Search results for: shoulder extensor muscles isometric strength
2258 The Flexural Behavior of Reinforced Concrete Beams Externally Strengthened with CFRP Composites Exposed for Different Environment Conditions
Authors: Rajai Al-Rousan
Abstract:
The repair and strengthening of concrete structures is a big challenge for the concrete industry for both engineers and contractors. Due to increasing economical constraints, the current trend is to repair/upgrade deteriorated and functionally obsolete structures rather than replacing them with new structures. CFRP has been used previously by air space industries regardless of the high costs. The decrease in the costs of the composite materials, as results of the technology improvement, has made CFRP an alternative to conventional materials for many applications. The primary objective of this research is to investigate the flexural behavior of reinforced concrete (RC) beams externally strengthened with CFRP composites exposed for three years for the following conditions: (a) room temperature, (b) cyclic ponding in 15% salt-water solution, (c) hot-water of 65oC, and (d) rapid freeze/thaw cycles. Results indicated that the after three years of various environmental conditions, the bond strength between the concrete beams and CFRP sheets was not affected. No signs of separation or debonding of CFRP sheets were observed before testing. Also, externally strengthening RC beams with CFRP sheets leads to a substantial increase in the ductility of concrete structures. This is a result of forcing the concrete to undergo inelastic deformation, resulting in compression failure of the structure after yielding of steel reinforcement. In addition, exposure to heat water tank for three years reduces the ultimate load by about 11%. This 11% reduction in the ultimate load equates to about 53%, 46% and 68% loss of the gain of the strength attributed to the CFRP of 2/3 Layer, 1 Layers and 2 Layers CFRP Sheets respectively. This mean that with decreasing of number of layers the environmental exposure had an efficient effect on concrete by protection concrete from environmental effect and adverse effect on the bond performance.Keywords: flexural, behavior, CFRP, composites, environment, conditions
Procedia PDF Downloads 3102257 Geometric Imperfections in Lattice Structures: A Simulation Strategy to Predict Strength Variability
Authors: Xavier Lorang, Ahmadali Tahmasebimoradi, Chetra Mang, Sylvain Girard
Abstract:
The additive manufacturing processes (e.g. selective laser melting) allow us to produce lattice structures which have less weight, higher impact absorption capacity, and better thermal exchange property compared to the classical structures. Unfortunately, geometric imperfections (defects) in the lattice structures are by-products results of the manufacturing process. These imperfections decrease the lifetime and the strength of the lattice structures and alternate their mechanical responses. The objective of the paper is to present a simulation strategy which allows us to take into account the effect of the geometric imperfections on the mechanical response of the lattice structure. In the first part, an identification method of geometric imperfection parameters of the lattice structure based on point clouds is presented. These point clouds are based on tomography measurements. The point clouds are fed into the platform LATANA (LATtice ANAlysis) developed by IRT-SystemX to characterize the geometric imperfections. This is done by projecting the point clouds of each microbeam along the beam axis onto a 2D surface. Then, by fitting an ellipse to the 2D projections of the points, the geometric imperfections are characterized by introducing three parameters of an ellipse; semi-major/minor axes and angle of rotation. With regard to the calculated parameters of the microbeam geometric imperfections, a statistical analysis is carried out to determine a probability density law based on a statistical hypothesis. The microbeam samples are randomly drawn from the density law and are used to generate lattice structures. In the second part, a finite element model for the lattice structure with the simplified geometric imperfections (ellipse parameters) is presented. This numerical model is used to simulate the generated lattice structures. The propagation of the uncertainties of geometric imperfections is shown through the distribution of the computed mechanical responses of the lattice structures.Keywords: additive manufacturing, finite element model, geometric imperfections, lattice structures, propagation of uncertainty
Procedia PDF Downloads 1872256 Practical Modelling of RC Structural Walls under Monotonic and Cyclic Loading
Authors: Reza E. Sedgh, Rajesh P. Dhakal
Abstract:
Shear walls have been used extensively as the main lateral force resisting systems in multi-storey buildings. The recent development in performance based design urges practicing engineers to conduct nonlinear static or dynamic analysis to evaluate seismic performance of multi-storey shear wall buildings by employing distinct analytical models suggested in the literature. For practical purpose, application of macroscopic models to simulate the global and local nonlinear behavior of structural walls outweighs the microscopic models. The skill level, computational time and limited access to RC specialized finite element packages prevents the general application of this method in performance based design or assessment of multi-storey shear wall buildings in design offices. Hence, this paper organized to verify capability of nonlinear shell element in commercially available package (Sap2000) in simulating results of some specimens under monotonic and cyclic loads with very oversimplified available cyclic material laws in the analytical tool. The selection of constitutive models, the determination of related parameters of the constituent material and appropriate nonlinear shear model are presented in detail. Adoption of proposed simple model demonstrated that the predicted results follow the overall trend of experimental force-displacement curve. Although, prediction of ultimate strength and the overall shape of hysteresis model agreed to some extent with experiment, the ultimate displacement(significant strength degradation point) prediction remains challenging in some cases.Keywords: analytical model, nonlinear shell element, structural wall, shear behavior
Procedia PDF Downloads 4042255 Identification and Characterization of Oil-Degrading Bacteria from Crude Oil-Contaminated Desert Soil in Northeastern Jordan
Authors: Mohammad Aladwan, Adelia Skripova
Abstract:
Bioremediation aspects of crude oil-polluted fields can be achieved by isolation and identification of bacterial species from oil-contaminated soil in order to choose the most active isolates and increase the strength of others. In this study, oil-degrading bacteria were isolated and identified from oil-contaminated soil samples in northeastern Jordan. The bacterial growth count (CFU/g) was between 1.06×10⁵ and 0.75×10⁹. Eighty-two bacterial isolates were characterized by their morphology and biochemical tests. The identified bacterial genera included: Klebsiella, Staphylococcus, Citrobacter, Lactobacillus, Alcaligenes, Pseudomonas, Hafnia, Micrococcus, Rhodococcus, Serratia, Enterobacter, Bacillus, Salmonella, Mycobacterium, Corynebacterium, and Acetobacter. Molecular identification of a universal primer 16S rDNA gene was used to identify four bacterial isolates: Microbacterium esteraromaticum strain L20, Pseudomonas stutzeri strain 13636M, Klebsilla pneumoniae, and uncultured Klebsilla sp., known as new strains. Our results indicate that their specific oil-degrading bacteria isolates might have a high strength of oil degradation from oil-contaminated sites. Staphylococcus intermedius (75%), Corynebacterium xerosis (75%), and Pseudomonas fluorescens (50%) showed a high growth rate on different types of hydrocarbons, such as crude oil, toluene, naphthalene, and hexane. In addition, monooxygenase and catechol 2,3-dioxygenase were detected in 17 bacterial isolates, indicating their superior hydrocarbon degradation potential. Total petroleum hydrocarbons were analyzed using gas chromatography for soil samples. Soil samples M5, M7, and M8 showed the highest levels (43,645, 47,805, and 45,991 ppm, respectively), and M4 had the lowest level (7,514 ppm). All soil samples were analyzed for heavy metal contamination (Cu, Cd, Mn, Zn, and Pb). Site M7 contains the highest levels of Cu, Mn, and Pb, while Site M8 contains the highest levels of Mn and Zn. In the future, these isolates of bacteria can be used for the cleanup of oil-contaminated soil.Keywords: bioremediation, 16S rDNA gene, oil-degrading bacteria, hydrocarbons
Procedia PDF Downloads 1272254 Periplasmic Expression of Anti-RoxP Antibody Fragments in Escherichia Coli.
Authors: Caspar S. Carson, Gabriel W. Prather, Nicholas E. Wong, Jeffery R. Anton, William H. McCoy
Abstract:
Cutibacterium acnes is a commensal bacterium found on human skin that has been linked to acne. C. acnes can also be an opportunistic pathogen when it infiltrates the body during surgery. This pathogen can cause dangerous infections of medical implants, such as shoulder replacements, leading to life-threatening blood infections. Compounding this issue, C. acnes resistance to many antibiotics has become an increasing problem worldwide, creating a need for special forms of treatment. C. acnes expresses the protein RoxP, and it requires this protein to colonize human skin. Though this protein is required for C. acnes skin colonization, its function is not yet understood. Inhibition of RoxP function might be an effective treatment for C. acnes infections. To develop such reagents, the McCoy Laboratory generated four unique anti-RoxP antibodies. Preliminary studies in the McCoy Lab have established that each antibody binds a distinct site on RoxP. To assess the potential of these antibodies as therapeutics, it is necessary to specifically characterize these antibody epitopes and evaluate them in assays that assess their ability to inhibit RoxP-dependent C. acnes growth. To provide material for these studies, an antibody expression construct, Fv-clasp(v2), was adapted to encode anti-RoxP antibody sequences. The author hypothesizes that this expression strategy can produce sufficient amounts of >95% pure antibody fragments for further characterization of these antibodies. Four anti-RoxP Fv-clasp(v2) expression constructs (pET vector-based) were transformed into E. coli BL21-Gold(DE3) cells and a small-scale expression and purification trial was performed for each construct to evaluate anti-RoxP Fv-clasp(v2) yield and purity. Successful expression and purification of these antibody constructs will allow for their use in structural studies, such as protein crystallography and cryogenic electron microscopy. Such studies would help to define the antibody binding sites on RoxP, which could then be leveraged in the development of certain methods to treat C. acnes infection through RoxP inhibition.Keywords: structural biology, protein expression, infectious disease, antibody, therapeutics, E. coli
Procedia PDF Downloads 602253 Experimental Characterisation of Composite Panels for Railway Flooring
Authors: F. Pedro, S. Dias, A. Tadeu, J. António, Ó. López, A. Coelho
Abstract:
Railway transportation is considered the most economical and sustainable way to travel. However, future mobility brings important challenges to railway operators. The main target is to develop solutions that stimulate sustainable mobility. The research and innovation goals for this domain are efficient solutions, ensuring an increased level of safety and reliability, improved resource efficiency, high availability of the means (train), and satisfied passengers with the travel comfort level. These requirements are in line with the European Strategic Agenda for the 2020 rail sector, promoted by the European Rail Research Advisory Council (ERRAC). All these aspects involve redesigning current equipment and, in particular, the interior of the carriages. Recent studies have shown that two of the most important requirements for passengers are reasonable ticket prices and comfortable interiors. Passengers tend to use their travel time to rest or to work, so train interiors and their systems need to incorporate features that meet these requirements. Among the various systems that integrate train interiors, the flooring system is one of the systems with the greatest impact on passenger safety and comfort. It is also one of the systems that takes more time to install on the train, and which contributes seriously to the weight (mass) of all interior systems. Additionally, it presents a strong impact on manufacturing costs. The design of railway floor, in the development phase, is usually made relying on a design software that allows to draw and calculate several solutions in a short period of time. After obtaining the best solution, considering the goals previously defined, experimental data is always necessary and required. This experimental phase has such great significance, that its outcome can provoke the revision of the designed solution. This paper presents the methodology and some of the results of an experimental characterisation of composite panels for railway application. The mechanical tests were made for unaged specimens and for specimens that suffered some type of aging, i.e. heat, cold and humidity cycles or freezing/thawing cycles. These conditionings aim to simulate not only the time effect, but also the impact of severe environmental conditions. Both full solutions and separated components/materials were tested. For the full solution, (panel) these were: four-point bending tests, tensile shear strength, tensile strength perpendicular to the plane, determination of the spreading of water, and impact tests. For individual characterisation of the components, more specifically for the covering, the following tests were made: determination of the tensile stress-strain properties, determination of flexibility, determination of tear strength, peel test, tensile shear strength test, adhesion resistance test and dimensional stability. The main conclusions were that experimental characterisation brings a huge contribution to understand the behaviour of the materials both individually and assembled. This knowledge contributes to the increase the quality and improvements of premium solutions. This research work was framed within the POCI-01-0247-FEDER-003474 (coMMUTe) Project funded by Portugal 2020 through the COMPETE 2020.Keywords: durability, experimental characterization, mechanical tests, railway flooring system
Procedia PDF Downloads 1552252 Effect of Silica Nanoparticles on Three-Point Flexural Properties of Isogrid E-Glass Fiber/Epoxy Composite Structures
Authors: Hamed Khosravi, Reza Eslami-Farsani
Abstract:
Increased interest in lightweight and efficient structural components has created the need for selecting materials with improved mechanical properties. To do so, composite materials are being widely used in many applications, due to durability, high strength and modulus, and low weight. Among the various composite structures, grid-stiffened structures are extensively considered in various aerospace and aircraft applications, because of higher specific strength and stiffness, higher impact resistance, superior load-bearing capacity, easy to repair, and excellent energy absorption capability. Although there are a good number of publications on the design aspects and fabrication of grid structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Therefore, the aim of this research is to study the reinforcing effect of silica nanoparticles on the flexural properties of epoxy/E-glass isogrid panels under three-point bending test. Samples containing 0, 1, 3, and 5 wt.% of the silica nanoparticles, with 44 and 48 vol.% of the glass fibers in the ribs and skin components respectively, were fabricated by using a manual filament winding method. Ultrasonic and mechanical routes were employed to disperse the nanoparticles within the epoxy resin. To fabricate the ribs, the unidirectional fiber rovings were impregnated with the matrix mixture (epoxy + nanoparticles) and then laid up into the grooves of a silicone mold layer-by-layer. At once, four plies of woven fabrics, after impregnating into the same matrix mixture, were layered on the top of the ribs to produce the skin part. In order to conduct the ultimate curing and to achieve the maximum strength, the samples were tested after 7 days of holding at room temperature. According to load-displacement graphs, the bellow trend was observed for all of the samples when loaded from the skin side; following an initial linear region and reaching a load peak, the curve was abruptly dropped and then showed a typical absorbed energy region. It would be worth mentioning that in these structures, a considerable energy absorption was observed after the primary failure related to the load peak. The results showed that the flexural properties of the nanocomposite samples were always higher than those of the nanoparticle-free sample. The maximum enhancement in flexural maximum load and energy absorption was found to be for the incorporation of 3 wt.% of the nanoparticles. Furthermore, the flexural stiffness was continually increased by increasing the silica loading. In conclusion, this study suggested that the addition of nanoparticles is a promising method to improve the flexural properties of grid-stiffened fibrous composite structures.Keywords: grid-stiffened composite structures, nanocomposite, three point flexural test , energy absorption
Procedia PDF Downloads 3412251 Scientific Expedition to Understand the Crucial Issues of Rapid Lake Expansion and Moraine Dam Instability Phenomena to Justify the Lake Lowering Effort of Imja Lake, Khumbu Region of Sagarmatha, Nepal
Authors: R. C. Tiwari, N. P. Bhandary, D. B. Thapa Chhetri, R. Yatabe
Abstract:
The research enlightens the various issues of lake expansion and stability of the moraine dam of Imja lake. The Imja lake considered that the world highest altitude lake (5010m from m.s.l.), located in the Khumbu, Sagarmatha region of Nepal (27.90 N and 86.90 E) was reported as one of the fast growing glacier lakes in the Nepal Himalaya. The research explores a common phenomenon of lake expansion and stability issues of moraine dam to justify the necessity of lake lowering efforts if any in future in other glacier lakes in Nepal Himalaya. For this, we have explored the root causes of rapid lake expansion along with crucial factors responsible for the stability of moraine mass. This research helps to understand the structure of moraine dam and the ice, water and moraine interactions to the strength of moraine dam. The nature of permafrost layer and its effects on moraine dam stability is also studied here. The detail Geo-Technical properties of moraine mass of Imja lake gives a clear picture of the strength of the moraine material and their interactions. The stability analysis of the moraine dam under the consideration of strong ground motion of 7.8Mw 2015 Barpak-Gorkha and its major aftershock 7.3Mw Kodari, Sindhupalchowk-Dolakha border, Nepal earthquakes have also been carried out here to understand the necessity of lake lowering efforts. The lake lowering effort was recently done by Nepal Army by constructing an open channel and lowered 3m. And, it is believed that the entire region is now safe due to continuous draining of lake water by 3m. But, this option does not seem adequate to offer a significant risk reduction to downstream communities in this much amount of volume and depth, lowering as in the 75 million cubic meter water impounded with an average depth of 148.9m.Keywords: finite element method, glacier, moraine, stability
Procedia PDF Downloads 2132250 The Effect of Eight Weeks of Aerobic Training on Indices of Cardio-Respiratory and Exercise Tolerance in Overweight Women with Chronic Asthma
Authors: Somayeh Negahdari, Mohsen Ghanbarzadeh, Masoud Nikbakht, Heshmatolah Tavakol
Abstract:
Asthma, obesity and overweight are the main factors causing change within the heart and respiratory airways. Asthma symptoms are normally observed during exercising. Epidemiological studies have indicated asthma symptoms occurring due to certain lifestyle habits; for example, a sedentary lifestyle. In this study, eight weeks of aerobic exercises resulted in a positive effect overall in overweight women experiencing mild chronic asthma. The quasi-experimental applied research has been done based on experimental and control groups. The experimental group (seven patients) and control group (n = 7) were graded before and after the test. According to the Borg dyspnea and fatigue Perception Index, the training intensity has determined. Participants in the study performed a sub-maximal aerobic activity schedule (45% to 80% of maximum heart rate) for two months, while the control group (n = 7) stayed away from aerobic exercise. Data evaluation and analysis of covariance compared both the pre-test and post-test with paired t-test at significance level of P≤ 0.05. After eight weeks of exercise, the results of the experimental group show a significant decrease in resting heart rate, systolic blood pressure, minute ventilation, while a significant increase in maximal oxygen uptake and tolerance activity (P ≤ 0.05). In the control group, there was no significant difference in these parameters ((P ≤ 0.05). The results indicate the aerobic activity can strengthen the respiratory muscles, while other physiological factors could result in breathing and heart recovery. Aerobic activity also resulted in favorable changes in cardiovascular parameters, and exercise tolerance of overweight women with chronic asthma.Keywords: asthma, respiratory cardiac index, exercise tolerance, aerobic, overweight
Procedia PDF Downloads 2342249 Microstructure and Mechanical Properties of Low Alloy Steel with Double Austenitizing Tempering Heat Treatment
Authors: Jae-Ho Jang, Jung-Soo Kim, Byung-Jun Kim, Dae-Geun Nam, Uoo-Chang Jung, Yoon-Suk Choi
Abstract:
Low alloy steels are widely used for pressure vessels, spent fuel storage, and steam generators required to withstand the internal pressure and prevent unexpected failure in nuclear power plants, which these may suffer embrittlement by high levels of radiation and heat for a long period. Therefore, it is important to improve mechanical properties of low alloy steels for the integrity of structure materials at an early stage of fabrication. Recently, it showed that a double austenitizing and tempering (DTA) process resulted in a significant improvement of strength and toughness by refinement of prior austenite grains. In this study, it was investigated that the mechanism of improving mechanical properties according to the change of microstructure by the second fully austenitizing temperature of the DAT process for low alloy steel required the structural integrity. Compared to conventional single austenitizing and tempering (SAT) process, the tensile elongation properties have improved about 5%, DBTTs have obtained result in reduction of about -65℃, and grain size has decreased by about 50% in the DAT process conditions. Grain refinement has crack propagation interference effect due to an increase of the grain boundaries and amount of energy absorption at low temperatures. The higher first austenitizing temperature in the DAT process, the more increase the spheroidized carbides and strengthening the effect of fine precipitates in the ferrite grain. The area ratio of the dimple in the transition area has increased by proportion to the effect of spheroidized carbides. This may the primary mechanisms that can improve low-temperature toughness and elongation while maintaining a similar hardness and strength.Keywords: double austenitizing, Ductile Brittle transition temperature, grain refinement, heat treatment, low alloy steel, low-temperature toughness
Procedia PDF Downloads 5102248 Managing Physiological and Nutritional Needs of Rugby Players in Kenya
Authors: Masita Mokeira, Kimani Rita, Obonyo Brian, Kwenda Kennedy, Mugambi Purity, Kirui Joan, Chomba Eric, Orwa Daniel, Waiganjo Peter
Abstract:
Rugby is a highly intense and physical game requiring speed and strength. The need for physical fitness therefore cannot be over-emphasized. Sports are no longer about lifting weights so as to build muscle. Most professional teams are investing much more in the sport in terms of time, equipment and other resources. To play competitively, Kenyan players may therefore need to complement their ‘home-grown’ and sometimes ad-hoc training and nutrition regimes with carefully measured strength and conditioning, diet, nutrition, and supplementation. Nokia Research Center and University of Nairobi conducted an exploratory study on needs and behaviours surrounding sports in Africa. Rugby being one sport that is gaining ground in Kenya was selected as the main focus. The end goal of the research was to identify areas where mobile technology could be used to address gaps, challenges and/or unmet needs. Themes such as information gap, social culture, growth, and development, revenue flow, and technology adoption among others emerged about the sport. From the growth and development theme, it was clear that as rugby continues to grow in the country, teams, coaches, and players are employing interesting techniques both in training and playing. Though some of these techniques are indeed scientific, those employing them are sometimes not fully aware of their scientific basis. A further case study on sports science in rugby in Kenya focusing on physical fitness and nutrition revealed interesting findings. This paper discusses findings on emerging adoption of techniques in managing physiological and nutritional needs of rugby players across different levels of rugby in Kenya namely high school, club and national levels.Keywords: rugby, nutrition, physiological needs, sports science
Procedia PDF Downloads 3872247 The Prevalence and Associated Factors of Frailty and Its Relationship with Falls in Patients with Schizophrenia
Authors: Bo-Jian Wu, Si-Heng Wu
Abstract:
Objectives: Frailty is a condition of a person who has chronic health problems complicated by a loss of physiological reserve and deteriorating functional abilities. The frailty syndrome was defined by Fried and colleagues, i.e., weight loss, fatigue, decreased grip strength, slow gait speed, and low physical activity. However, to our best knowledge, there have been rare studies exploring the prevalence of frailty and its association with falls in patients with schizophrenia. Methods: A total of 559 hospitalized patients were recruited from a public psychiatric hospital in 2013. The majority of the subjects were males (361, 64.6%). The average age was 53.5 years. All patients received the assessment of frailty status defined by Fried and colleagues. The status of a fall within one year after the assessment of frailty, clinical and demographic data was collected from medical records. Logistic regression was used to calculate the odds ratio of associated factors. Results : A total of 9.2% of the participants met the criteria of frailty. The percentage of patients having a fall was 7.2%. Age were significantly associated with frailty (odds ratio = 1.057, 95% confidence interval = 1.025-1.091); however, sex was not associated with frailty (p = 0.17). After adjustment for age and sex, frailty status was associated with a fall (odds ratio = 3.62, 95% confidence interval = 1.58-8.28). Concerning the components of frailty, decreased grip strength (odds ratio = 2.44, 95% confidence interval = 1.16-5.14), slow gait speed (odds ratio = 2.82, 95% confidence interval = 1.21-6.53), and low physical activity (odds ratio = 2.64, 95% confidence interval = 1.21-5.78) were found to be associated with a fall. Conclusions: Our findings suggest the prevalence of frailty was about 10% in hospitalized patients with chronic patients with schizophrenia, and frailty status was significant with a fall in this group. By using the status of frailty, it may be beneficial to potential target candidates having fallen in the future as early as possible. The effective intervention of prevention of further falls may be given in advance. Our results bridge this gap and open a potential avenue for the prevention of falls in patients with schizophrenia. Frailty is certainly an important factor for maintaining wellbeing among these patients.Keywords: fall, frailty, schizophrenia, Taiwan
Procedia PDF Downloads 1652246 The Evaluation of the Performance of CaCO3/Polymer Nano-Composites for the Preservation of Historic Limestone Monuments
Authors: Mohammed Badereldien, Rezk Diab, Mohamoud Ali, Ayman Aboelkassem
Abstract:
The stone surfaces of historical architectural heritage in Egypt are under threat from of various environmental factors such as temperature fluctuation, humidity, pollution, and microbes. Due to these factors, the facades of buildings are deteriorating deformation and disfiguration of external decoration and the formation of black accretion also often from the stone works. The aim of this study is to evaluate the effectiveness of CaCO₃ nano-particles as consolidation and protection material for calcareous stone monuments. Selected tests were carried out in order to estimate the superficial consolidating and protective effect of the treatment. When applied the nanoparticles dispersed in the acrylic copolymer; poly ethylmethacrylate (EMA)/methylacrylate (MA) (70/30, respectively) (EMA)/methylacrylate (MA) (70/30, respectively). The synthesis process of CaCO₃ nanoparticles/polymer nano-composite was prepared using in situ emulsion polymerization system. The consolidation and protection were characterized by TEM, while the penetration depth, re-aggregating effects of the deposited phase, and the surface morphology before and after treatment were examined by SEM (Scanning Electron Microscopy). Improvement of the stones' mechanical properties was evaluated by compressive strength tests. Changes in water-interaction properties were evaluated by water absorption capillarity measurements, and colorimetric measurements were used to evaluate the optical appearance. Together the results appear to demonstrate that CaCO₃/polymer nanocomposite is an efficient material for the consolidation of limestone architecture and monuments. As compared with samples treated with pure acrylic copolymer without Calcium carbonate nanoparticles, for example, CaCO₃ nanoparticles are completely compatible, strengthening limestone against thermal aging and improving its mechanical properties.Keywords: calcium carbonate nanoparticles, consolidation, nanocomposites, calcareous stone, colorimetric measurements, compressive strength
Procedia PDF Downloads 1352245 Development and Characterization of Castor Oil-Based Biopolyurethanes for High-Performance Coatings and Waterproofing Applications
Authors: Julie Anne Braun, Leonardo D. da Fonseca, Gerson C. Parreira, Ricardo J. E. Andrade
Abstract:
Polyurethanes (PU) are multifunctional polymers used across various industries. In construction, thermosetting polyurethanes are applied as coatings for flooring, paints, and waterproofing. They are widely specified in Brazil for waterproofing concrete structures like roof slabs and parking decks. Applied to concrete, they form a fully adhered membrane, providing a protective barrier with low water absorption, high chemical resistance, impermeability to liquids, and low vapor permeability. Their mechanical properties, including tensile strength (1 to 35 MPa) and Shore A hardness (83 to 88), depend on resin molecular weight and functionality, often using Methylene diphenyl diisocyanate. PU production, reliant on fossil-derived isocyanates and polyols, contributes significantly to carbon emissions. Sustainable alternatives, such as biopolyurethanes from renewable sources, are needed. Castor oil is a viable option for synthesizing sustainable polyurethanes. As a bio-based feedstock, castor oil is extensively cultivated in Brazil, making it a feasible option for the national market and ranking third internationally. This study aims to develop and characterize castor oil-based biopolyurethane for high-performance waterproofing and coating applications. A comparative analysis between castor oil-based PU and polyether polyol-based PU was conducted. Mechanical tests (tensile strength, Shore A hardness, abrasion resistance) and surface properties (contact angle, water absorption) were evaluated. Thermal, chemical, and morphological properties were assessed using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The results demonstrated that both polyurethanes exhibited high mechanical strength. Specifically, the tensile strength for castor oil-based PU was 19.18 MPa, compared to 12.94 MPa for polyether polyol-based PU. Similarly, the elongation values were 146.90% for castor oil-based PU and 135.50% for polyether polyol-based PU. Both materials exhibited satisfactory performance in terms of abrasion resistance, with mass loss of 0.067% for castor oil PU and 0.043% for polyether polyol PU and Shore A hardness values of 89 and 86, respectively, indicating high surface hardness. The results of the water absorption and contact angle tests confirmed the hydrophilic nature of polyether polyol PU, with a contact angle of 58.73° and water absorption of 2.53%. Conversely, the castor oil-based PU exhibited hydrophobic properties, with a contact angle of 81.05° and water absorption of 0.45%. The results of the FTIR analysis indicated the absence of a peak around 2275 cm-1, which suggests that all of the NCO groups were consumed in the stoichiometric reaction. This conclusion is supported by the high mechanical test results. The TGA results indicated that polyether polyol PU demonstrated superior thermal stability, exhibiting a mass loss of 13% at the initial transition (around 310°C), in comparison to castor oil-based PU, which experienced a higher initial mass loss of 25% at 335°C. In summary, castor oil-based PU demonstrated mechanical properties comparable to polyether polyol PU, making it suitable for applications such as trafficable coatings. However, its higher hydrophobicity makes it more promising for watertightness. Increasing environmental concerns necessitate reducing reliance on non-renewable resources and mitigating the environmental impacts of polyurethane production. Castor oil is a viable option for sustainable polyurethanes, aligning with emission reduction goals and responsible use of natural resources.Keywords: polyurethane, castor oil, sustainable, waterproofing, construction industry
Procedia PDF Downloads 432244 Field Performance of Cement Treated Bases as a Reflective Crack Mitigation Technique for Flexible Pavements
Authors: Mohammad R. Bhuyan, Mohammad J. Khattak
Abstract:
Deterioration of flexible pavements due to crack reflection from its soil-cement base layer is a major concern around the globe. The service life of flexible pavement diminishes significantly because of the reflective cracks. Highway agencies are struggling for decades to prevent or mitigate these cracks in order to increase pavement service lives. The root cause of reflective cracks is the shrinkage crack which occurs in the soil-cement bases during the cement hydration process. The primary factor that causes the shrinkage is the cement content of the soil-cement mixture. With the increase of cement content, the soil-cement base gains strength and durability, which is necessary to withstand the traffic loads. But at the same time, higher cement content creates more shrinkage resulting in more reflective cracks in pavements. Historically, various states of USA have used the soil-cement bases for constructing flexile pavements. State of Louisiana (USA) had been using 8 to 10 percent of cement content to manufacture the soil-cement bases. Such traditional soil-cement bases yield 2.0 MPa (300 psi) 7-day compressive strength and are termed as cement stabilized design (CSD). As these CSD bases generate significant reflective cracks, another design of soil-cement base has been utilized by adding 4 to 6 percent of cement content called cement treated design (CTD), which yields 1.0 MPa (150 psi) 7-day compressive strength. The reduction of cement content in the CTD base is expected to minimize shrinkage cracks thus increasing pavement service lives. Hence, this research study evaluates the long-term field performance of CTD bases with respect to CSD bases used in flexible pavements. Pavement Management System of the state of Louisiana was utilized to select flexible pavement projects with CSD and CTD bases that had good historical record and time-series distress performance data. It should be noted that the state collects roughness and distress data for 1/10th mile section every 2-year period. In total, 120 CSD and CTD projects were analyzed in this research, where more than 145 miles (CTD) and 175 miles (CSD) of roadways data were accepted for performance evaluation and benefit-cost analyses. Here, the service life extension and area based on distress performance were considered as benefits. It was found that CTD bases increased 1 to 5 years of pavement service lives based on transverse cracking as compared to CSD bases. On the other hand, the service lives based on longitudinal and alligator cracking, rutting and roughness index remain the same. Hence, CTD bases provide some service life extension (2.6 years, on average) to the controlling distress; transverse cracking, but it was inexpensive due to its lesser cement content. Consequently, CTD bases become 20% more cost-effective than the traditional CSD bases, when both bases were compared by net benefit-cost ratio obtained from all distress types.Keywords: cement treated base, cement stabilized base, reflective cracking , service life, flexible pavement
Procedia PDF Downloads 1692243 Mechanical and Physical Properties of Wood Composite Panel from Recycled Plastic and Sawdust of Cordia alliodora (Ruiz and Pav.)
Authors: Ahmed Bolaji Alarape, Oluwatobi Damilola Aba, Usman Shehu
Abstract:
Wood plastic composite boards were made from sawn dust of Cordia alliodora and recycled polyethylene at a mixing ratio of 1.5ratio1, 2.5ratio1 and 3.5ratio1 and nominal densities of 600 kilograms per meter cube, 700 kilograms per meter cube, and 800 kilograms per meter cube, The material was hot pressed at 150-degree celsius to produce board of 250 millimeter by 250 millimeter by 6 millimeter of which 18 boards were produced. The experiment was subject to 3 by 3 factorial experiments in Completely Randomised Design (CRD). Analysis of variance and Duncan Multiple Range Test (DMRT) was adopted by 3 by 3 at 5 percent probability. The strength properties of the boards such as modulus of rupture (MOR) and modulus of elasticity (MOE) were investigated, while the dimensional properties of the board such as the water absorption (WA) and thickness swelling (TS) were as well determined after 12hrs and 24hrs of water immersion. The result showed that the mean values of MOE ranged from 9100.73 Newtons per square millimeters to 12086.96 Newtons per square millimeters while MOR values ranged from 48.26 Newtons per square millimeters to 103.09 Newtons per square millimeters. The values of WA and TS after 12hrs immersion ranged from 1.21 percent to 1.56 percent and 0.00 percent to 0.13 percent, respectively. The values of WA and TS after 24hrs of water immersion ranged from 1.66 percent to 2.99 percent and 0.02 percent to 0.18 percent, respectively. The higher the value of board density and the high-density polythene /sawdust ratio, the stronger, the stiffer and more dimensionally stable the wood plastic composite boards obtained. In addition, as the density of the board increases, the strength property of the boards increases. Hence the board will be suitable for internal construction materials.Keywords: wood Plastic composite, modulus of rupture, modulus of elasticity, dimensional stability
Procedia PDF Downloads 1792242 Development of a Predictive Model to Prevent Financial Crisis
Authors: Tengqin Han
Abstract:
Delinquency has been a crucial factor in economics throughout the years. Commonly seen in credit card and mortgage, it played one of the crucial roles in causing the most recent financial crisis in 2008. In each case, a delinquency is a sign of the loaner being unable to pay off the debt, and thus may cause a lost of property in the end. Individually, one case of delinquency seems unimportant compared to the entire credit system. China, as an emerging economic entity, the national strength and economic strength has grown rapidly, and the gross domestic product (GDP) growth rate has remained as high as 8% in the past decades. However, potential risks exist behind the appearance of prosperity. Among the risks, the credit system is the most significant one. Due to long term and a large amount of balance of the mortgage, it is critical to monitor the risk during the performance period. In this project, about 300,000 mortgage account data are analyzed in order to develop a predictive model to predict the probability of delinquency. Through univariate analysis, the data is cleaned up, and through bivariate analysis, the variables with strong predictive power are detected. The project is divided into two parts. In the first part, the analysis data of 2005 are split into 2 parts, 60% for model development, and 40% for in-time model validation. The KS of model development is 31, and the KS for in-time validation is 31, indicating the model is stable. In addition, the model is further validation by out-of-time validation, which uses 40% of 2006 data, and KS is 33. This indicates the model is still stable and robust. In the second part, the model is improved by the addition of macroeconomic economic indexes, including GDP, consumer price index, unemployment rate, inflation rate, etc. The data of 2005 to 2010 is used for model development and validation. Compared with the base model (without microeconomic variables), KS is increased from 41 to 44, indicating that the macroeconomic variables can be used to improve the separation power of the model, and make the prediction more accurate.Keywords: delinquency, mortgage, model development, model validation
Procedia PDF Downloads 2282241 Load Transfer of Steel Pipe Piles in Warming Permafrost
Authors: S. Amirhossein Tabatabaei, Abdulghader A. Aldaeef, Mohammad T. Rayhani
Abstract:
As the permafrost continues to melt in the northern regions due to global warming, a soil-water mixture is left behind with drastically lower strength; a phenomenon that directly impacts the resilience of existing structures and infrastructure systems. The frozen soil-structure interaction, which in ice-poor soils is controlled by both interface shear and ice-bonding, changes its nature into a sole frictional state. Adfreeze, the controlling mechanism in frozen soil-structure interaction, diminishes as the ground temperature approaches zero. The main purpose of this paper is to capture the altered behaviour of frozen interface with respect to rising temperature, especially near melting states. A series of pull-out tests are conducted on model piles inside a cold room to study how the strength parameters are influenced by the phase change in ice-poor soils. Steel model piles, embedded in artificially frozen cohesionless soil, are subjected to both sustained pull-out forces and constant rates of displacement to observe the creep behaviour and acquire load-deformation curves, respectively. Temperature, as the main variable of interest, is increased from a lower limit of -10°C up to the point of melting. During different stages of the temperature rise, both skin deformations and temperatures are recorded at various depths along the pile shaft. Significant reduction of pullout capacity and accelerated creep behaviour is found to be the primary consequences of rising temperature. By investigating the different pull-out capacities and deformations measured during step-wise temperature change, characteristics of the transition from frozen to unfrozen soil-structure interaction are studied.Keywords: Adfreeze, frozen soil-structure interface, ice-poor soils, pull-out capacity, warming permafrost
Procedia PDF Downloads 1112240 Dry Binder Mixing of Field Trial Investigation Using Soil Mix Technology: Case Study on Contaminated Site Soil
Authors: Mary Allagoa, Abir Al-Tabbaa
Abstract:
The study explores the use of binders and additives, such as Portland cement, pulverized fuel ash, ground granulated blast furnace slag, and MgO, to decrease the concentration and leachability of pollutants in contaminated site soils. The research investigates their effectiveness and associated risks of using the binders, with a focus on Total Heavy metals (THM) and Total Petroleum Hydrocarbon (TPH). The goal of this research is to evaluate the performance and effectiveness of binders and additives in remediating soil pollutants. The study aims to assess the suitability of the mixtures for ground improvement purposes, determine the optimal dosage, and investigate the associated risks. The research utilizes physical (unconfined compressive strength) and chemical tests (batch leachability test) to assess the efficacy of the binders and additives. A completely randomized design one-way ANOVA is used to determine the significance within mix binders of THM. The study also employs incremental lifetime cancer risk assessments (ILCR) and other indexes to evaluate the associated risks. The study finds that Ground Granulated Blast Furnace Slag (GGBS): MgO is the most effective binder for remediation, particularly when using low dosages of MgO combined with higher dosages of GGBS binders on TPH. The results indicate that binders and additives can encapsulate and immobilize pollutants, thereby reducing their leachability and toxicity. The mean unconfined compressive strength of the soil ranges from 285.0- 320.5 kPa, while THM levels are less than 10 µg/l in GGBS: MgO and CEM: PFA but below 1 µg/l in CEM I based. The ILCR ranged from 6.77E-02 - 2.65E-01 and 5.444E-01 – 3.20 E+00, with the highest values observed under extreme conditions. The hazard index (HI), Risk allowable daily dose intake (ADI), and Risk chronic daily intake (CDI) were all less than 1 for the THM. The study identifies MgO as the best additive for use in soil remediation.Keywords: risk ADI, risk CDI, ILCR, novel binders, additives binders, hazard index
Procedia PDF Downloads 8132239 Aspirin Loaded Poly-L-Lactic Acid Nanofibers and Their Potentials as Small Diameter Vascular Grafts
Authors: Mahboubeh Kabiri, Saba Aslani
Abstract:
Among various approaches used for the treatment of cardiovascular diseases, the occlusion of the small-diameter vascular graft (SDVG) is still an unresolved problem which seeks further research to address them. Though autografts are now the gold standards to be replaced for blocked coronary arteries, they suffer from inadequate quality and quantity. On the other hand, the major problems of the tissue engineered grafts are thrombosis and intimal hyperplasia. Provision of a suitable spatiotemporal release pattern of anticoagulant agents such as heparin and aspirin can be a step forward to overcome such issues . Herein, we fabricated electrospun scaffolds from FDA (Food and Drug Administration) approved poly-L-lactic acid (PLLA) with aspirin loaded into the nanofibers. Also, we surface coated the scaffolds with Amniotic Membrane lysate as a source for natural elastic polymers and a mimic of endothelial basement membrane. The scaffolds were characterized thoroughly structurally and mechanically for their morphology, fiber orientation, tensile strength, hydrophilicity, cytotoxicity, aspirin release and cell attachment support. According to the scanning electron microscopy (SEM) images, the size of fibers ranged from 250 to 500 nm. The scaffolds showed appropriate tensile strength expected for vascular grafts. Cellular attachment, growth, and infiltration were proved using SEM and MTT (3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide) assay. Drug-loaded scaffolds showed a sustained release profile of aspirin in 7 days. An enhanced cytocompatibility was observed in AM-coated electrospun PLLA fibers compared to uncoated scaffolds. Our results together indicated that AM lysate coated ASA releasing scaffolds have promising potentials for development of a biocompatible SDVG.Keywords: vascular tissue engineering, vascular grafts, anticoagulant agent, aspirin, amniotic membrane
Procedia PDF Downloads 1632238 Improved Wearable Monitoring and Treatment System for Parkinson’s Disease
Authors: Bulcha Belay Etana, Benny Malengier, Janarthanan Krishnamoorthy, Timothy Kwa, Lieva VanLangenhove
Abstract:
Electromyography measures the electrical activity of muscles using surface electrodes or needle electrodes to monitor various disease conditions. Recent developments in the signal acquisition of electromyograms using textile electrodes facilitate wearable devices, enabling patients to monitor and control their health status outside of healthcare facilities. Here, we have developed and tested wearable textile electrodes to acquire electromyography signals from patients suffering from Parkinson’s disease and incorporated a feedback-control system to relieve muscle cramping through thermal stimulus. In brief, the textile electrodes made of stainless steel was knitted into a textile fabric as a sleeve, and their electrical characteristic, such as signal-to-noise ratio, was compared with traditional electrodes. To relieve muscle cramping, a heating element made of stainless-steel conductive yarn sewn onto cotton fabric, coupled with a vibration system, was developed. The system integrated a microcontroller and a Myoware muscle sensor to activate the heating element as well as the vibration motor when cramping occurs, and at the same time, the element gets deactivated when the muscle cramping subsides. An optimum therapeutic temperature of 35.5 °C is regulated by continuous temperature monitoring to deactivate the heating system when this threshold value is reached. The textile electrode exhibited a signal-to-noise ratio of 6.38dB, comparable to that of the traditional electrode’s value of 7.05 dB. For a given 9 V power supply, the rise time was about 6 minutes for the developed heating element to reach an optimum temperature.Keywords: smart textile system, wearable electronic textile, electromyography, heating textile, vibration therapy, Parkinson’s disease
Procedia PDF Downloads 1062237 First Cracking Moments of Hybrid Fiber Reinforced Polymer-Steel Reinforced Concrete Beams
Authors: Saruhan Kartal, Ilker Kalkan
Abstract:
The present paper reports the cracking moment estimates of a set of steel-reinforced, Fiber Reinforced Polymer (FRP)-reinforced and hybrid steel-FRP reinforced concrete beams, calculated from different analytical formulations in the codes, together with the experimental cracking load values. A total of three steel-reinforced, four FRP-reinforced, 12 hybrid FRP-steel over-reinforced and five hybrid FRP-steel under-reinforced concrete beam tests were analyzed within the scope of the study. Glass FRP (GFRP) and Basalt FRP (BFRP) bars were used in the beams as FRP bars. In under-reinforced hybrid beams, rupture of the FRP bars preceded crushing of concrete, while concrete crushing preceded FRP rupture in over-reinforced beams. In both types, steel yielding took place long before the FRP rupture and concrete crushing. The cracking moment mainly depends on two quantities, namely the moment of inertia of the section at the initiation of cracking and the flexural tensile strength of concrete, i.e. the modulus of rupture. In the present study, two different definitions of uncracked moment of inertia, i.e. the gross and the uncracked transformed moments of inertia, were adopted. Two analytical equations for the modulus of rupture (ACI 318M and Eurocode 2) were utilized in the calculations as well as the experimental tensile strength of concrete from prismatic specimen tests. The ACI 318M modulus of rupture expression produced cracking moment estimates closer to the experimental cracking moments of FRP-reinforced and hybrid FRP-steel reinforced concrete beams when used in combination with the uncracked transformed moment of inertia, yet the Eurocode 2 modulus of rupture expression gave more accurate cracking moment estimates in steel-reinforced concrete beams. All of the analytical definitions produced analytical values considerably different from the experimental cracking load values of the solely FRP-reinforced concrete beam specimens.Keywords: polymer reinforcement, four-point bending, hybrid use of reinforcement, cracking moment
Procedia PDF Downloads 1402236 Assistive Kitchenware Design for Hemiparetics
Authors: Daniel F. Madrinan-Chiquito
Abstract:
Hemiparesis affects about eight out of ten stroke survivors, causing weakness or the inability to move one side of the body. One-sided weakness can affect arms, hands, legs, or facial muscles. People with one-sided weakness may have trouble performing everyday activities such as eating, cooking, dressing, and using the bathroom. Rehabilitation treatments, exercises at home, and assistive devices can help with mobility and recovery. Historically, such treatments and devices were developed within the fields of medicine and biomedical engineering. However, innovators outside of the traditional medical device community, such as Industrial Designers, have recently brought their knowledge and expertise to assistive technologies. Primary and secondary research was done in three parts. The primary research collected data by talking with several occupational therapists currently attending to stroke patients, and surveys were given to patients with hemiparesis and hemiplegia. The secondary research collected data through observation and testing of products currently marketed for single-handed people. Modern kitchenware available in the market for people with an acquired brain injury has deficiencies in both aesthetic and functional values. Object design for people with hemiparesis or hemiplegia has not been meaningfully explored. Most cookware is designed for use with two hands and possesses little room for adaptation to the needs of one-handed individuals. This project focuses on the design and development of two kitchenware devices. These devices assist hemiparetics with different cooking-related tasks such as holding, grasping, cutting, slicing, chopping, grating, and other essential activities. These intentionally designed objects will improve the quality of life of hemiparetics by enabling greater independence and providing an enhanced ability for precision tasks in a cooking environment.Keywords: assistive technologies, hemiparetics, industrial design, kitchenware
Procedia PDF Downloads 1062235 Formulation and Evaluation of Piroxicam Hydrotropic Starch Gel
Authors: Mohammed Ghazwani, Shyma Ali Alshahrani, Zahra Abdu Yousef, Taif Torki Asiri, Ghofran Abdur Rahman, Asma Ali Alshahrani, Umme Hani
Abstract:
Background and introduction: Piroxicam is a nonsteroidal anti-inflammatory drug characterized by low solubility-high permeability used to reduce pain, swelling, and joint stiffness from arthritis. Hydrotropes are a class of compounds that normally increase the aqueous solubility of insoluble solutes. Aim: The objective of the present research study was to formulate and optimize Piroxicam hydrotropic starch gel using sodium salicylate, sodium benzoate as hydrotropic salts, and potato starch for topical application. Materials and methods: The prepared Piroxicam hydrotropic starch gel was characterized for various physicochemical parameters like drug content estimation, pH, tube extrudability, and spreadability; all the prepared formulations were subjected to in-vitro diffusion studies for six hours in 100 ml phosphate buffer (pH 7.4) and determined gel strength. Results: All formulations were found to be white opaque in appearance and have good homogeneity. The pH of formulations was found to be between 6.9-7.9. Drug content ranged from 96.8%-99.4.5%. Spreadability plays an important role in patient compliance and helps in the uniform application of gel to the skin as gels should spread easily; F4 showed a spreadability of 2.4cm highest among all other formulations. In in vitro diffusion studies, extrudability and gel strength were good with F4 in comparison with other formulations; hence F4 was selected as the optimized formulation. Conclusion: Isolated potato starch was successfully employed to prepare the gel. Hydrotropic salt sodium salicylate increased the solubility of Piroxicam and resulted in a stable gel, whereas the gel prepared using sodium benzoate changed its color after one week of preparation from white to light yellowish. Hydrotropic potato starch gel proposed a suitable vehicle for the topical delivery of Piroxicam.Keywords: Piroxicam, potato starch, hydrotropic salts, hydrotropic starch gel
Procedia PDF Downloads 1452234 Direct Current Electric Field Stimulation against PC12 Cells in 3D Bio-Reactor to Enhance Axonal Extension
Authors: E. Nakamachi, S. Tanaka, K. Yamamoto, Y. Morita
Abstract:
In this study, we developed a three-dimensional (3D) direct current electric field (DCEF) stimulation bio-reactor for axonal outgrowth enhancement to generate the neural network of the central nervous system (CNS). By using our newly developed 3D DCEF stimulation bio-reactor, we cultured the rat pheochromocytoma cells (PC12) and investigated the effects on the axonal extension enhancement and network generation. Firstly, we designed and fabricated a 3D bio-reactor, which can load DCEF stimulation on PC12 cells embedded in the collagen gel as extracellular environment. The connection between the electrolyte and the medium using salt bridges for DCEF stimulation was introduced to avoid the cell death by the toxicity of metal ion. The distance between the salt bridges was adopted as the design variable to optimize a structure for uniform DCEF stimulation, where the finite element (FE) analyses results were used. Uniform DCEF strength and electric flux vector direction in the PC12 cells embedded in collagen gel were examined through measurements of the fabricated 3D bio-reactor chamber. Measurement results of DCEF strength in the bio-reactor showed a good agreement with FE results. In addition, the perfusion system was attached to maintain pH 7.2 ~ 7.6 of the medium because pH change was caused by DCEF stimulation loading. Secondly, we disseminated PC12 cells in collagen gel and carried out 3D culture. Finally, we measured the morphology of PC12 cell bodies and neurites by the multiphoton excitation fluorescence microscope (MPM). The effectiveness of DCEF stimulation to enhance the axonal outgrowth and the neural network generation was investigated. We confirmed that both an increase of mean axonal length and axogenesis rate of PC12, which have been exposed 5 mV/mm for 6 hours a day for 4 days in the bioreactor. We found following conclusions in our study. 1) Design and fabrication of DCEF stimulation bio-reactor capable of 3D culture nerve cell were completed. A uniform electric field strength of average value of 17 mV/mm within the 1.2% error range was confirmed by using FE analyses, after the structure determination through the optimization process. In addition, we attached a perfusion system capable of suppressing the pH change of the culture solution due to DCEF stimulation loading. 2) Evaluation of DCEF stimulation effects on PC12 cell activity was executed. The 3D culture of PC 12 was carried out adopting the embedding culture method using collagen gel as a scaffold for four days under the condition of 5.0 mV/mm and 10mV/mm. There was a significant effect on the enhancement of axonal extension, as 11.3% increase in an average length, and the increase of axogenesis rate. On the other hand, no effects on the orientation of axon against the DCEF flux direction was observed. Further, the network generation was enhanced to connect longer distance between the target neighbor cells by DCEF stimulation.Keywords: PC12, DCEF stimulation, 3D bio-reactor, axonal extension, neural network generation
Procedia PDF Downloads 1842233 Influence of Magnetic Field on Microstructure and Properties of Copper-Silver Composites
Authors: Engang Wang
Abstract:
The Cu-alloy composites are a kind of high-strength and high-conductivity Cu-based alloys, which have excellent mechanical and electrical properties and is widely used in electronic, electrical, machinery industrial fields. However, the solidification microstructure of the composites, such as the primary or second dendrite arm spacing, have important rule to its tensile strength and conductivity, and that is affected by its fabricating method. In this paper, two kinds of directional solidification methods; the exothermic powder method (EP method) and liquid metal cooling method (LMC method), were used to fabricate the Cu-alloy composites with applied different magnetic fields to investigate their influence on the solidifying microstructure of Cu-alloy, and further the fabricated Cu-alloy composites was drawn to wires to investigate the influence of fabricating method and magnetic fields on the drawing microstructure of fiber-reinforced Cu-alloy composites and its properties. The experiment of Cu-Ag alloy under directional solidification and horizontal magnetic fields with different processing parameters show that: 1) For the Cu-Ag alloy with EP method, the dendrite is directionally developed in the cooling copper mould and the solidifying microstructure is effectively refined by applying horizontal magnetic fields. 2) For the Cu-Ag alloy with LMC method, the primary dendrite arm spacing is decreased and the content of Ag in the dendrite increases as increasing the drawing velocity of solidification. 3) The dendrite is refined and the content of Ag in the dendrite increases as increasing the magnetic flux intensity; meanwhile, the growth direction of dendrite is also affected by magnetic field. The research results of Cu-Ag alloy in situ composites by drawing deforming process show that the micro-hardness of alloy is higher by decreasing dendrite arm spacing. When the dendrite growth orientation is consistent with the axial of the samples. the conductivity of the composites increases with the second dendrite arm spacing increases. However, its conductivity reduces with the applied magnetic fields owing to disrupting the dendrite growth orientation.Keywords: Cu-Ag composite, magnetic field, microstructure, solidification
Procedia PDF Downloads 2142232 Support for Reporting Guidelines in Surgical Journals Needs Improvement: A Systematic Review
Authors: Riaz A. Agha, Ishani Barai, Shivanchan Rajmohan, Seon Lee, Mohammed O. Anwar, Alex J. Fowler, Dennis P. Orgill, Douglas G. Altman
Abstract:
Introduction: Medical knowledge is growing fast. Evidence-based medicine works best if the evidence is reported well. Past studies have shown reporting quality to be lacking in the field of surgery. Reporting guidelines are an important tool for authors to optimize the reporting of their research. The objective of this study was to analyse the frequency and strength of recommendation for such reporting guidelines within surgical journals. Methods: A systematic review of the 198 journals within the Journal Citation Report 2014 (surgery category) published by Thomson Reuters was undertaken. The online guide for authors for each journal was screened by two independent groups and results were compared. Data regarding the presence and strength of recommendation to use reporting guidelines was extracted. Results: 193 journals were included (as five appeared twice having changed their name). These had a median impact factor of 1.526 (range 0.047 to 8.327), with a median of 145 articles published per journal (range 29-659), with 34,036 articles published in total over the two-year window 2012-2013. The majority (62%) of surgical journals made no mention of reporting guidelines within their guidelines for authors. Of the journals (38%) that did mention them, only 14% (10/73) required the use of all relevant reporting guidelines. The most frequently mentioned reporting guideline was CONSORT (46 journals). Conclusion: The mention of reporting guidelines within the guide for authors of surgical journals needs improvement. Authors, reviewers and editors should work to ensure that research is reported in line with the relevant reporting guidelines. Journals should consider hard-wiring adherence to them. This will allow peer-reviewers to focus on what is present, not what is missing, raising the level of scholarly discourse between authors and the scientific community and reducing frustration amongst readers.Keywords: CONSORT, guide for authors, PRISMA, reporting guidelines, journal impact factor, citation analysis
Procedia PDF Downloads 4652231 Effect of Core Stability Exercises on Trunk Muscle Balance in Healthy Adult Individuals
Authors: Amira A. A. Abdallah, Amir A. Beltagi
Abstract:
Background: Core stability training has recently attracted attention for improving muscle balance and optimizing performance in healthy and unhealthy individuals. Purpose: This study investigated the effect of beginner’s core stability exercises on trunk flexors’/extensors’ peak torque ratio and trunk flexors’ and extensors’ peak torques. Methods: Thirty five healthy individuals participated in the study. They were randomly assigned to two groups; experimental “group I, n=20” and control “group II, n=15”. Their mean age, weight and height were 20.7±2.4 vs. 20.3±0.61 years, 66.5±12.1 vs. 68.57±12.2 kg and 166.7±7.8 vs. 164.28 ±7.59 cm. for group I vs. group II. Data were collected using the Biodex Isokinetic system. The participants were tested twice; before and after a 6-week period during which group I performed a core stability training program. Results: The 2x2 Mixed Design ANOVA revealed that there were no significant differences (p>0.025) in the trunk flexors’/extensors’ peak torque ratio between the pre-test and post-test conditions for either group. Moreover, there were no significant differences (p>0.025) in the trunk flexion/extension ratios between both groups at either condition. However, the 2x2 Mixed Design MANOVA revealed significant increases (p<0.025) in the trunk flexors’ and extensors’ peak torques in the post-test condition compared with the pre-test in group I with no significant differences (p>0.025) in group II. Moreover, there was a significant increase (p<0.025) in the trunk flexors’ peak torque only in group I compared with group II in the post-test condition with no significant differences in the other conditions. Interpretation/Conclusion: The improvement in muscle performance indicated by the increase in the trunk flexors’ and extensors’ peak torques in the experimental group recommends including core stability training in the exercise programs that aim to improve muscle performance.Keywords: core stability, isokinetic, trunk muscles, muscle balance
Procedia PDF Downloads 2602230 Power Generation and Treatment potential of Microbial Fuel Cell (MFC) from Landfill Leachate
Authors: Beenish Saba, Ann D. Christy
Abstract:
Modern day municipal solid waste landfills are operated and controlled to protect the environment from contaminants during the biological stabilization and degradation of the solid waste. They are equipped with liners, caps, gas and leachate collection systems. Landfill gas is passively or actively collected and can be used as bio fuel after necessary purification, but leachate treatment is the more difficult challenge. Leachate, if not recirculated in a bioreactor landfill system, is typically transported to a local wastewater treatment plant for treatment. These plants are designed for sewage treatment, and often charge additional fees for higher strength wastewaters such as leachate if they accept them at all. Different biological, chemical, physical and integrated techniques can be used to treat the leachate. Treating that leachate with simultaneous power production using microbial fuel cells (MFC) technology has been a recent innovation, reported its application in its earliest starting phase. High chemical oxygen demand (COD), ionic strength and salt concentration are some of the characteristics which make leachate an excellent substrate for power production in MFCs. Different materials of electrodes, microbial communities, carbon co-substrates and temperature conditions are some factors that can be optimized to achieve simultaneous power production and treatment. The advantage of the MFC is its dual functionality but lower power production and high costs are the hurdles in its commercialization and more widespread application. The studies so far suggest that landfill leachate MFCs can produce 1.8 mW/m2 with 79% COD removal, while amendment with food leachate or domestic wastewater can increase performance up to 18W/m3 with 90% COD removal. The columbic efficiency is reported to vary between 2-60%. However efforts towards biofilm optimization, efficient electron transport system studies and use of genetic tools can increase the efficiency of the MFC and can determine its future potential in treating landfill leachate.Keywords: microbial fuel cell, landfill leachate, power generation, MFC
Procedia PDF Downloads 3172229 Study of the Anaerobic Degradation Potential of High Strength Molasses Wastewater
Authors: M. Mischopoulou, P. Naidis, S. Kalamaras, T. Kotsopoulos, P. Samaras
Abstract:
The treatment of high strength wastewater by an Upflow Anaerobic Sludge Blanket (UASB) reactor has several benefits, such as high organic removal efficiency, short hydraulic retention time along with low operating costs. In addition, high volumes of biogas are released in these reactors, which can be utilized in several industrial facilities for energy production. This study aims at the examination of the application potential of anaerobic treatment of wastewater, with high molasses content derived from yeast manufacturing, by a lab-scale UASB reactor. The molasses wastewater and the sludge used in the experiments were collected from the wastewater treatment plant of a baker’s yeast manufacturing company. The experimental set-up consisted of a 15 L thermostated UASB reactor at 37 ◦C. Before the reactor start-up, the reactor was filled with sludge and molasses wastewater at a ratio 1:1 v/v. Influent was fed to the reactor at a flowrate of 12 L/d, corresponding to a hydraulic residence time of about 30 h. Effluents were collected from the system outlet and were analyzed for the determination of the following parameters: COD, pH, total solids, volatile solids, ammonium, phosphates and total nitrogen according to the standard methods of analysis. In addition, volatile fatty acid (VFA) composition of the effluent was determined by a gas chromatograph equipped with a flame ionization detector (FID), as an indicator to evaluate the process efficiency. The volume of biogas generated in the reactor was daily measured by the water displacement method, while gas composition was analyzed by a gas chromatograph equipped with a thermal conductivity detector (TCD). The effluent quality was greatly enhanced due to the use of the UASB reactor and high rate of biogas production was observed. The anaerobic treatment of the molasses wastewater by the UASB reactor improved the biodegradation potential of the influent, resulting at high methane yields and an effluent with better quality than the raw wastewater.Keywords: anaerobic digestion, biogas production, molasses wastewater, UASB reactor
Procedia PDF Downloads 271