Search results for: network user rules
5813 Using an Epidemiological Model to Study the Spread of Misinformation during the Black Lives Matter Movement
Authors: Maryam Maleki, Esther Mead, Mohammad Arani, Nitin Agarwal
Abstract:
The proliferation of social media platforms like Twitter has heightened the consequences of the spread of misinformation. To understand and model the spread of misinformation, in this paper, we leveraged the SEIZ (Susceptible, Exposed, Infected, Skeptics) epidemiological model to describe the underlying process that delineates the spread of misinformation on Twitter. Compared to the other epidemiological models, this model produces broader results because it includes the additional Skeptics (Z) compartment, wherein a user may be Exposed to an item of misinformation but not engage in any reaction to it, and the additional Exposed (E) compartment, wherein the user may need some time before deciding to spread a misinformation item. We analyzed misinformation regarding the unrest in Washington, D.C. in the month of March 2020, which was propagated by the use of the #DCblackout hashtag by different users across the U.S. on Twitter. Our analysis shows that misinformation can be modeled using the concept of epidemiology. To the best of our knowledge, this research is the first to attempt to apply the SEIZ epidemiological model to the spread of a specific item of misinformation, which is a category distinct from that of rumor and hoax on online social media platforms. Applying a mathematical model can help to understand the trends and dynamics of the spread of misinformation on Twitter and ultimately help to develop techniques to quickly identify and control it.Keywords: Black Lives Matter, epidemiological model, mathematical modeling, misinformation, SEIZ model, Twitter
Procedia PDF Downloads 1665812 Organ Donation after Medical Aid in Dying: A Critical Study of Clinical Processes and Legal Rules in Place
Authors: Louise Bernier
Abstract:
Under some jurisdictions (including Canada), eligible patients can request and receive medical assistance in dying (MAiD) through lethal injections, inducing their cardiocirculatory death. Those same patients can also wish to donate their organs in the process. If they qualify as organ donors, a clinical and ethical rule called the 'dead donor rule' (DDR) requires the transplant teams to wait after cardiocirculatory death is confirmed, followed by a 'no touch' period (5 minutes in Canada) before they can proceed with organ removal. The medical procedures (lethal injections) as well as the delays associated with the DDR can damage organs (mostly thoracic organs) due to prolonged anoxia. Yet, strong scientific evidences demonstrate that operating differently and reconsidering the DDR would result in more organs of better quality available for transplant. This idea generates discomfort and resistance, but it is also worth considering, especially in a context of chronic shortage of available organs. One option that could be examined for MAiD’ patients who wish and can be organ donors would be to remove vital organs while patients are still alive (and under sedation). This would imply accepting that patient’s death would occur through organ donation instead of lethal injections required under MAiD’ legal rules. It would also mean that patients requesting MAiD and wishing to be organ donors could aspire to donate better quality organs, including their heart, an altruistic gesture that carries important symbolic value for many donors and their families. Following a patient centered approach, our hypothesis is that preventing vital organ donation from a living donor in all circumstance is neither perfectly coherent with how legal mentalities have evolved lately in the field of fundamental rights nor compatible with the clinical and ethical frameworks that shape the landscape in which those complex medical decisions unfold. Through a study of the legal, ethical, and clinical rules in place, both at the national and international levels, this analysis raises questions on the numerous inconsistencies associated with respecting the DDR with patients who have chosen to die through MAiD. We will begin with an assessment of the erosion of certain national legal frameworks that pertain to the sacred nature of the right to life which now also includes the right to choose how one wishes to die. We will then study recent innovative clinical protocols tested in different countries to help address acute organ shortage problems in creative ways. We will conclude this analysis with an ethical assessment of the situation, referring to principles such as justice, autonomy, altruism, beneficence, and non-malfeasance. This study will build a strong argument in favor of starting to allow vital organ donations from living donors in countries where MAiD is already permitted.Keywords: altruism, autonomy, dead donor rule, medical assistance in dying, non-malfeasance, organ donation
Procedia PDF Downloads 1785811 SIPTOX: Spider Toxin Database Information Repository System of Protein Toxins from Spiders by Using MySQL Method
Authors: Iftikhar Tayubi, Tabrej Khan, Rayan Alsulmi, Abdulrahman Labban
Abstract:
Spider produces a special kind of substance. This special kind of substance is called a toxin. The toxin is composed of many types of protein, which differs from species to species. Spider toxin consists of several proteins and non-proteins that include various categories of toxins like myotoxin, neurotoxin, cardiotoxin, dendrotoxin, haemorrhagins, and fibrinolytic enzyme. Protein Sequence information with references of toxins was derived from literature and public databases. From the previous findings, the Spider toxin would be the best choice to treat different types of tumors and cancer. There are many therapeutic regimes, which causes more side effects than treatment hence a different approach must be adopted for the treatment of cancer. The combinations of drugs are being encouraged, and dramatic outcomes are reported. Spider toxin is one of the natural cytotoxic compounds. Hence, it is being used to treat different types of tumors; especially its positive effect on breast cancer is being reported during the last few decades. The efficacy of this database is that it can provide a user-friendly interface for users to retrieve the information about Spiders, toxin and toxin protein of different Spiders species. SPIDTOXD provides a single source information about spider toxins, which will be useful for pharmacologists, neuroscientists, toxicologists, medicinal chemists. The well-ordered and accessible web interface allows users to explore the detail information of Spider and toxin proteins. It includes common name, scientific name, entry id, entry name, protein name and length of the protein sequence. The utility of this database is that it can provide a user-friendly interface for users to retrieve the information about Spider, toxin and toxin protein of different Spider species. The database interfaces will satisfy the demands of the scientific community by providing in-depth knowledge about Spider and its toxin. We have adopted the methodology by using A MySQL and PHP and for designing, we used the Smart Draw. The users can thus navigate from one section to another, depending on the field of interest of the user. This database contains a wealth of information on species, toxins, and clinical data, etc. This database will be useful for the scientific community, basic researchers and those interested in potential pharmaceutical Industry.Keywords: siptoxd, php, mysql, toxin
Procedia PDF Downloads 1825810 Commercial Law Between Custom and Islamic Law
Authors: Shimaa Abdel-Rahman Amin El-Badawy
Abstract:
Commercial law is the set of legal rules that apply to business and regulates the trade of trade. The meaning of this is that the commercial law regulates certain relations only that arises as a result of carrying out certain businesses. which are business, as it regulates the activity of a specific sect, the sect of merchants, and the commercial law as other branches of the law has characteristics that distinguish it from other laws and various, and various sources from which its basis is derived from It is the objective or material source. the historical source, the official source and the interpretative source, and we are limited to official sources and explanatory sources. so what do you see what these sources are, and what is their degree and strength in taking it in commercial disputes. The first topic / characteristics of commercial law. Commercial law has become necessary for the world of trade and economics, which cannot be dispensed with, given the reasons that have been set as legal rules for commercial field.In fact, it is sufficient to refer to the stability and stability of the environment, and in exchange for the movement and the speed in which the commercial environment is in addition to confidence and credit. the characteristic of speed and the characteristic of trust, and credit are the ones that justify the existence of commercial law.Business is fast, while civil business is slow, stable and stability. The person concludes civil transactions in his life only a little. And before doing any civil action. he must have a period of thinking and scrutiny, and the investigation is the person who wants the husband, he must have a period of thinking and scrutiny. as if the person who wants to acquire a house to live with with his family, he must search and investigate. Discuss the price before the conclusion of a purchase contract. In the commercial field, transactions take place very quickly because the time factor has an important role in concluding deals and achieving profits. This is because the merchant in contracting about a specific deal would cause a loss to the merchant due to the linkage of the commercial law with the fluctuations of the economy and the market. The merchant may also conclude more than one deal in one and short time. And that is due to the absence of commercial law from the formalities and procedures that hinder commercial transactions.Keywords: law, commercial law, Islamic law, custom and Islamic law
Procedia PDF Downloads 735809 Signal Strength Based Multipath Routing for Mobile Ad Hoc Networks
Authors: Chothmal
Abstract:
In this paper, we present a route discovery process which uses the signal strength on a link as a parameter of its inclusion in the route discovery method. The proposed signal-to-interference and noise ratio (SINR) based multipath reactive routing protocol is named as SINR-MP protocol. The proposed SINR-MP routing protocols has two following two features: a) SINR-MP protocol selects routes based on the SINR of the links during the route discovery process therefore it select the routes which has long lifetime and low frame error rate for data transmission, and b) SINR-MP protocols route discovery process is multipath which discovers more than one SINR based route between a given source destination pair. The multiple routes selected by our SINR-MP protocol are node-disjoint in nature which increases their robustness against link failures, as failure of one route will not affect the other route. The secondary route is very useful in situations where the primary route is broken because we can now use the secondary route without causing a new route discovery process. Due to this, the network overhead caused by a route discovery process is avoided. This increases the network performance greatly. The proposed SINR-MP routing protocol is implemented in the trail version of network simulator called Qualnet.Keywords: ad hoc networks, quality of service, video streaming, H.264/SVC, multiple routes, video traces
Procedia PDF Downloads 2495808 Support of Syrian Refugees: The Roles of Descriptive and Injunctive Norms, Perception of Threat, and Negative Emotions
Authors: Senay Yitmen
Abstract:
This research investigated individual’s support and helping intentions towards Syrian refugees in Turkey. This is examined in relation to perceived threat and negative emotions, and also to the perceptions of whether one’s intimate social network (family and friends) considers Syrians a threat (descriptive network norm) and whether this network morally supports Syrian refugees (injunctive norms). A questionnaire study was conducted among Turkish participants (n= 565) and the results showed that perception of threat was associated with negative emotions which, in turn, were related to less support of Syrian refugees. Additionally, descriptive norms moderated the relationship between perceived threat and negative emotions towards Syrian refugees. Furthermore, injunctive norms moderated the relationship between negative emotions and support to Syrian refugees. Specifically, the findings indicate that perceived threat is associated with less support of Syrian refugees through negative emotions when descriptive norms are weak and injunctive norms are strong. Injunctive norms appear to trigger a dilemma over the decision to conform or not to conform: when one has negative emotions as a result of perceived threat, it becomes more difficult to conform to the moral obligation of injunctive norms which is associated with less support of Syrian refugees. Hence, these findings demonstrate that both descriptive and injunctive norms are important and play different roles in individual’s support of Syrian refugees.Keywords: descriptive norms, emotions, injunctive norms, the perception of threat
Procedia PDF Downloads 1895807 Efficiency of Background Chlorine Residuals against Accidental Microbial Episode in Proto-Type Distribution Network (Rig) Using Central Composite Design (CCD)
Authors: Sajida Rasheed, Imran Hashmi, Luiza Campos, Qizhi Zhou, Kim Keu
Abstract:
A quadratic model (p ˂ 0.0001) was developed by using central composite design of 50 experimental runs (42 non-center + 8 center points) to assess efficiency of background chlorine residuals in combating accidental microbial episode in a prototype distribution network (DN) (rig). A known amount of background chlorine residuals were maintained in DN and a required number of bacteria, Escherichia coli K-12 strain were introduced by an injection port in the pipe loop system. Samples were taken at various time intervals at different pipe lengths. Spread plate count was performed to count bacterial number. The model developed was significant. With microbial concentration and time (p ˂ 0.0001), pipe length (p ˂ 0.022), background chlorine residuals (p ˂ 0.07) and time^2 (p ˂ 0.09) as significant factors. The ramp function of variables shows that at the microbial count of 10^6, at 0.76 L/min, and pipe length of 133 meters, a background residual chlorine 0.16 mg/L was enough for complete inactivation of microbial episode in approximately 18 minutes.Keywords: central composite design (CCD), distribution network, Escherichia coli, residual chlorine
Procedia PDF Downloads 4625806 An Energy-Balanced Clustering Method on Wireless Sensor Networks
Authors: Yu-Ting Tsai, Chiun-Chieh Hsu, Yu-Chun Chu
Abstract:
In recent years, due to the development of wireless network technology, many researchers have devoted to the study of wireless sensor networks. The applications of wireless sensor network mainly use the sensor nodes to collect the required information, and send the information back to the users. Since the sensed area is difficult to reach, there are many restrictions on the design of the sensor nodes, where the most important restriction is the limited energy of sensor nodes. Because of the limited energy, researchers proposed a number of ways to reduce energy consumption and balance the load of sensor nodes in order to increase the network lifetime. In this paper, we proposed the Energy-Balanced Clustering method with Auxiliary Members on Wireless Sensor Networks(EBCAM)based on the cluster routing. The main purpose is to balance the energy consumption on the sensed area and average the distribution of dead nodes in order to avoid excessive energy consumption because of the increasing in transmission distance. In addition, we use the residual energy and average energy consumption of the nodes within the cluster to choose the cluster heads, use the multi hop transmission method to deliver the data, and dynamically adjust the transmission radius according to the load conditions. Finally, we use the auxiliary cluster members to change the delivering path according to the residual energy of the cluster head in order to its load. Finally, we compare the proposed method with the related algorithms via simulated experiments and then analyze the results. It reveals that the proposed method outperforms other algorithms in the numbers of used rounds and the average energy consumption.Keywords: auxiliary nodes, cluster, load balance, routing algorithm, wireless sensor network
Procedia PDF Downloads 2745805 Forecasting Performance Comparison of Autoregressive Fractional Integrated Moving Average and Jordan Recurrent Neural Network Models on the Turbidity of Stream Flows
Authors: Daniel Fulus Fom, Gau Patrick Damulak
Abstract:
In this study, the Autoregressive Fractional Integrated Moving Average (ARFIMA) and Jordan Recurrent Neural Network (JRNN) models were employed to model the forecasting performance of the daily turbidity flow of White Clay Creek (WCC). The two methods were applied to the log difference series of the daily turbidity flow series of WCC. The measurements of error employed to investigate the forecasting performance of the ARFIMA and JRNN models are the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE). The outcome of the investigation revealed that the forecasting performance of the JRNN technique is better than the forecasting performance of the ARFIMA technique in the mean square error sense. The results of the ARFIMA and JRNN models were obtained by the simulation of the models using MATLAB version 8.03. The significance of using the log difference series rather than the difference series is that the log difference series stabilizes the turbidity flow series than the difference series on the ARFIMA and JRNN.Keywords: auto regressive, mean absolute error, neural network, root square mean error
Procedia PDF Downloads 2685804 Rendering Cognition Based Learning in Coherence with Development within the Context of PostgreSQL
Authors: Manuela Nayantara Jeyaraj, Senuri Sucharitharathna, Chathurika Senarath, Yasanthy Kanagaraj, Indraka Udayakumara
Abstract:
PostgreSQL is an Object Relational Database Management System (ORDBMS) that has been in existence for a while. Despite the superior features that it wraps and packages to manage database and data, the database community has not fully realized the importance and advantages of PostgreSQL. Hence, this research tends to focus on provisioning a better environment of development for PostgreSQL in order to induce the utilization and elucidate the importance of PostgreSQL. PostgreSQL is also known to be the world’s most elementary SQL-compliant open source ORDBMS. But, users have not yet resolved to PostgreSQL due to the facts that it is still under the layers and the complexity of its persistent textual environment for an introductory user. Simply stating this, there is a dire need to explicate an easy way of making the users comprehend the procedure and standards with which databases are created, tables and the relationships among them, manipulating queries and their flow based on conditions in PostgreSQL to help the community resolve to PostgreSQL at an augmented rate. Hence, this research under development within the context tends to initially identify the dominant features provided by PostgreSQL over its competitors. Following the identified merits, an analysis on why the database community holds a hesitance in migrating to PostgreSQL’s environment will be carried out. These will be modulated and tailored based on the scope and the constraints discovered. The resultant of the research proposes a system that will serve as a designing platform as well as a learning tool that will provide an interactive method of learning via a visual editor mode and incorporate a textual editor for well-versed users. The study is based on conjuring viable solutions that analyze a user’s cognitive perception in comprehending human computer interfaces and the behavioural processing of design elements. By providing a visually draggable and manipulative environment to work with Postgresql databases and table queries, it is expected to highlight the elementary features displayed by Postgresql over any other existent systems in order to grasp and disseminate the importance and simplicity offered by this to a hesitant user.Keywords: cognition, database, PostgreSQL, text-editor, visual-editor
Procedia PDF Downloads 2835803 Pion/Muon Identification in a Nuclear Emulsion Cloud Chamber Using Neural Networks
Authors: Kais Manai
Abstract:
The main part of this work focuses on the study of pion/muon separation at low energy using a nuclear Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The work consists of two parts: particle reconstruction algorithm and a Neural Network that assigns to each reconstructed particle the probability to be a muon or a pion. The pion/muon separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data. The algorithm allows to achieve a 60% muon identification efficiency with a pion misidentification smaller than 3%.Keywords: nuclear emulsion, particle identification, tracking, neural network
Procedia PDF Downloads 5065802 Applying Neural Networks for Solving Record Linkage Problem via Fuzzy Description Logics
Authors: Mikheil Kalmakhelidze
Abstract:
Record linkage (RL) problem has become more and more important in recent years due to the growing interest towards big data analysis. The problem can be formulated in a very simple way: Given two entries a and b of a database, decide whether they represent the same object or not. There are two classical deterministic and probabilistic ways of solving the RL problem. Using simple Bayes classifier in many cases produces useful results but sometimes they show to be poor. In recent years several successful approaches have been made towards solving specific RL problems by neural network algorithms including single layer perception, multilayer back propagation network etc. In our work, we model the RL problem for specific dataset of student applications in fuzzy description logic (FDL) where linkage of specific pair (a,b) depends on the truth value of corresponding formula A(a,b) in a canonical FDL model. As a main result, we build neural network for deciding truth value of FDL formulas in a canonical model and thus link RL problem to machine learning. We apply the approach to dataset with 10000 entries and also compare to classical RL solving approaches. The results show to be more accurate than standard probabilistic approach.Keywords: description logic, fuzzy logic, neural networks, record linkage
Procedia PDF Downloads 2725801 Improving Axial-Attention Network via Cross-Channel Weight Sharing
Authors: Nazmul Shahadat, Anthony S. Maida
Abstract:
In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks.Keywords: axial attention, representational networks, weight sharing, cross-channel correlations, quaternion-enhanced axial attention, deep networks
Procedia PDF Downloads 835800 Digitial Communication – The Future of Chronic Disease Management Is Healthcare Apps
Authors: Kirstin Griffin
Abstract:
During a period of increased anxiety and stress, communication became the essential tool to help the public stay informed and feel prepared during the Covid-19 pandemic. However, certain groups of patients were not feeling as reassured. The news and media blasted the message that patients with diabetes were “high-risk" in regards to contracting the Covid-19 infection. Routine clinics were being cancelled, GP practices were closing their doors, and patients with type 1 diabetes were understandably scared. The influx of calls to diabetes specialists nurses from concerned patients highlighted the need for better and more specialised information. An Application specifically for patients with type 1 diabetes was created to deliver this information, and it proved to be the essential communication tool that was desperately needed. The Application for patients with type 1 diabetes aimed to deliver specialist information to patients in regards to their diagnosis, management, and ongoing follow-up commitments. The Application gives practical advice on multiple areas of diabetes management, including sick-day rules and diabetic emergencies, as well as up-to-date information on technology, including setting up Libre devices and downloading glucose meters to facilitate attending virtual clinics. Delivery of this information in an easy-to-understand and comprehensive way is intended to improve patient engagement with diabetes services and ultimately empower patients in the control of their own disease. The application also offers a messaging service to allow the diabetes team to send out alerts to patient groups on specific issues, such as changes to clinics, or respond to recent news updates regarding Covid-19. The App was launched in NHS Fife in June 2020 and has amassed 800 active users so far. There is growing engagement with the App since its launch, with over 1000 user interactions in the last month alone. Feedback shows that 100% of users like the App and have found it useful in the management of their diabetes. The App has proven to be an essential tool in communication with one of the most vulnerable groups during the Covid-19 pandemic, and its ongoing development will continue to increase patient engagement and improve glycaemic control for patients with type 1 diabetes. The future of chronic disease management should involve digital solutions such as apps to further empower patients in their healthcare.Keywords: diabetes, endocrinology, digital healthcare, medical apps
Procedia PDF Downloads 875799 A Holographic Infotainment System for Connected and Driverless Cars: An Exploratory Study of Gesture Based Interaction
Authors: Nicholas Lambert, Seungyeon Ryu, Mehmet Mulla, Albert Kim
Abstract:
In this paper, an interactive in-car interface called HoloDash is presented. It is intended to provide information and infotainment in both autonomous vehicles and ‘connected cars’, vehicles equipped with Internet access via cellular services. The research focuses on the development of interactive avatars for this system and its gesture-based control system. This is a case study for the development of a possible human-centred means of presenting a connected or autonomous vehicle’s On-Board Diagnostics through a projected ‘holographic’ infotainment system. This system is termed a Holographic Human Vehicle Interface (HHIV), as it utilises a dashboard projection unit and gesture detection. The research also examines the suitability for gestures in an automotive environment, given that it might be used in both driver-controlled and driverless vehicles. Using Human Centred Design methods, questions were posed to test subjects and preferences discovered in terms of the gesture interface and the user experience for passengers within the vehicle. These affirm the benefits of this mode of visual communication for both connected and driverless cars.Keywords: gesture, holographic interface, human-computer interaction, user-centered design
Procedia PDF Downloads 3135798 Development of a Computer Based, Nutrition and Fitness Programme and Its Effect on Nutritional Status and Fitness of Obese Adults
Authors: Richa Soni, Vibha Bhatnagar, N. K. Jain
Abstract:
This study was conducted to develop a computer mediated programme for weight management and physical fitness and examining its efficacy in reducing weight and improving physical fitness in obese adults. A user friendly, computer based programme was developed to provide a simple, quick, easy and user-friendly method of assessing energy balance at individual level. The programme had four main sections viz. personal Profile, know about your weight, fitness and food exchange list. The computer programme was developed to provide facilities of creating individual profile, tracking meal and physical activities, suggesting nutritional and exercise requirements, planning calorie specific menus, keeping food diaries and revising the diet and exercise plans if needed. The programme was also providing information on obesity, underweight, physical fitness. An exhaustive food exchange list was also given in the programme to assist user to make right food choice decisions. The developed programme was evaluated by a panel of 15 experts comprising endocrinologists, nutritionists and diet counselors. Suggestions given by the experts were paned down and the entire programme was modified in light of suggestions given by the panel members and was reevaluated by the same panel of experts. For assessing the impact of the programme 22 obese subjects were selected purposively and randomly assigned to intervention group (n=12) and no information control group. (n=10). The programme group was asked to strictly follow the programme for one month. Significant reduction in the intake of energy, fat and carbohydrates was observed while intake of fruits, green leafy vegetables was increased. The programme was also found to be effective in reducing body weight, body fat percent and body fat mass whereas total body water and physical fitness scores improved significantly. There was no significant alteration observed in any parameters in the control group.Keywords: body composition, body weight, computer programme, physical fitness
Procedia PDF Downloads 2865797 Coordinated Interference Canceling Algorithm for Uplink Massive Multiple Input Multiple Output Systems
Authors: Messaoud Eljamai, Sami Hidouri
Abstract:
Massive multiple-input multiple-output (MIMO) is an emerging technology for new cellular networks such as 5G systems. Its principle is to use many antennas per cell in order to maximize the network's spectral efficiency. Inter-cellular interference remains a fundamental problem. The use of massive MIMO will not derogate from the rule. It improves performances only when the number of antennas is significantly greater than the number of users. This, considerably, limits the networks spectral efficiency. In this paper, a coordinated detector for an uplink massive MIMO system is proposed in order to mitigate the inter-cellular interference. The proposed scheme combines the coordinated multipoint technique with an interference-cancelling algorithm. It requires the serving cell to send their received symbols, after processing, decision and error detection, to the interfered cells via a backhaul link. Each interfered cell is capable of eliminating intercellular interferences by generating and subtracting the user’s contribution from the received signal. The resulting signal is more reliable than the original received signal. This allows the uplink massive MIMO system to improve their performances dramatically. Simulation results show that the proposed detector improves system spectral efficiency compared to classical linear detectors.Keywords: massive MIMO, COMP, interference canceling algorithm, spectral efficiency
Procedia PDF Downloads 1475796 Moral Wrongdoers: Evaluating the Value of Moral Actions Performed by War Criminals
Authors: Jean-Francois Caron
Abstract:
This text explores the value of moral acts performed by war criminals, and the extent to which they should alleviate the punishment these individuals ought to receive for violating the rules of war. Without neglecting the necessity of retribution in war crimes cases, it argues from an ethical perspective that we should not rule out the possibility of considering lesser punishments for war criminals who decide to perform a moral act, as it might produce significant positive moral outcomes. This text also analyzes how such a norm could be justified from a moral perspective.Keywords: war criminals, pardon, amnesty, retribution
Procedia PDF Downloads 2835795 Clinical Prediction Rules for Using Open Kinetic Chain Exercise in Treatment of Knee Osteoarthritis
Authors: Mohamed Aly, Aliaa Rehan Youssef, Emad Sawerees, Mounir Guirgis
Abstract:
Relevance: Osteoarthritis (OA) is the most common degenerative disease seen in all populations. It causes disability and substantial socioeconomic burden. Evidence supports that exercise are the most effective conservative treatment for patients with OA. Therapists experience and clinical judgment play major role in exercise prescription and scientific evidence for this regard is lacking. The development of clinical prediction rules to identify patients who are most likely benefit from exercise may help solving this dilemma. Purpose: This study investigated whether body mass index and functional ability at baseline can predict patients’ response to a selected exercise program. Approach: Fifty-six patients, aged 35 to 65 years, completed an exercise program consisting of open kinetic chain strengthening and passive stretching exercises. The program was given for 3 sessions per week, 45 minutes per session, for 6 weeks Evaluation: At baseline and post treatment, pain severity was assessed using the numerical pain rating scale, whereas functional ability was being assessed by step test (ST), time up and go test (TUG) and 50 feet time walk test (50 FTW). After completing the program, global rate of change (GROC) score of greater than 4 was used to categorize patients as successful and non-successful. Thirty-eight patients (68%) had successful response to the intervention. Logistic regression showed that BMI and 50 FTW test were the only significant predictors. Based on the results, patients with BMI less than 34.71 kg/m2 and 50 FTW test less than 25.64 sec are 68% to 89% more likely to benefit from the exercise program. Conclusions: Clinicians should consider the described strengthening and flexibility exercise program for patents with BMI less than 34.7 Kg/m2 and 50 FTW faster than 25.6 seconds. The validity of these predictors should be investigated for other exercise.Keywords: clinical prediction rule, knee osteoarthritis, physical therapy exercises, validity
Procedia PDF Downloads 4225794 A Reinforcement Learning Based Method for Heating, Ventilation, and Air Conditioning Demand Response Optimization Considering Few-Shot Personalized Thermal Comfort
Authors: Xiaohua Zou, Yongxin Su
Abstract:
The reasonable operation of heating, ventilation, and air conditioning (HVAC) is of great significance in improving the security, stability, and economy of power system operation. However, the uncertainty of the operating environment, thermal comfort varies by users and rapid decision-making pose challenges for HVAC demand response optimization. In this regard, this paper proposes a reinforcement learning-based method for HVAC demand response optimization considering few-shot personalized thermal comfort (PTC). First, an HVAC DR optimization framework based on few-shot PTC model and DRL is designed, in which the output of few-shot PTC model is regarded as the input of DRL. Then, a few-shot PTC model that distinguishes between awake and asleep states is established, which has excellent engineering usability. Next, based on soft actor criticism, an HVAC DR optimization algorithm considering the user’s PTC is designed to deal with uncertainty and make decisions rapidly. Experiment results show that the proposed method can efficiently obtain use’s PTC temperature, reduce energy cost while ensuring user’s PTC, and achieve rapid decision-making under uncertainty.Keywords: HVAC, few-shot personalized thermal comfort, deep reinforcement learning, demand response
Procedia PDF Downloads 855793 ‘BEST BARK’ Dog Care and Owner Consultation System
Authors: Shalitha Jayasekara, Saluk Bawantha, Dinithi Anupama, Isuru Gunarathne, Pradeepa Bandara, Hansi De Silva
Abstract:
Dogs have been known as "man's best friend" for generations, providing friendship and loyalty to their human counterparts. However, due to people's busy lives, they are unaware of the ailments that can affect their pets. However, in recent years, mobile technologies have had a significant impact on our lives, and with technological improvements, a rule-based expert system allows the end-user to enable new types of healthcare systems. The advent of Android OS-based smartphones with more user-friendly interfaces and lower pricing opens new possibilities for continuous monitoring of pets' health conditions, such as healthy dogs, dangerous ingestions, and swallowed objects. The proposed ‘Best Bark’ Dog care and owner consultation system is a mobile application for dog owners. Four main components for dog owners were implemented after a questionnaire was distributed to the target group of audience and the findings were evaluated. The proposed applications are widely used to provide health and clinical support to dog owners, including suggesting exercise and diet plans and answering queries about their dogs. Additionally, after the owner uploads a photo of the dog, the application provides immediate feedback and a description of the dog's skin disease.Keywords: Convolution Neural Networks, Artificial Neural Networks, Knowledgebase, Sentimental Analysis.
Procedia PDF Downloads 1535792 Multi-Modal Feature Fusion Network for Speaker Recognition Task
Authors: Xiang Shijie, Zhou Dong, Tian Dan
Abstract:
Speaker recognition is a crucial task in the field of speech processing, aimed at identifying individuals based on their vocal characteristics. However, existing speaker recognition methods face numerous challenges. Traditional methods primarily rely on audio signals, which often suffer from limitations in noisy environments, variations in speaking style, and insufficient sample sizes. Additionally, relying solely on audio features can sometimes fail to capture the unique identity of the speaker comprehensively, impacting recognition accuracy. To address these issues, we propose a multi-modal network architecture that simultaneously processes both audio and text signals. By gradually integrating audio and text features, we leverage the strengths of both modalities to enhance the robustness and accuracy of speaker recognition. Our experiments demonstrate significant improvements with this multi-modal approach, particularly in complex environments, where recognition performance has been notably enhanced. Our research not only highlights the limitations of current speaker recognition methods but also showcases the effectiveness of multi-modal fusion techniques in overcoming these limitations, providing valuable insights for future research.Keywords: feature fusion, memory network, multimodal input, speaker recognition
Procedia PDF Downloads 335791 Location Choice: The Effects of Network Configuration upon the Distribution of Economic Activities in the Chinese City of Nanning
Authors: Chuan Yang, Jing Bie, Zhong Wang, Panagiotis Psimoulis
Abstract:
Contemporary studies investigating the association between the spatial configuration of the urban network and economic activities at the street level were mostly conducted within space syntax conceptual framework. These findings supported the theory of 'movement economy' and demonstrated the impact of street configuration on the distribution of pedestrian movement and land-use shaping, especially retail activities. However, the effects varied between different urban contexts. In this paper, the relationship between economic activity distribution and the urban configurational characters was examined at the segment level. In the study area, three kinds of neighbourhood types, urban, suburban, and rural neighbourhood, were included. And among all neighbourhoods, three kinds of urban network form, 'tree-like', grid, and organic pattern, were recognised. To investigate the nested effects of urban configuration measured by space syntax approach and urban context, multilevel zero-inflated negative binomial (ZINB) regression models were constructed. Additionally, considering the spatial autocorrelation, spatial lag was also concluded in the model as an independent variable. The random effect ZINB model shows superiority over the ZINB model or multilevel linear (ML) model in the explanation of economic activities pattern shaping over the urban environment. And after adjusting for the neighbourhood type and network form effects, connectivity and syntax centrality significantly affect economic activities clustering. The comparison between accumulative and new established economic activities illustrated the different preferences for economic activity location choice.Keywords: space syntax, economic activities, multilevel model, Chinese city
Procedia PDF Downloads 1245790 Optimization of Feeder Bus Routes at Urban Rail Transit Stations Based on Link Growth Probability
Authors: Yu Song, Yuefei Jin
Abstract:
Urban public transportation can be integrated when there is an efficient connection between urban rail lines, however, there are currently no effective or quick solutions being investigated for this connection. This paper analyzes the space-time distribution and travel demand of passenger connection travel based on taxi track data and data from the road network, excavates potential bus connection stations based on potential connection demand data, and introduces the link growth probability model in the complex network to solve the basic connection bus lines in order to ascertain the direction of the bus lines that are the most connected given the demand characteristics. Then, a tree view exhaustive approach based on constraints is suggested based on graph theory, which can hasten the convergence of findings while doing chain calculations. This study uses WEI QU NAN Station, the Xi'an Metro Line 2 terminal station in Shaanxi Province, as an illustration, to evaluate the model's and the solution method's efficacy. According to the findings, 153 prospective stations have been dug up in total, the feeder bus network for the entire line has been laid out, and the best route adjustment strategy has been found.Keywords: feeder bus, route optimization, link growth probability, the graph theory
Procedia PDF Downloads 775789 Virtualization and Visualization Based Driver Configuration in Operating System
Authors: Pavan Shah
Abstract:
In an Embedded system, Virtualization and visualization technology can provide us an effective response and measurable work in a software development environment. In addition to work of virtualization and virtualization can be easily deserved to provide the best resource sharing between real-time hardware applications and a healthy environment. However, the virtualization is noticeable work to minimize the I/O work and utilize virtualization & virtualization technology for either a software development environment (SDE) or a runtime environment of real-time embedded systems (RTMES) or real-time operating system (RTOS) eras. In this Paper, we particularly focus on virtualization and visualization overheads data of network which generates the I/O and implementation of standardized I/O (i.e., Virto), which can work as front-end network driver in a real-time operating system (RTOS) hardware module. Even there have been several work studies are available based on the virtualization operating system environment, but for the Virto on a general-purpose OS, my implementation is on the open-source Virto for a real-time operating system (RTOS). In this paper, the measurement results show that implementation which can improve the bandwidth and latency of memory management of the real-time operating system environment (RTMES) for getting more accuracy of the trained model.Keywords: virtualization, visualization, network driver, operating system
Procedia PDF Downloads 1335788 Enhancement of Capacity in a MC-CDMA based Cognitive Radio Network Using Non-Cooperative Game Model
Authors: Kalyani Kulkarni, Bharat Chaudhari
Abstract:
This paper addresses the issue of resource allocation in the emerging cognitive technology. Focusing the quality of service (QoS) of primary users (PU), a novel method is proposed for the resource allocation of secondary users (SU). In this paper, we propose the unique utility function in the game theoretic model of Cognitive Radio which can be maximized to increase the capacity of the cognitive radio network (CRN) and to minimize the interference scenario. The utility function is formulated to cater the need of PUs by observing Signal to Noise ratio. The existence of Nash equilibrium is for the postulated game is established.Keywords: cognitive networks, game theory, Nash equilibrium, resource allocation
Procedia PDF Downloads 4805787 Network Governance and Renewable Energy Transition in Sub-Saharan Africa: Contextual Evidence from Ghana
Authors: Kyere Francis, Sun Dongying, Asante Dennis, Nkrumah Nana Kwame Edmund, Naana Yaa Gyamea Kumah
Abstract:
With a focus on renewable energy to achieve low-carbon transition objectives, there is a greater demand for effective collaborative strategies for planning, strategic decision mechanisms, and long-term policy designs to steer the transitions. Government agencies, NGOs, the private sector, and individual citizens play an important role in sustainable energy production. In Ghana, however, such collaboration is fragile in the fight against climate change. This current study seeks to re-examine the position or potential of network governance in Ghana's renewable energy transition. The study adopted a qualitative approach and employed semi-structured interviews for data gathering. To explore network governance and low carbon transitions in Ghana, we examine key themes such as political environment and impact, actor cooperation and stakeholder interactions, financing and the transition, market design and renewable energy integration, existing regulation and policy gaps for renewable energy transition, clean cooking accessibility, and affordability. The findings reveal the following; Lack of comprehensive consultations with relevant stakeholders leads to lower acceptance of the policy model and sometimes lack of policy awareness. Again, the unavailability and affordability of renewable energy technologies and access to credit facilities is a significant hurdle to long-term renewable transition. Ghana's renewable energy transitions require strong networking and interaction among the public, private, and non-governmental organizations. The study participants believe that the involvement of relevant energy experts and stakeholders devoid of any political biases is instrumental in accelerating renewable energy transitions, as emphasized in the proposed framework. The study recommends that the national renewable energy transition plan be evident to all stakeholders and political administrators. Such policy may encourage renewable energy investment through stable and fixed lending rates by the financial institutions and build a network with international organizations and corporations. These findings could serve as valuable information for the transition-based energy process, primarily aiming to govern sustainability changes through network governance.Keywords: actors, development, sustainable energy, network governance, renewable energy transition
Procedia PDF Downloads 895786 Analyzing the Impact of DCF and PCF on WLAN Network Standards 802.11a, 802.11b, and 802.11g
Authors: Amandeep Singh Dhaliwal
Abstract:
Networking solutions, particularly wireless local area networks have revolutionized the technological advancement. Wireless Local Area Networks (WLANs) have gained a lot of popularity as they provide location-independent network access between computing devices. There are a number of access methods used in Wireless Networks among which DCF and PCF are the fundamental access methods. This paper emphasizes on the impact of DCF and PCF access mechanisms on the performance of the IEEE 802.11a, 802.11b and 802.11g standards. On the basis of various parameters viz. throughput, delay, load etc performance is evaluated between these three standards using above mentioned access mechanisms. Analysis revealed a superior throughput performance with low delays for 802.11g standard as compared to 802.11 a/b standard using both DCF and PCF access methods.Keywords: DCF, IEEE, PCF, WLAN
Procedia PDF Downloads 4255785 Determining Fire Resistance of Wooden Construction Elements through Experimental Studies and Artificial Neural Network
Authors: Sakir Tasdemir, Mustafa Altin, Gamze Fahriye Pehlivan, Sadiye Didem Boztepe Erkis, Ismail Saritas, Selma Tasdemir
Abstract:
Artificial intelligence applications are commonly used in industry in many fields in parallel with the developments in the computer technology. In this study, a fire room was prepared for the resistance of wooden construction elements and with the mechanism here, the experiments of polished materials were carried out. By utilizing from the experimental data, an artificial neural network (ANN) was modeled in order to evaluate the final cross sections of the wooden samples remaining from the fire. In modelling, experimental data obtained from the fire room were used. In the system developed, the first weight of samples (ws-gr), preliminary cross-section (pcs-mm2), fire time (ft-minute), fire temperature (t-oC) as input parameters and final cross-section (fcs-mm2) as output parameter were taken. When the results obtained from ANN and experimental data are compared after making statistical analyses, the data of two groups are determined to be coherent and seen to have no meaning difference between them. As a result, it is seen that ANN can be safely used in determining cross sections of wooden materials after fire and it prevents many disadvantages.Keywords: artificial neural network, final cross-section, fire retardant polishes, fire safety, wood resistance.
Procedia PDF Downloads 3855784 Remote Sensing through Deep Neural Networks for Satellite Image Classification
Authors: Teja Sai Puligadda
Abstract:
Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss
Procedia PDF Downloads 159