Search results for: universal testing machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6303

Search results for: universal testing machine

4413 Using Machine Learning to Extract Patient Data from Non-standardized Sports Medicine Physician Notes

Authors: Thomas Q. Pan, Anika Basu, Chamith S. Rajapakse

Abstract:

Machine learning requires data that is categorized into features that models train on. This topic is important to the field of sports medicine due to the many tools it provides to physicians such as diagnosis support and risk assessment. Physician note that healthcare professionals take are usually unclean and not suitable for model training. The objective of this study was to develop and evaluate an advanced approach for extracting key features from sports medicine data without the need for extensive model training or data labeling. An LLM (Large Language Model) was given a narrative (Physician’s Notes) and prompted to extract four features (details about the patient). The narrative was found in a datasheet that contained six columns: Case Number, Validation Age, Validation Gender, Validation Diagnosis, Validation Body Part, and Narrative. The validation columns represent the accurate responses that the LLM attempts to output. With the given narrative, the LLM would output its response and extract the age, gender, diagnosis, and injured body part with each category taking up one line. The output would then be cleaned, matched, and added to new columns containing the extracted responses. Five ways of checking the accuracy were used: unclear count, substring comparison, LLM comparison, LLM re-check, and hand-evaluation. The unclear count essentially represented the extractions the LLM missed. This can be also understood as the recall score ([total - false negatives] over total). The rest of these correspond to the precision score ([total - false positives] over total). Substring comparison evaluated the validation (X) and extracted (Y) columns’ likeness by checking if X’s results were a substring of Y's findings and vice versa. LLM comparison directly asked an LLM if the X and Y’s results were similar. LLM Re-check prompted the LLM to see if the extracted results can be found in the narrative. Lastly, A selection of 1,000 random narratives was also selected and hand-evaluated to give an estimate of how well the LLM-based feature extraction model performed. With a selection of 10,000 narratives, the LLM-based approach had a recall score of roughly 98%. However, the precision scores of the substring comparison and LLM comparison models were around 72% and 76% respectively. The reason for these low figures is due to the minute differences between answers. For example, the ‘chest’ is a part of the ‘upper trunk’ however, these models cannot detect that. On the other hand, the LLM re-check and subset of hand-tested narratives showed a precision score of 96% and 95%. If this subset is used to extrapolate the possible outcome of the whole 10,000 narratives, the LLM-based approach would be strong in both precision and recall. These results indicated that an LLM-based feature extraction model could be a useful way for medical data in sports to be collected and analyzed by machine learning models. Wide use of this method could potentially increase the availability of data thus improving machine learning algorithms and supporting doctors with more enhanced tools.

Keywords: AI, LLM, ML, sports

Procedia PDF Downloads 12
4412 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering

Authors: Sharifah Mousli, Sona Taheri, Jiayuan He

Abstract:

Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.

Keywords: autism spectrum disorder, clustering, optimization, unsupervised machine learning

Procedia PDF Downloads 118
4411 Educational Theatre Making Project: Prior Conditions

Authors: Larisa Akhmylovskaia, Andriana Barysh

Abstract:

The present paper is introducing the translation score developing methodology and methods in the cross-cultural communication. The ideas and examples presented by the authors illustrate the universal character of translation score developing methods under analysis. Personal experience in the international theatre-making projects, opera laboratories, cross-cultural master-classes give more opportunities to single out the conditions, forms, means and principles of translation score developing as well as the translator/interpreter’s functions as cultural liaison for multiethnic collaboration.

Keywords: methodology of translation score developing, pre-production, analysis, production, post-production, ethnic scene theory, theatre anthropology, laboratory, master-class, educational project, academic project, participant observation, super-objective

Procedia PDF Downloads 515
4410 The Impact of Streptococcus pneumoniae Colonization on Viral Bronchiolitis

Authors: K. Genise, S. Murthy

Abstract:

Introductory Statement: The results of this retrospective chart review suggest the effects of bacterial colonization in critically ill children with viral bronchiolitis, currently unproven, are clinically insignificant. Background: Viral bronchiolitis is one of the most prevalent causes of illness requiring hospitalization among children worldwide and one of the most common reasons for admission to pediatric intensive care. It has been hypothesized that co-infection with bacteria results in more severe clinical outcomes. Conversely, the effects of bacterial colonization in critically ill patients with bronchiolitis are poorly defined. Current clinical management of colonized patients consists primarily of supportive therapies with the role of antibiotics remaining controversial. Methods: A retrospective review of all critically ill children admitted to the BC Children’s Hospital Pediatric Intensive Care Unit (PICU) from 2014-2017 with a diagnosis of bronchiolitis was performed. Routine testing in this time frame consisted of complete pathogen testing, including PCR for Streptococcus pneumoniae. Analyses were performed to determine the impact of bacterial colonization and antibiotic use on a primary outcome of PICU length-of-stay, with secondary outcomes of hospital length-of-stay and duration of ventilation. Results: There were 92 patients with complete pathogen testing performed during the assessed timeframe. A comparison between children with detected Streptococcus pneumoniae (n=22) and those without (n=70) revealed no significant (p=0.20) differences in severity of illness on presentation as per Pediatric Risk of Mortality III scores (mean=3.0). Patients colonized with S. pneumoniae had significantly shorter PICU stays (p=0.002), hospital stays (p=0.0001) and duration of non-invasive ventilation (p=0.002). Multivariate analyses revealed that these effects on length of PICU stay and duration of ventilation do not persist after controlling for antibiotic use, presence of radiographic consolidation, age, and severity of illness (p=0.15, p=0.32). The relationship between colonization and duration of hospital stay persists after controlling for these variables (p=0.008). Conclusions: Children with viral bronchiolitis colonized with S. pneumoniae do not appear to have significantly different PICU length-of-stays or duration of ventilation compared to children who are not colonized. Colonized children appear to have shorter hospital stays. The results of this study suggest bacterial colonization is not associated with increased severity of presenting illness or negative clinical outcomes.

Keywords: bronchiolitis, colonization, critical care, pediatrics, pneumococcal, infection

Procedia PDF Downloads 518
4409 A Sui Generis Technique to Detect Pathogens in Post-Partum Breast Milk Using Image Processing Techniques

Authors: Yogesh Karunakar, Praveen Kandaswamy

Abstract:

Mother’s milk provides the most superior source of nutrition to a child. There is no other substitute to the mother’s milk. Postpartum secretions like breast milk can be analyzed on the go for testing the presence of any harmful pathogen before a mother can feed the child or donate the milk for the milk bank. Since breast feeding is one of the main causes for transmission of diseases to the newborn, it is mandatory to test the secretions. In this paper, we describe the detection of pathogens like E-coli, Human Immunodeficiency Virus (HIV), Hepatitis B (HBV), Hepatitis C (HCV), Cytomegalovirus (CMV), Zika and Ebola virus through an innovative method, in which we are developing a unique chip for testing the mother’s milk sample. The chip will contain an antibody specific to the target pathogen that will show a color change if there are enough pathogens present in the fluid that will be considered dangerous. A smart-phone camera will then be acquiring the image of the strip and using various image processing techniques we will detect the color development due to antigen antibody interaction within 5 minutes, thereby not adding to any delay, before the newborn is fed or prior to the collection of the milk for the milk bank. If the target pathogen comes positive through this method, then the health care provider can provide adequate treatment to bring down the number of pathogens. This will reduce the postpartum related mortality and morbidity which arises due to feeding infectious breast milk to own child.

Keywords: postpartum, fluids, camera, HIV, HCV, CMV, Zika, Ebola, smart-phones, breast milk, pathogens, image processing techniques

Procedia PDF Downloads 223
4408 Charting Sentiments with Naive Bayes and Logistic Regression

Authors: Jummalla Aashrith, N. L. Shiva Sai, K. Bhavya Sri

Abstract:

The swift progress of web technology has not only amassed a vast reservoir of internet data but also triggered a substantial surge in data generation. The internet has metamorphosed into one of the dynamic hubs for online education, idea dissemination, as well as opinion-sharing. Notably, the widely utilized social networking platform Twitter is experiencing considerable expansion, providing users with the ability to share viewpoints, participate in discussions spanning diverse communities, and broadcast messages on a global scale. The upswing in online engagement has sparked a significant curiosity in subjective analysis, particularly when it comes to Twitter data. This research is committed to delving into sentiment analysis, focusing specifically on the realm of Twitter. It aims to offer valuable insights into deciphering information within tweets, where opinions manifest in a highly unstructured and diverse manner, spanning a spectrum from positivity to negativity, occasionally punctuated by neutrality expressions. Within this document, we offer a comprehensive exploration and comparative assessment of modern approaches to opinion mining. Employing a range of machine learning algorithms such as Naive Bayes and Logistic Regression, our investigation plunges into the domain of Twitter data streams. We delve into overarching challenges and applications inherent in the realm of subjectivity analysis over Twitter.

Keywords: machine learning, sentiment analysis, visualisation, python

Procedia PDF Downloads 56
4407 Dynamic Cellular Remanufacturing System (DCRS) Design

Authors: Tariq Aljuneidi, Akif Asil Bulgak

Abstract:

Remanufacturing may be defined as the process of bringing used products to “like-new” functional state with warranty to match, and it is one of the most popular product end-of-life scenarios. An efficient remanufacturing network lead to an efficient design of sustainable manufacturing enterprise. In remanufacturing network, products are collected from the customer zone, disassembled and remanufactured at a suitable remanufacturing facility. In this respect, another issue to consider is how the returned product to be remanufactured, in other words, what is the best layout for such facility. In order to achieve a sustainable manufacturing system, Cellular Manufacturing System (CMS) designs are highly recommended, CMSs combine high throughput rates of line layouts with the flexibility offered by functional layouts (job shop). Introducing the CMS while designing a remanufacturing network will benefit the utilization of such a network. This paper presents and analyzes a comprehensive mathematical model for the design of Dynamic Cellular Remanufacturing Systems (DCRSs). In this paper, the proposed model is the first one to date that consider CMS and remanufacturing system simultaneously. The proposed DCRS model considers several manufacturing attributes such as multi-period production planning, dynamic system reconfiguration, duplicate machines, machine capacity, available time for workers, worker assignments, and machine procurement, where the demand is totally satisfied from a returned product. A numerical example is presented to illustrate the proposed model.

Keywords: cellular manufacturing system, remanufacturing, mathematical programming, sustainability

Procedia PDF Downloads 379
4406 Exploring Pre-Trained Automatic Speech Recognition Model HuBERT for Early Alzheimer’s Disease and Mild Cognitive Impairment Detection in Speech

Authors: Monica Gonzalez Machorro

Abstract:

Dementia is hard to diagnose because of the lack of early physical symptoms. Early dementia recognition is key to improving the living condition of patients. Speech technology is considered a valuable biomarker for this challenge. Recent works have utilized conventional acoustic features and machine learning methods to detect dementia in speech. BERT-like classifiers have reported the most promising performance. One constraint, nonetheless, is that these studies are either based on human transcripts or on transcripts produced by automatic speech recognition (ASR) systems. This research contribution is to explore a method that does not require transcriptions to detect early Alzheimer’s disease (AD) and mild cognitive impairment (MCI). This is achieved by fine-tuning a pre-trained ASR model for the downstream early AD and MCI tasks. To do so, a subset of the thoroughly studied Pitt Corpus is customized. The subset is balanced for class, age, and gender. Data processing also involves cropping the samples into 10-second segments. For comparison purposes, a baseline model is defined by training and testing a Random Forest with 20 extracted acoustic features using the librosa library implemented in Python. These are: zero-crossing rate, MFCCs, spectral bandwidth, spectral centroid, root mean square, and short-time Fourier transform. The baseline model achieved a 58% accuracy. To fine-tune HuBERT as a classifier, an average pooling strategy is employed to merge the 3D representations from audio into 2D representations, and a linear layer is added. The pre-trained model used is ‘hubert-large-ls960-ft’. Empirically, the number of epochs selected is 5, and the batch size defined is 1. Experiments show that our proposed method reaches a 69% balanced accuracy. This suggests that the linguistic and speech information encoded in the self-supervised ASR-based model is able to learn acoustic cues of AD and MCI.

Keywords: automatic speech recognition, early Alzheimer’s recognition, mild cognitive impairment, speech impairment

Procedia PDF Downloads 127
4405 Constructing the Density of States from the Parallel Wang Landau Algorithm Overlapping Data

Authors: Arman S. Kussainov, Altynbek K. Beisekov

Abstract:

This work focuses on building an efficient universal procedure to construct a single density of states from the multiple pieces of data provided by the parallel implementation of the Wang Landau Monte Carlo based algorithm. The Ising and Pott models were used as the examples of the two-dimensional spin lattices to construct their densities of states. Sampled energy space was distributed between the individual walkers with certain overlaps. This was made to include the latest development of the algorithm as the density of states replica exchange technique. Several factors of immediate importance for the seamless stitching process have being considered. These include but not limited to the speed and universality of the initial parallel algorithm implementation as well as the data post-processing to produce the expected smooth density of states.

Keywords: density of states, Monte Carlo, parallel algorithm, Wang Landau algorithm

Procedia PDF Downloads 413
4404 Developing a Product Circularity Index with an Emphasis on Longevity, Repairability, and Material Efficiency

Authors: Lina Psarra, Manogj Sundaresan, Purjeet Sutar

Abstract:

In response to the global imperative for sustainable solutions, this article proposes the development of a comprehensive circularity index applicable to a wide range of products across various industries. The absence of a consensus on using a universal metric to assess circularity performance presents a significant challenge in prioritizing and effectively managing sustainable initiatives. This circularity index serves as a quantitative measure to evaluate the adherence of products, processes, and systems to the principles of a circular economy. Unlike traditional distinct metrics such as recycling rates or material efficiency, this index considers the entire lifecycle of a product in one single metric, also incorporating additional factors such as reusability, scarcity of materials, reparability, and recyclability. Through a systematic approach and by reviewing existing metrics and past methodologies, this work aims to address this gap by formulating a circularity index that can be applied to diverse product portfolio and assist in comparing the circularity of products on a scale of 0%-100%. Project objectives include developing a formula, designing and implementing a pilot tool based on the developed Product Circularity Index (PCI), evaluating the effectiveness of the formula and tool using real product data, and assessing the feasibility of integration into various sustainability initiatives. The research methodology involves an iterative process of comprehensive research, analysis, and refinement where key steps include defining circularity parameters, collecting relevant product data, applying the developed formula, and testing the tool in a pilot phase to gather insights and make necessary adjustments. Major findings of the study indicate that the PCI provides a robust framework for evaluating product circularity across various dimensions. The Excel-based pilot tool demonstrated high accuracy and reliability in measuring circularity, and the database proved instrumental in supporting comprehensive assessments. The PCI facilitated the identification of key areas for improvement, enabling more informed decision-making towards circularity and benchmarking across different products, essentially assisting towards better resource management. In conclusion, the development of the Product Circularity Index represents a significant advancement in global sustainability efforts. By providing a standardized metric, the PCI empowers companies and stakeholders to systematically assess product circularity, track progress, identify improvement areas, and make informed decisions about resource management. This project contributes to the broader discourse on sustainable development by offering a practical approach to enhance circularity within industrial systems, thus paving the way towards a more resilient and sustainable future.

Keywords: circular economy, circular metrics, circularity assessment, circularity tool, sustainable product design, product circularity index

Procedia PDF Downloads 32
4403 Estimation of the Exergy-Aggregated Value Generated by a Manufacturing Process Using the Theory of the Exergetic Cost

Authors: German Osma, Gabriel Ordonez

Abstract:

The production of metal-rubber spares for vehicles is a sequential process that consists in the transformation of raw material through cutting activities and chemical and thermal treatments, which demand electricity and fossil fuels. The energy efficiency analysis for these cases is mostly focused on studying of each machine or production step, but is not common to study of the quality of the production process achieves from aggregated value viewpoint, which can be used as a quality measurement for determining of impact on the environment. In this paper, the theory of exergetic cost is used for determining of aggregated exergy to three metal-rubber spares, from an exergy analysis and thermoeconomic analysis. The manufacturing processing of these spares is based into batch production technique, and therefore is proposed the use of this theory for discontinuous flows from of single models of workstations; subsequently, the complete exergy model of each product is built using flowcharts. These models are a representation of exergy flows between components into the machines according to electrical, mechanical and/or thermal expressions; they determine the demanded exergy to produce the effective transformation in raw materials (aggregated exergy value), the exergy losses caused by equipment and irreversibilities. The energy resources of manufacturing process are electricity and natural gas. The workstations considered are lathes, punching presses, cutters, zinc machine, chemical treatment tanks, hydraulic vulcanizing presses and rubber mixer. The thermoeconomic analysis was done by workstation and by spare; first of them describes the operation of the components of each machine and where the exergy losses are; while the second of them estimates the exergy-aggregated value for finished product and wasted feedstock. Results indicate that exergy efficiency of a mechanical workstation is between 10% and 60% while this value in the thermal workstations is less than 5%; also that each effective exergy-aggregated value is one-thirtieth of total exergy required for operation of manufacturing process, which amounts approximately to 2 MJ. These troubles are caused mainly by technical limitations of machines, oversizing of metal feedstock that demands more mechanical transformation work, and low thermal insulation of chemical treatment tanks and hydraulic vulcanizing presses. From established information, in this case, it is possible to appreciate the usefulness of theory of exergetic cost for analyzing of aggregated value in manufacturing processes.

Keywords: exergy-aggregated value, exergy efficiency, thermoeconomics, exergy modeling

Procedia PDF Downloads 171
4402 Translation of Post-Soviet Kyrgyz Women’s Poetry

Authors: K. Kalieva, G. Ibraimova

Abstract:

In literature, poetry stands as a profound genre that bridges the life experiences of everyday people, transcending language and culture to unite people through the universal language of emotion and human connection. This paper explores the collaborative efforts of translators in creating the anthology of post-Soviet Kyrgyz women’s poetry, a project spanning over ten years. This compelling anthology brings together the works of fifty prominent female poets from Kyrgyzstan during the post-Soviet era. It includes the original poems in Kyrgyz and provide English translations, sharing the rich and diverse voices of Kyrgyz women with a global audience and fostering a deep appreciation for the beauty of their words. The paper highlights the unique perspectives on life, love, and identity offered by each poet, and emphasizes the role of translation in making these voices accessible worldwide. Each poet's unique voice offers a glimpse into the rich cultural and literary landscape of Kyrgyzstan, highlighting themes that resonate universally. Methodology of the paper employs a combination of qualitative content analysis, semiotic analysis, and quantitative thematic analysis to examine the translation strategies, and the cultural and emotional peculiarities captured in the translations, as well as the themes explored by the poets in their poems. Through the art of translation, the paper explores the lyrical world of Kyrgyz women poets. Although Kyrgyz poets’ names and poems are unfamiliar to many, their words resonate with an emotional depth that is sure to leave a lasting impression. Kyrgyz women's poetry translated into English celebrates the distinctive voices of women in the contemporary world. It serves as a reminder that poetry possesses the power to transcend life's obstacles, foster mutual understanding, and inspire positive change. The poems created by Kyrgyz women are envisioned to serve as a source of inspiration for readers. The paper proposes a poetic journey created by Kyrgyz women, offering readers an opportunity to experience Kyrgyz landscapes, traditions, and universal human themes through their verses. The paper provides an in-depth analysis of the poem translations, exploring the beauty and depth of the poets' thoughts and feelings. Through these translations, readers are invited to explore the world of Kyrgyz women poets, enriching their understanding of the language, culture, and the profound human experiences conveyed in the poetry. The hypotheses of the paper is that analyzing these translations through translation studies theories and linguistic and semiotic frameworks will reveal the complexities and challenges involved in translating poetry across languages and cultures.

Keywords: Kyrgyz poetry, post-soviet literature, translation, women poets.

Procedia PDF Downloads 32
4401 Investigation of the Mechanical and Thermal Properties of a Silver Oxalate Nanoporous Structured Sintered Joint for Micro-joining in Relation to the Sintering Process Parameters

Authors: L. Vivet, L. Benabou, O. Simon

Abstract:

With highly demanding applications in the field of power electronics, there is an increasing need to have interconnection materials with properties that can ensure both good mechanical assembly and high thermal/electrical conductivities. So far, lead-free solders have been considered an attractive solution, but recently, sintered joints based on nano-silver paste have been used for die attach and have proved to be a promising solution offering increased performances in high-temperature applications. In this work, the main parameters of the bonding process using silver oxalates are studied, i.e., the heating rate and the bonding pressure mainly. Their effects on both the mechanical and thermal properties of the sintered layer are evaluated following an experimental design. Pairs of copper substrates with gold metallization are assembled through the sintering process to realize the samples that are tested using a micro-traction machine. In addition, the obtained joints are examined through microscopy to identify the important microstructural features in relation to the measured properties. The formation of an intermetallic compound at the junction between the sintered silver layer and the gold metallization deposited on copper is also analyzed. Microscopy analysis exhibits a nanoporous structure of the sintered material. It is found that higher temperature and bonding pressure result in higher densification of the sintered material, with higher thermal conductivity of the joint but less mechanical flexibility to accommodate the thermo-mechanical stresses arising during service. The experimental design allows hence the determination of the optimal process parameters to reach sufficient thermal/mechanical properties for a given application. It is also found that the interphase formed between silver and gold metallization is the location where the fracture occurred after the mechanical testing, suggesting that the inter-diffusion mechanism between the different elements of the assembly leads to the formation of a relatively brittle compound.

Keywords: nanoporous structure, silver oxalate, sintering, mechanical strength, thermal conductivity, microelectronic packaging

Procedia PDF Downloads 95
4400 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception

Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu

Abstract:

Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.

Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish

Procedia PDF Downloads 148
4399 Hazard Alert in Malaysia Related to Occupational Safety and Health

Authors: Atikah Binti Azudin, Nurin Nazlah Binti Muhamad Yani, Nur Alya Nadhirah Binti Naaidith, Nur Amylia Wahida Binti Mat Ayob, Nurshamimi Shakirah Binti Suboh, Nur Auni Batrisyia Binti Md. Zaini, Nur Aziemah Binti Mohamad, Nurul Suffiyah Binti Sa’Dun, Sabrina Sasha Izzati Binti Zubaile, Umi Huwaina Binti Ahmiruddin, Wan Nur Shafawati Binti Wan Ghazali

Abstract:

A hazard alert is intended to provide brief information about significant incidents or existing difficulties in Department workplaces. The alert gives guidelines for proper processes, practices, and controls to be applied. When operated in accordance with the manufacturer's instructions, any machine or tool utilized at work provides a safe and dependable platform for workers to accomplish job duties. However, when not utilized appropriately, the machine might pose a major hazard to employees. Employers have a duty to keep employees safe in this scenario. This Hazard Alert outlines specific occupational dangers and the controls that employers must apply to prevent injury or fatal accidents. There have been several cases of hazard alerts in Malaysia, which have had a negative impact on a few workers. Looking on the bright side, we can overcome every incident in a variety of ways. One of these is that only qualified individuals operate mobile machinery and equipment. In addition, employees may also perform frequent pre-use inspections of machinery to discover and fix flaws. Hazard alert is very important, and this study would cover a variety of subjects, including the methods employed.

Keywords: safe, hazard, impacts, duties.

Procedia PDF Downloads 93
4398 Prognostic Factors for Mortality and Duration of Admission in Malnourished Hospitalized, Elderly Patients: A Cross-Sectional Study

Authors: Christos E. Lampropoulos, Maria Konsta, Vicky Dradaki, Irini Dri, Tamta Sirbilatze, Ifigenia Apostolou, Christina Kordali, Konstantina Panouria, Kostas Argyros, Georgios Mavras

Abstract:

Malnutrition in hospitalized patients is related to increased morbidity and mortality. Purpose of our study was to assess nutritional status of hospitalized, elderly patients with various nutritional scores and to detect unfavorable prognostic factors, related to increased mortality and extended duration of admission. Methods: 150 patients (78 men, 72 women, mean age 80±8.2) were included in this cross-sectional study. Nutritional status was assessed by Mini Nutritional Assessment (MNA full, short-form), Malnutrition Universal Screening Tool (MUST) and short Nutritional Appetite Questionnaire (sNAQ). The following data were incorporated in analysis: Anthropometric and laboratory data, physical activity (International Physical Activity Questionnaires, IPAQ), smoking status, dietary habits and mediterranean diet (assessed by MedDiet score), cause and duration of current admission, medical history (co-morbidities, previous admissions). Primary endpoints were the mortality (from admission until 6 months afterwards) and duration of admission, compared to national guidelines for closed consolidated medical expenses. Mann-Whitney two-sample statistics or t-test was used for group comparisons and Spearman or Pearson coefficients for testing correlation between variables. Results: Normal nutrition was assessed in 54/150 (36%), 92/150 (61.3%) and in 106/150 (70.7%) of patients, according to full MNA, MUST and sNAQ questionnaires respectively. Mortality rate was 20.7% (31/150 patients). The patients who died until 6 months after admission had lower BMI (24±4.4 vs 26±4.8, p=0.04) and albumin levels (2.9±0.7 vs 3.4±0.7, p=0.002), significantly lower full MNA (14.5±7.3 vs 20.7±6, p<0.0001) and short-form MNA scores (7.3±4.2 vs 10.5±3.4, p=0.0002) compared to non-dead one. In contrast, the aforementioned patients had higher MUST (2.5±1.8 vs 0.5±1.02, p=<0.0001) and sNAQ scores (2.9±2.4 vs 1.1±1.3, p<0.0001). Additionally, they showed significantly lower MedDiet (23.5±4.3 vs 31.1±5.6, p<0.0001) and IPAQ scores (37.2±156.2 vs 516.5±1241.7, p<0.0001) compared to remaining one. These patients had extended hospitalization [5 (0-13) days vs 0 (-1-3) days, p=0.001]. Patients who admitted due to cancer depicted higher mortality rate (10/13, 77%), compared to those who admitted due to infections (12/73, 18%), stroke (4/15, 27%) or other causes (4/49, 8%) (p<0.0001). Extension of hospitalization was negatively correlated to both full (Spearman r=-0.35, p<0.0001) and short-form MNA (Spearman r=-0.33, p<0.0001) and positively correlated to MUST (Spearman r=0.34, p<0.0001) and sNAQ (Spearman r=0.3, p=0.0002). Additionally, the extension was inversely related to MedDiet score (Spearman r=-0.35, p<0.0001), IPAQ score (Spearman r=-0.34, p<0.0001), albumin levels (Pearson r=-0.36, p<0.0001), Ht (Pearson r=-0.2, p=0.02) and Hb (Pearson r=-0.18, p=0.02). Conclusion: A great proportion of elderly, hospitalized patients are malnourished or at risk of malnutrition. All nutritional scores, physical activity and albumin are significantly related to mortality and increased hospitalization.

Keywords: dietary habits, duration of admission, malnutrition, prognostic factors for mortality

Procedia PDF Downloads 290
4397 Disability and Education towards Inclusion

Authors: Amratpal Kaur

Abstract:

The right to education is universal in nature. This right has been enshrined in Indian Constitution and in various significant international documents. Unfortunately, despite of comprehensive legislation at the regional and international level 98% children with disabilities in developing countries don’t attend schools. Vast majority of children suffering from disability in developing nations lack basic literacy. The paper discusses in detail that the term inclusive education has got impetus all over the world and more so in India in the last decade. India has committed itself to the development of an inclusive education system as it is signatory to the Salamanca Statement and it has strived to achieve it thereon. Due to the shift from medical to social model of disability the emphasis is on inclusive school, so that the disabled children can be integrated in the mainstream easily. Thus, the idea is to educate disabled children along with their peers. The paper focuses on developing a clear understanding of inclusive education and identifying strategies to enhance the education of all children at the regional and international level.

Keywords: inclusion, disability, education, policy

Procedia PDF Downloads 526
4396 Assessment of the Change in Strength Properties of Biocomposites Based on PLA and PHA after 4 Years of Storage in a Highly Cooled Condition

Authors: Karolina Mazur, Stanislaw Kuciel

Abstract:

Polylactides (PLA) and polyhydroxyalkanoates (PHA) are the two groups of biodegradable and biocompatible thermoplastic polymers most commonly utilised in medicine and rehabilitation. The aim of this work is to determine the changes in the strength properties and the microstructures taking place in biodegradable polymer composites during their long-term storage in a highly cooled environment (i.e. a freezer at -24ºC) and to initially assess the durability of such biocomposites when used as single-use elements of rehabilitation or medical equipment. It is difficult to find any information relating to the feasibility of long-term storage of technical products made of PLA or PHA, but nonetheless, when using these materials to make products such as casings of hair dryers, laptops or mobile phones, it is safe to assume that without storing in optimal conditions their degradation time might last even several years. SEM images and the assessment of the strength properties (tensile, bending and impact testing) were carried out and the density and water sorption of two polymers, PLA and PHA (NaturePlast PLE 001 and PHE 001), filled with cellulose fibres (corncob grain – Rehofix MK100, Rettenmaier&Sohne) up to 10 and 20% mass were determined. The biocomposites had been stored at a temperature of -24ºC for 4 years. In order to find out the changes in the strength properties and the microstructure taking place after such a long time of storage, the results of the assessment have been compared with the results of the same research carried out 4 years before. Results shows a significant change in the manner of fractures – from ductile with developed surface for the PHA composite with corncob grain when the tensile testing was performed directly after the injection into a more brittle state after 4 years of storage, which is confirmed by the strength tests, where a decrease of deformation is observed at point of fracture. The research showed that there is a way of storing medical devices made out of PLA or PHA for a reasonably long time, as long as the required temperature of storage is met. The decrease of mechanical properties found during tensile testing and bending for PLA was less than 10% of the tensile strength, while the modulus of elasticity and deformation at fracturing slightly rose, which may implicate the beginning of degradation processes. The strength properties of PHA are even higher after 4 years of storage, although in that case the decrease of deformation at fracturing is significant, reaching even 40%, which suggests its degradation rate is higher than that of PLA. The addition of natural particles in both cases only slightly increases the biodegradation.

Keywords: biocomposites, PLA, PHA, storage

Procedia PDF Downloads 267
4395 Authentic Connection between the Deity and the Individual Human Being Is Vital for Psychological, Biological, and Social Health

Authors: Sukran Karatas

Abstract:

Authentic energy network interrelations between the Creator and the creations as well as from creations to creations are the most important points for the worlds of physics and metaphysic to unite together and work in harmony, both within human beings, on the other hand, have the ability to choose their own life style voluntarily. However, it includes the automated involuntary spirit, soul and body working systems together with the voluntary actions, which involve personal, cultural and universal, rational or irrational variable values. Therefore, it is necessary for human beings to know the methods of existing authentic energy network connections to be able to communicate correlate and accommodate the physical and metaphysical entities as a proper functioning unity; this is essential for complete human psychological, biological and social well-being. Authentic knowledge is necessary for human beings to verify the position of self within self and with others to regulate conscious and voluntary actions accordingly in order to prevent oppressions and frictions within self and between self and others. Unfortunately, the absence of genuine individual and universal basic knowledge about how to establish an authentic energy network connection within self, with the deity and the environment is the most problematic issue even in the twenty-first century. The second most problematic issue is how to maintain freedom, equality and justice among human beings during these strictly interwoven network connections, which naturally involve physical, metaphysical and behavioral actions of the self and the others. The third and probably the most complicated problem is the scientific identification and the authentication of the deity. This not only provides the whole power and control over the choosers to set their life orders but also to establish perfect physical and metaphysical links as fully coordinated functional energy network. This thus indicates that choosing an authentic deity is the key-point that influences automated, emotional, and behavioral actions altogether, which shapes human perception, personal actions, and life orders. Therefore, we will be considering the existing ‘four types of energy wave end boundary behaviors’, comprising, free end, fixed end boundary behaviors, as well as boundary behaviors from denser medium to less dense medium and from less dense medium to denser medium. Consequently, this article aims to demonstrate that the authentication and the choice of deity has an important effect on individual psychological, biological and social health. It is hoped that it will encourage new researches in the field of authentic energy network connections to establish the best position and the most correct interrelation connections with self and others without violating the authorized orders and the borders of one another to live happier and healthier lives together. In addition, the book ‘Deity and Freedom, Equality, Justice in History, Philosophy, Science’ has more detailed information for those interested in this subject.

Keywords: deity, energy network, power, freedom, equality, justice, happiness, sadness, hope, fear, psychology, biology, sociology

Procedia PDF Downloads 347
4394 Evidence on Scale Economies in National Bank of Pakistan

Authors: Sohail Zafar, Sardar Javaid Iqbal Khan

Abstract:

We use a parametric approach within a translog cost function framework to estimate the economies of scale in National Bank of Pakistan from 1997 to 2013. The results indicate significant economies of scale throughout the sample at aggregates and disaggregates taking in account size subject to stipulation ownership. The factor markets often produce scale inefficiencies in the banking of developing countries like Pakistan such inefficiencies are common due to distortion in factor markets leading to the use of inappropriate factor proportions. The findings suggest that National Bank of Pakistan diversify their asset portfolios that it has cost advantage, therefore, expansion in size should be encouraged under current technology because it appears to be cost effective. In addition, our findings support the implementation of universal banking model in Pakistan.

Keywords: scale economies, cost function, disaggregates, aggregates

Procedia PDF Downloads 328
4393 The Effect of Deformation Activation Volume, Strain Rate Sensitivity and Processing Temperature of Grain Size Variants

Authors: P. B. Sob, A. A. Alugongo, T. B. Tengen

Abstract:

The activation volume of 6082T6 aluminum is investigated at different temperatures on grain size variants. The deformation activation volume was computed on the basis of the relationship between the Boltzmann’s constant k, the testing temperatures, the material strain rate sensitivity and the material yield stress of grain size variants. The material strain rate sensitivity is computed as a function of yield stress and strain rate of grain size variants. The effect of the material strain rate sensitivity and the deformation activation volume of 6082T6 aluminum at different temperatures of 3-D grain are discussed. It is shown that the strain rate sensitivities and activation volume are negative for the grain size variants during the deformation of nanostructured materials. It is also observed that the activation volume vary in different ways with the equivalent radius, semi minor axis radius, semi major axis radius and major axis radius. From the obtained results it is shown that the variation of activation volume increased and decreased with the testing temperature. It was revealed that, increased in strain rate sensitivity led to decrease in activation volume whereas increased in activation volume led to decrease in strain rate sensitivity.

Keywords: nanostructured materials, grain size variants, temperature, yield stress, strain rate sensitivity, activation volume

Procedia PDF Downloads 251
4392 Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests

Authors: Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan

Abstract:

This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (Go from vs) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (MDMT). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (MDMT), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (svo'). Parametric study in this article defines the range of shear strain gDMT and GDMT/Go relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils.

Keywords: dilatometer testing, MASW testing, shear wave, soil stiffness, stiffness reduction, shear strain

Procedia PDF Downloads 318
4391 Sustainability of Healthcare Insurance in India: A Review of Health Insurance Scheme Launched by States in India

Authors: Mohd Zuhair, Ram Babu Roy

Abstract:

This paper presents an overview of the accessibility, design, and functioning of health insurance plans launched by state governments in India. In recent years, the governments of several states in India have come forward to provide health insurance coverage for the low-income group and rural population to reduce the out of pocket expenditure (OPE) on healthcare. Different health insurance schemes have different structures and offerings which differ in the different demographic factors. This study will portray a comparative analysis of the various health insurance schemes by analyzing different offerings and finance generation of the schemes. The comparative analysis will explain the lesson to be learned from these schemes and extend the existing knowledge of the health insurance in India. This would help in recognizing tension between various drivers and identifying issues pertaining to the sustainability of health insurance schemes in India.

Keywords: health insurance, out of pocket expenditure, universal healthcare, sustainability

Procedia PDF Downloads 239
4390 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 241
4389 Integrating Data Mining with Case-Based Reasoning for Diagnosing Sorghum Anthracnose

Authors: Mariamawit T. Belete

Abstract:

Cereal production and marketing are the means of livelihood for millions of households in Ethiopia. However, cereal production is constrained by technical and socio-economic factors. Among the technical factors, cereal crop diseases are the major contributing factors to the low yield. The aim of this research is to develop an integration of data mining and knowledge based system for sorghum anthracnose disease diagnosis that assists agriculture experts and development agents to make timely decisions. Anthracnose diagnosing systems gather information from Melkassa agricultural research center and attempt to score anthracnose severity scale. Empirical research is designed for data exploration, modeling, and confirmatory procedures for testing hypothesis and prediction to draw a sound conclusion. WEKA (Waikato Environment for Knowledge Analysis) was employed for the modeling. Knowledge based system has come across a variety of approaches based on the knowledge representation method; case-based reasoning (CBR) is one of the popular approaches used in knowledge-based system. CBR is a problem solving strategy that uses previous cases to solve new problems. The system utilizes hidden knowledge extracted by employing clustering algorithms, specifically K-means clustering from sampled anthracnose dataset. Clustered cases with centroid value are mapped to jCOLIBRI, and then the integrator application is created using NetBeans with JDK 8.0.2. The important part of a case based reasoning model includes case retrieval; the similarity measuring stage, reuse; which allows domain expert to transfer retrieval case solution to suit for the current case, revise; to test the solution, and retain to store the confirmed solution to the case base for future use. Evaluation of the system was done for both system performance and user acceptance. For testing the prototype, seven test cases were used. Experimental result shows that the system achieves an average precision and recall values of 70% and 83%, respectively. User acceptance testing also performed by involving five domain experts, and an average of 83% acceptance is achieved. Although the result of this study is promising, however, further study should be done an investigation on hybrid approach such as rule based reasoning, and pictorial retrieval process are recommended.

Keywords: sorghum anthracnose, data mining, case based reasoning, integration

Procedia PDF Downloads 82
4388 Children of Syria: Using Drawings for Diagnosing and Treating Trauma

Authors: Fatten F. Elkomy

Abstract:

The Syrian refugees are the largest refugee population since World War II. Mostly, children, these individuals were exposed to intense traumatic events in their homeland, throughout their journey, and during settlement in foreign lands. Art is a universal language to express feelings and tough human experiences. It is also a medium for healing and promoting creativity and resilience. Literature review was conducted to examine the use of art to facilitate psychiatric interviews, diagnosis, and therapy with traumatized children. Results show a severe impact of childhood trauma on the increased risk for abuse, neglect, and psychiatric disorders. Clinicians must recognize, evaluated and provide help for these children. In conclusion, drawings are used to tell a story, reflect deep emotions, and create a meaningful self-recognition and determination. Participants will understand art therapy using the expressive therapies continuum framework to evaluate drawings and to promote healing for refugee children.

Keywords: art therapy, children drawings, Syrian refugees, trauma in childhood

Procedia PDF Downloads 167
4387 Lab-on-Chip Multiplexed qPCR Analysis Utilizing Melting Curve Analysis Detects Up to 144 Alleles with Sub-hour Turn-around Time

Authors: Jeremy Woods, Fanqing Chen

Abstract:

Rapid genome testing can provide results in at best hours to days, though there are certain clinical decisions that could be guided by genetic test results that need results in hours to minutes. As such, methods of genetic Point of Care Testing (POCT) are required if genetic data is to guide management in illnesses in a wide variety of critical and emergent medical situations such as neonatal sepsis, chemotherapy administration in endometrial cancer, and glucose-6-phosphate dehydrogenase deficiency (G6PD)-associated neonatal hyperbilirubinemia. As such, we developed a POCT “lab-on-chip” technology capable of identifying up to 144 alleles in under an hour. This test required no specialized training to utilize and is suitable to deployment in clinics and hospitals for use by non-laboratory personnel such as nurses. We developed a multiplexed qPCR-based sample-to-answer system with melting curve analysis capable of detecting up to 144 alleles utilizing the Kelliop RapidSeq126 PCR platform combined with a single-use microfluidic cartridge. The RapidSeq126 is the size of a standard desktop printer and the microfluidic cartridges are smaller than a deck of playing cards. Thus the system was deployable in the outpatient setting for clinical trials of MT-RNR1 genotyping. The sample (buccal swab from volunteers or plasmids in media) used for DNA extraction was placed in the cartridge sample inlet prior to inserting the cartridge into the RapidSeq126. The microfluidic cartridge was composed of heat resistant polymer with a sample inlet, 100um conduits, liquid and solid reagents, valves, extraction chamber, lyophilization chamber, 12 PCR reaction chambers, and a waste chamber. No human effort was required for processing the sample and performing the assay other than placing the sample in the cartridge and placing the cartridge in the RapidSeq126. The RapidSeq126 has demonstrated ex vivo detection in plasmids and in vivo detection from human volunteer samples of up to 144 alleles per microfluidic cartridge used and did not require specialized laboratory training to operate. Efficacy was proven for several applications, such as multiple microsatellite instability (MSI) sites (SULF/RYR3/MRE11/ACVR2A/DIDO1/SEC31A/BTBD7), endometrial cancer POLE exonuclease domain (EMD) mutation status, and G6PD variants such as those commonly associated with hemolysis (c.202G>A, c.376A>G, c.680G>A>T, c.968T>C, 404A>C, c.871G>A). The RapidSeq126 system was also able to identify the three MT-RNR1 variants associated with aminoglycoside-induced sensorineural hearing loss (m.1555A>G, m.1095T>C, m.1494C>T). Results were provided in under an hour in a sample-to-answer fashion requiring no processing other than inserting the cartridge with the sample into the RapidSeq126. Results were provided in a digital, HL7-compliant format suitable for interfacing with Electronic Healthcare Record (EHR). The RapidSeq126 system provides a solution for emergency and critical medical situations requiring results in a matter of minutes to hours. The HL7-compliant data format of results enables the RapidSeq126 to interface directly with EHRs to generate best practice advisories and further reduce errors and time to diagnosis by providing digital results.

Keywords: genetic testing, pharmacogenomics, point of care testing, rapid genetic testing

Procedia PDF Downloads 10
4386 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities

Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun

Abstract:

As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.

Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning

Procedia PDF Downloads 59
4385 Novel Poly Schiff Bases as Corrosion Inhibitors for Carbon Steel in Sour Petroleum Conditions

Authors: Shimaa A. Higazy, Olfat E. El-Azabawy, Ahmed M. Al-Sabagh, Notaila M. Nasser, Eman A. Khamis

Abstract:

In this work, two novel Schiff base polymers (PSB1 and PSB₂) with extra-high protective barrier features were facilely prepared via Polycondensation reactions. They were applied for the first time as effective corrosion inhibitors in the sour corrosive media of petroleum environments containing hydrogen sulfide (H₂S) gas. For studying the polymers' inhibitive action on the carbon steel, numerous corrosion testing methods including potentiodynamic polarization (PDP), open circuit potential, and electrochemical impedance spectroscopy (EIS) have been employed at various temperatures (298-328 K) in the oil wells formation water with H₂S concentrations of 100, 400, and 700 ppm as aggressive media. The activation energy (Ea) and other thermodynamic parameters were computed to describe the mechanism of adsorption. The corrosion morphological traits and steel samples' surfaces composition were analyzed by field emission scanning electron microscope and energy dispersive X-ray analysis. The PSB2 inhibited sour corrosion more effectively than PSB1 when subjected to electrochemical testing. The 100 ppm concentration of PSB2 exhibited 82.18 % and 81.14 % inhibition efficiencies at 298 K in PDP and EIS measurements, respectively. While at 328 K, the inhibition efficiencies were 61.85 % and 67.4 % at the same dosage and measurements. These poly Schiff bases exhibited fascinating performance as corrosion inhibitors in sour environment. They provide a great corrosion inhibition platform for the sustainable future environment.

Keywords: schiff base polymers, corrosion inhibitors, sour corrosive media, potentiodynamic polarization, H₂S concentrations

Procedia PDF Downloads 102
4384 Applying Artificial Neural Networks to Predict Speed Skater Impact Concussion Risk

Authors: Yilin Liao, Hewen Li, Paula McConvey

Abstract:

Speed skaters often face a risk of concussion when they fall on the ice floor and impact crash mats during practices and competitive races. Several variables, including those related to the skater, the crash mat, and the impact position (body side/head/feet impact), are believed to influence the severity of the skater's concussion. While computer simulation modeling can be employed to analyze these accidents, the simulation process is time-consuming and does not provide rapid information for coaches and teams to assess the skater's injury risk in competitive events. This research paper promotes the exploration of the feasibility of using AI techniques for evaluating skater’s potential concussion severity, and to develop a fast concussion prediction tool using artificial neural networks to reduce the risk of treatment delays for injured skaters. The primary data is collected through virtual tests and physical experiments designed to simulate skater-mat impact. It is then analyzed to identify patterns and correlations; finally, it is used to train and fine-tune the artificial neural networks for accurate prediction. The development of the prediction tool by employing machine learning strategies contributes to the application of AI methods in sports science and has theoretical involvements for using AI techniques in predicting and preventing sports-related injuries.

Keywords: artificial neural networks, concussion, machine learning, impact, speed skater

Procedia PDF Downloads 111