoparticles, silica, cell viability, morphology

Procedia PDF Downloads 397
5078 Functional Switching of Serratia marcescens Transcriptional Regulator from Activator to Inhibitor of Quorum Sensing by Exogenous Addition

Authors: Norihiro Kato, Yuriko Takayama

Abstract:

Some gram-negative bacteria enable the simultaneous activation of gene expression involved in N-acylhomoserine lactone (AHL) dependent cell-to-cell communication system. Such regulatory system for the bacterial group behavior is termed as quorum sensing (QS) because a diffusible AHL signal can accumulate around the cell during the increase of the cell density and trigger activation of the sequential QS process. By blocking the QS, the expression of diverse genes related to infection, antibiotic production, and biofilm formation is inhibited. Conditioning of QS by regulation of the DNA-receptor-AHL interaction is a potential target for enhancing host defenses against pathogenicity. We focused on engineered application of transcriptional regulator SpnR produced in opportunistic human pathogen Serratia marcescens. The SpnR can interact with AHL signals at an N-terminal domain and also with a promoter region of a QS target gene at a C-terminal domain. As the initial process of the QS activation, the SpnR forms a complex with the AHL to enhance the expression of pig cluster; the SpnR normally acts as an activator for the expression of the QS-dependent gene. In this research, we attempt to artificially control QS by changing the role of SpnR. The QS-dependent prodigiosin production is expected to inhibit by externally added SpnR in the culture broth of AS-1 strain because the AHL concentration was kept below the threshold by AHL-SpnR complex formation. Maltose-binding protein (MBP)-tagged SpnR (MBP-SpnR) was overexpressed in Escherichia coli and purified using an affinity chromatography equipped with an amylose resin column. The specific interaction between AHL and MBP-SpnR was demonstrated by quartz crystal microbalance (QCM) sensor. AHL with amino end-group was coupled with COOH-terminated self-assembled monolayer prepared on a gold electrode of 27-MHz quartz crystal sensor using water-soluble carbodiimide. After the injection of MBP-SpnR into a cup-type sensor cell filled with the buffer solution, time course of resonant frequency change (ΔFs) was determined. A decrease of ΔFs clearly showed the uptake of MBP-SpnR onto the AHL-immobilized electrode. Furthermore, no binding affinity was observed after the heat-inactivation of MBP-SpnR at 80ºC. These results suggest that MBP-SpnR possesses a specific affinity for AHL. MBP-SpnR was added to the culture medium as an AHL trap to study inhibitory effects on intracellularly accumulated prodigiosin. With approximately 2 µM MBP-SpnR, the amount of prodigiosin induced was half that of the control without any additives. In conclusion, the function of SpnR could be switched by adding it to the cell culture. Exogenously added MBP-SpnR possesses high affinity for AHL derived from cells and acts as an inhibitor of AHL-mediated QS.

Keywords: intracellular signaling, microbial biotechnology, quorum sensing, transcriptional regulator

Procedia PDF Downloads 271
5077 A Review on Electrical Behavior of Different Substrates, Electrodes and Membranes in Microbial Fuel Cell

Authors: Bharat Mishra, Sanjay Kumar Awasthi, Raj Kumar Rajak

Abstract:

The devices, which convert the energy in the form of electricity from organic matters, are called microbial fuel cell (MFC). Recently, MFCs have been given a lot of attention due to their mild operating conditions, and various types of biodegradable substrates have been used in the form of fuel. Traditional MFCs were included in anode and cathode chambers, but there are single chamber MFCs. Microorganisms actively catabolize substrate, and bioelectricities are produced. In the field of power generation from non-conventional sources, apart from the benefits of this technique, it is still facing practical constraints such as low potential and power. In this study, most suitable, natural, low cost MFCs components are electrodes (anode and cathode), organic substrates, membranes and its design is selected on the basis of maximum potential (voltage) as an electrical parameter, which indicates a vital role of affecting factor in MFC for sustainable power production.

Keywords: substrates, electrodes, membranes, MFCs design, voltage

Procedia PDF Downloads 309
5076 Induction of Apoptosis by Diosmin through Interleukins/STAT and Mitochondria Mediated Pathway in Hep-2 and KB Cells

Authors: M. Rajasekar, K. Suresh

Abstract:

Diosmin is a flavonoid, most abundantly found in many citrus fruits. As a flavonoid, it possesses a multitude of biological activities including anti-hyperglycemic, anti-lipid peroxidative, anti-inflammatory, antioxidant, and anti-mutagenic properties. At this point, we established the anti-proliferative and apoptosis-inducing activities of diosmin in Hep-2 and KB cells. Diosmin has cytotoxic effects through inhibiting cellular proliferation of Hep-2 and KB cells, which leads to the induction of apoptosis, as apparent by an increase in the fraction of cells in the sub-G1phase of the cell cycle. Results exposed that inhibition of cell proliferation is associated with regulation of the Interleukins/STAT pathway. In addition, Diosmin treatment with Hep-2 and KB cells actively stimulated reactive oxygen species (ROS) and mitochondrial membrane depolarization. And also an imbalance in the Bax/Bcl-2 ratio triggered the caspase cascade and shifting the balance in favor of apoptosis. These observations conclude that Diosmin induce apoptosis via Interleukins /STAT-mediated pathway.

Keywords: diosmin, apoptosis, antioxidant, STAT pathway

Procedia PDF Downloads 330
5075 An Invertebrate-Type Lysozyme from Chinese Mitten Crab Eriocheir Sinensis: Cloning and Characterization

Authors: Fengmei Li, Li Xu, Guoliang Xia

Abstract:

Lysozyme is a catalytic enzyme that performs bacterial cell lysis by cleaving the β-1,4-glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine of peptidoglycan in cell walls. In the present study, an invertebrate-type (i-type) lysozyme gene was cloned from Chinese mitten crab Eriocheir sinensis (designated as EsLysozyme) based on PCR-based rapid amplification of cDNA ends (RACE) technology. The full-length cDNA of EsLysozyme was of 831 bp. SMART and SIGNALP 3.0 program analysis revealed that EsLysozyme contained a signal peptide and a destabilase domain. The five amino acid residues (Tyr63, Trp64, Tyr91, His110, Pro114) and the conserved motif GSLSCG(P/Y)FQI and CL(E/L/R/H)C(I/M)C in i-type lysozymes were also found in EsLysozyme. The high similarity of EsLysozyme with L. vannamei lysozymes and phylogenetic analysis suggested that EsLysozyme should be a new member of i-type lysozyme family.

Keywords: i-type lysozyme, Eriocheir sinensis, cloning, characterization

Procedia PDF Downloads 299
5074 Assessment of Biofilm Production Capacity of Industrially Important Bacteria under Electroinductive Conditions

Authors: Omolola Ojetayo, Emmanuel Garuba, Obinna Ajunwa, Abiodun A. Onilude

Abstract:

Introduction: Biofilm is a functional community of microorganisms that are associated with a surface or an interface. These adherent cells become embedded within an extracellular matrix composed of polymeric substances, i.e., biofilms refer to biological deposits consisting of both microbes and their extracellular products on biotic and abiotic surfaces. Despite their detrimental effects in medicine, biofilms as natural cell immobilization have found several applications in biotechnology, such as in the treatment of wastewater, bioremediation and biodegradation, desulfurization of gas, and conversion of agro-derived materials into alcohols and organic acids. The means of enhancing immobilized cells have been chemical-inductive, and this affects the medium composition and final product. Physical factors including electrical, magnetic, and electromagnetic flux have shown potential for enhancing biofilms depending on the bacterial species, nature, and intensity of emitted signals, the duration of exposure, and substratum used. However, the concept of cell immobilisation by electrical and magnetic induction is still underexplored. Methods: To assess the effects of physical factors on biofilm formation, six American typed culture collection (Acetobacter aceti ATCC15973, Pseudomonas aeruginosa ATCC9027, Serratia marcescens ATCC14756, Gluconobacter oxydans ATCC19357, Rhodobacter sphaeroides ATCC17023, and Bacillus subtilis ATCC6633) were used. Standard culture techniques for bacterial cells were adopted. Natural autoimmobilisation potentials of test bacteria were carried out by simple biofilms ring formation on tubes, while crystal violet binding assay techniques were adopted in the characterisation of biofilm quantity. Electroinduction of bacterial cells by direct current (DC) application in cell broth, static magnetic field exposure, and electromagnetic flux were carried out, and autoimmobilisation of cells in a biofilm pattern was determined on various substrata tested, including wood, glass, steel, polyvinylchloride (PVC) and polyethylene terephthalate. Biot Savart law was used in quantifying magnetic field intensity, and statistical analyses of data obtained were carried out using the analyses of variance (ANOVA) as well as other statistical tools. Results: Biofilm formation by the selected test bacteria was enhanced by the physical factors applied. Electromagnetic induction had the greatest effect on biofilm formation, with magnetic induction producing the least effect across all substrata used. Microbial cell-cell communication could be a possible means via which physical signals affected the cells in a polarisable manner. Conclusion: The enhancement of biofilm formation by bacteria using physical factors has shown that their inherent capability as a cell immobilization method can be further optimised for industrial applications. A possible relationship between the presence of voltage-dependent channels, mechanosensitive channels, and bacterial biofilms could shed more light on this phenomenon.

Keywords: bacteria, biofilm, cell immobilization, electromagnetic induction, substrata

Procedia PDF Downloads 193
5073 Day Ahead and Intraday Electricity Demand Forecasting in Himachal Region using Machine Learning

Authors: Milan Joshi, Harsh Agrawal, Pallaw Mishra, Sanand Sule

Abstract:

Predicting electricity usage is a crucial aspect of organizing and controlling sustainable energy systems. The task of forecasting electricity load is intricate and requires a lot of effort due to the combined impact of social, economic, technical, environmental, and cultural factors on power consumption in communities. As a result, it is important to create strong models that can handle the significant non-linear and complex nature of the task. The objective of this study is to create and compare three machine learning techniques for predicting electricity load for both the day ahead and intraday, taking into account various factors such as meteorological data and social events including holidays and festivals. The proposed methods include a LightGBM, FBProphet, combination of FBProphet and LightGBM for day ahead and Motifs( Stumpy) based on Mueens algorithm for similarity search for intraday. We utilize these techniques to predict electricity usage during normal days and social events in the Himachal Region. We then assess their performance by measuring the MSE, RMSE, and MAPE values. The outcomes demonstrate that the combination of FBProphet and LightGBM method is the most accurate for day ahead and Motifs for intraday forecasting of electricity usage, surpassing other models in terms of MAPE, RMSE, and MSE. Moreover, the FBProphet - LightGBM approach proves to be highly effective in forecasting electricity load during social events, exhibiting precise day ahead predictions. In summary, our proposed electricity forecasting techniques display excellent performance in predicting electricity usage during normal days and special events in the Himachal Region.

Keywords: feature engineering, FBProphet, LightGBM, MASS, Motifs, MAPE

Procedia PDF Downloads 75
5072 High Cycle Fatigue Analysis of a Lower Hopper Knuckle Connection of a Large Bulk Carrier under Dynamic Loading

Authors: Vaso K. Kapnopoulou, Piero Caridis

Abstract:

The fatigue of ship structural details is of major concern in the maritime industry as it can generate fracture issues that may compromise structural integrity. In the present study, a fatigue analysis of the lower hopper knuckle connection of a bulk carrier was conducted using the Finite Element Method by means of ABAQUS/CAE software. The fatigue life was calculated using Miner’s Rule and the long-term distribution of stress range by the use of the two-parameter Weibull distribution. The cumulative damage ratio was estimated using the fatigue damage resulting from the stress range occurring at each load condition. For this purpose, a cargo hold model was first generated, which extends over the length of two holds (the mid-hold and half of each of the adjacent holds) and transversely over the full breadth of the hull girder. Following that, a submodel of the area of interest was extracted in order to calculate the hot spot stress of the connection and to estimate the fatigue life of the structural detail. Two hot spot locations were identified; one at the top layer of the inner bottom plate and one at the top layer of the hopper plate. The IACS Common Structural Rules (CSR) require that specific dynamic load cases for each loading condition are assessed. Following this, the dynamic load case that causes the highest stress range at each loading condition should be used in the fatigue analysis for the calculation of the cumulative fatigue damage ratio. Each load case has a different effect on ship hull response. Of main concern, when assessing the fatigue strength of the lower hopper knuckle connection, was the determination of the maximum, i.e. the critical value of the stress range, which acts in a direction normal to the weld toe line. This acts in the transverse direction, that is, perpendicularly to the ship's centerline axis. The load cases were explored both theoretically and numerically in order to establish the one that causes the highest damage to the location examined. The most severe one was identified to be the load case induced by beam sea condition where the encountered wave comes from the starboard. At the level of the cargo hold model, the model was assumed to be simply supported at its ends. A coarse mesh was generated in order to represent the overall stiffness of the structure. The elements employed were quadrilateral shell elements, each having four integration points. A linear elastic analysis was performed because linear elastic material behavior can be presumed, since only localized yielding is allowed by most design codes. At the submodel level, the displacements of the analysis of the cargo hold model to the outer region nodes of the submodel acted as boundary conditions and applied loading for the submodel. In order to calculate the hot spot stress at the hot spot locations, a very fine mesh zone was generated and used. The fatigue life of the detail was found to be 16.4 years which is lower than the design fatigue life of the structure (25 years), making this location vulnerable to fatigue fracture issues. Moreover, the loading conditions that induce the most damage to the location were found to be the various ballasting conditions.

Keywords: dynamic load cases, finite element method, high cycle fatigue, lower hopper knuckle

Procedia PDF Downloads 420
5071 Dependence of the Electro-Stimulation of Saccharomyces cerevisiae by Pulsed Electric Field at the Yeast Growth Phase

Authors: Jessy Mattar, Mohamad Turk, Maurice Nonus, Nikolai Lebovka, Henri El Zakhem, Eugene Vorobiev

Abstract:

The effects of electro-stimulation of S. cerevisiae cells in colloidal suspension by Pulsed Electric Fields ‎‎(PEF) with electric field strength E = 20 – 2000 V.cm-1 and effective PEF treatment time tPEF = 10^−5 – 1 s were ‎investigated. The applied experimental procedure includes variations in the preliminary fermentation time and ‎electro-stimulation by PEF-treatment. Plate counting was performed.‎ At relatively high electric fields (E ≥ 1000 V.cm-1) and moderate PEF treatment time (tPEF > 100 µs), the ‎extraction of ionic components from yeast was observed by conductivity measurements, which can be related to ‎electroporation of cell membranes. Cell counting revealed a dependency of the colonies’ size on the time of ‎preliminary fermentation tf and the power consumption W, however no dependencies were noticeable by varying the initial yeast concentration in the treated suspensions.‎

Keywords: intensification, yeast, fermentation, electroporation, biotechnology

Procedia PDF Downloads 472
5070 Mode of Action of Surface Bound Antimicrobial Peptides Melimine and Mel4 against Pseudomonas aeruginosa

Authors: Muhammad Yasir, Debarun Dutta, Mark Willcox

Abstract:

Biomaterial-associated infections are a multi-billion dollar burden globally. Antimicrobial peptide-based coatings may be able to prevent such infections. The aim of this study was to investigate the mechanism of action surface bound peptides (AMPs) against Pseudomonas aeruginosa 6294. Melimine and Mel4 were covalently attached to glass coverslips using azido-benzoic acid. Attachment was confirmed using X-ray photoelectron spectroscopy. P. aeruginosa was allowed to attach to AMP-coated glass for up to 6 hours. The effect of the surface-bound AMPs on bacterial cell membranes was evaluated using the dyes DiSC3-(5), Sytox green, SYTO 9 and propidium iodide with fluorescence microscopy. Release of cytoplasmic materials ATP and DNA/RNA were determined in the surrounding fluid. The amount of cell death was estimated by agar plate counts. The AMPs were successfully covalently bound to the glass as demonstrated by increases in %nitrogen of 3.6% (melimine) and 2.3% (Mel4) compared to controls. Immobilized peptides disrupted the cytoplasmic membrane potential of P. aeruginosa within 10 min. This was followed by the release of ATP after 2 h. Membrane permeabilization started at 3 h of contact with glass coated AMPs. There was a significant number of bacteria (59% for melimine; 36% for Mel-4) with damaged membranes after 4 h of contact. At the 6 h time point, release of DNA occurred with melimine releasing 2 times the amount of DNA/RNA than Mel4 surfaces (p < 0.05). Surface bound AMPs were able to disrupt cell membranes with subsequent release of cytoplasmic materials, and ultimately resulting in bacterial death.

Keywords: biomaterials, immobilized antimicrobial peptides, P. aeruginosa, mode of action

Procedia PDF Downloads 139
5069 DC-to-DC Converters for Low-Voltage High-Power Renewable Energy Systems

Authors: Abdar Ali, Rizwan Ullah, Zahid Ullah

Abstract:

This paper focuses on the study of DC-to-DC converters, which are suitable for low-voltage high-power applications. The output voltages generated by renewable energy sources such as photovoltaic arrays and fuel cell stacks are generally low and required to be increased to high voltage levels. Development of DC-to-DC converters, which provide high step-up voltage conversion ratios with high efficiencies and low voltage stresses is one of the main issues in the development of renewable energy systems. A procedure for three converters-conventional DC-to-DC converter, interleaved boost converter, and isolated flyback based converter, is illustrated for a given set of specifications. The selection among the converters for the given application is based on the voltage conversion ratio, efficiency, and voltage stresses.

Keywords: flyback converter, interleaved boost, photovoltaic array, fuel cell, switch stress, voltage conversion ratio, renewable energy

Procedia PDF Downloads 601