Search results for: internet data science
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27579

Search results for: internet data science

25689 Implementation and Performance Analysis of Data Encryption Standard and RSA Algorithm with Image Steganography and Audio Steganography

Authors: S. C. Sharma, Ankit Gambhir, Rajeev Arya

Abstract:

In today’s era data security is an important concern and most demanding issues because it is essential for people using online banking, e-shopping, reservations etc. The two major techniques that are used for secure communication are Cryptography and Steganography. Cryptographic algorithms scramble the data so that intruder will not able to retrieve it; however steganography covers that data in some cover file so that presence of communication is hidden. This paper presents the implementation of Ron Rivest, Adi Shamir, and Leonard Adleman (RSA) Algorithm with Image and Audio Steganography and Data Encryption Standard (DES) Algorithm with Image and Audio Steganography. The coding for both the algorithms have been done using MATLAB and its observed that these techniques performed better than individual techniques. The risk of unauthorized access is alleviated up to a certain extent by using these techniques. These techniques could be used in Banks, RAW agencies etc, where highly confidential data is transferred. Finally, the comparisons of such two techniques are also given in tabular forms.

Keywords: audio steganography, data security, DES, image steganography, intruder, RSA, steganography

Procedia PDF Downloads 290
25688 Impact of Weather Conditions on Non-Food Retailers and Implications for Marketing Activities

Authors: Noriyuki Suyama

Abstract:

This paper discusses purchasing behavior in retail stores, with a particular focus on the impact of weather changes on customers' purchasing behavior. Weather conditions are one of the factors that greatly affect the management and operation of retail stores. However, there is very little research on the relationship between weather conditions and marketing from an academic perspective, although there is some importance from a practical standpoint and knowledge based on experience. For example, customers are more hesitant to go out when it rains than when it is sunny, and they may postpone purchases or buy only the minimum necessary items even if they do go out. It is not difficult to imagine that weather has a significant impact on consumer behavior. To the best of the authors' knowledge, there have been only a few studies that have delved into the purchasing behavior of individual customers. According to Hirata (2018), the economic impact of weather in the United States is estimated to be 3.4% of GDP, or "$485 billion ± $240 billion per year. However, weather data is not yet fully utilized. Representative industries include transportation-related industries (e.g., airlines, shipping, roads, railroads), leisure-related industries (e.g., leisure facilities, event organizers), energy and infrastructure-related industries (e.g., construction, factories, electricity and gas), agriculture-related industries (e.g., agricultural organizations, producers), and retail-related industries (e.g., retail, food service, convenience stores, etc.). This paper focuses on the retail industry and advances research on weather. The first reason is that, as far as the author has investigated the retail industry, only grocery retailers use temperature, rainfall, wind, weather, and humidity as parameters for their products, and there are very few examples of academic use in other retail industries. Second, according to NBL's "Toward Data Utilization Starting from Consumer Contact Points in the Retail Industry," labor productivity in the retail industry is very low compared to other industries. According to Hirata (2018) mentioned above, improving labor productivity in the retail industry is recognized as a major challenge. On the other hand, according to the "Survey and Research on Measurement Methods for Information Distribution and Accumulation (2013)" by the Ministry of Internal Affairs and Communications, the amount of data accumulated by each industry is extremely large in the retail industry, so new applications are expected by analyzing these data together with weather data. Third, there is currently a wealth of weather-related information available. There are, for example, companies such as WeatherNews, Inc. that make weather information their business and not only disseminate weather information but also disseminate information that supports businesses in various industries. Despite the wide range of influences that weather has on business, the impact of weather has not been a subject of research in the retail industry, where business models need to be imagined, especially from a micro perspective. In this paper, the author discuss the important aspects of the impact of weather on marketing strategies in the non-food retail industry.

Keywords: consumer behavior, weather marketing, marketing science, big data, retail marketing

Procedia PDF Downloads 82
25687 “I” on the Web: Social Penetration Theory Revised

Authors: Dr. Dionysis Panos Dpt. Communication, Internet Studies Cyprus University of Technology

Abstract:

The widespread use of New Media and particularly Social Media, through fixed or mobile devices, has changed in a staggering way our perception about what is “intimate" and "safe" and what is not, in interpersonal communication and social relationships. The distribution of self and identity-related information in communication now evolves under new and different conditions and contexts. Consequently, this new framework forces us to rethink processes and mechanisms, such as what "exposure" means in interpersonal communication contexts, how the distinction between the "private" and the "public" nature of information is being negotiated online, how the "audiences" we interact with are understood and constructed. Drawing from an interdisciplinary perspective that combines sociology, communication psychology, media theory, new media and social networks research, as well as from the empirical findings of a longitudinal comparative research, this work proposes an integrative model for comprehending mechanisms of personal information management in interpersonal communication, which can be applied to both types of online (Computer-Mediated) and offline (Face-To-Face) communication. The presentation is based on conclusions drawn from a longitudinal qualitative research study with 458 new media users from 24 countries for almost over a decade. Some of these main conclusions include: (1) There is a clear and evidenced shift in users’ perception about the degree of "security" and "familiarity" of the Web, between the pre- and the post- Web 2.0 era. The role of Social Media in this shift was catalytic. (2) Basic Web 2.0 applications changed dramatically the nature of the Internet itself, transforming it from a place reserved for “elite users / technical knowledge keepers" into a place of "open sociability” for anyone. (3) Web 2.0 and Social Media brought about a significant change in the concept of “audience” we address in interpersonal communication. The previous "general and unknown audience" of personal home pages, converted into an "individual & personal" audience chosen by the user under various criteria. (4) The way we negotiate the nature of 'private' and 'public' of the Personal Information, has changed in a fundamental way. (5) The different features of the mediated environment of online communication and the critical changes occurred since the Web 2.0 advance, lead to the need of reconsideration and updating the theoretical models and analysis tools we use in our effort to comprehend the mechanisms of interpersonal communication and personal information management. Therefore, is proposed here a new model for understanding the way interpersonal communication evolves, based on a revision of social penetration theory.

Keywords: new media, interpersonal communication, social penetration theory, communication exposure, private information, public information

Procedia PDF Downloads 372
25686 Crime Prevention with Artificial Intelligence

Authors: Mehrnoosh Abouzari, Shahrokh Sahraei

Abstract:

Today, with the increase in quantity and quality and variety of crimes, the discussion of crime prevention has faced a serious challenge that human resources alone and with traditional methods will not be effective. One of the developments in the modern world is the presence of artificial intelligence in various fields, including criminal law. In fact, the use of artificial intelligence in criminal investigations and fighting crime is a necessity in today's world. The use of artificial intelligence is far beyond and even separate from other technologies in the struggle against crime. Second, its application in criminal science is different from the discussion of prevention and it comes to the prediction of crime. Crime prevention in terms of the three factors of the offender, the offender and the victim, following a change in the conditions of the three factors, based on the perception of the criminal being wise, and therefore increasing the cost and risk of crime for him in order to desist from delinquency or to make the victim aware of self-care and possibility of exposing him to danger or making it difficult to commit crimes. While the presence of artificial intelligence in the field of combating crime and social damage and dangers, like an all-seeing eye, regardless of time and place, it sees the future and predicts the occurrence of a possible crime, thus prevent the occurrence of crimes. The purpose of this article is to collect and analyze the studies conducted on the use of artificial intelligence in predicting and preventing crime. How capable is this technology in predicting crime and preventing it? The results have shown that the artificial intelligence technologies in use are capable of predicting and preventing crime and can find patterns in the data set. find large ones in a much more efficient way than humans. In crime prediction and prevention, the term artificial intelligence can be used to refer to the increasing use of technologies that apply algorithms to large sets of data to assist or replace police. The use of artificial intelligence in our debate is in predicting and preventing crime, including predicting the time and place of future criminal activities, effective identification of patterns and accurate prediction of future behavior through data mining, machine learning and deep learning, and data analysis, and also the use of neural networks. Because the knowledge of criminologists can provide insight into risk factors for criminal behavior, among other issues, computer scientists can match this knowledge with the datasets that artificial intelligence uses to inform them.

Keywords: artificial intelligence, criminology, crime, prevention, prediction

Procedia PDF Downloads 75
25685 Experiments on Weakly-Supervised Learning on Imperfect Data

Authors: Yan Cheng, Yijun Shao, James Rudolph, Charlene R. Weir, Beth Sahlmann, Qing Zeng-Treitler

Abstract:

Supervised predictive models require labeled data for training purposes. Complete and accurate labeled data, i.e., a ‘gold standard’, is not always available, and imperfectly labeled data may need to serve as an alternative. An important question is if the accuracy of the labeled data creates a performance ceiling for the trained model. In this study, we trained several models to recognize the presence of delirium in clinical documents using data with annotations that are not completely accurate (i.e., weakly-supervised learning). In the external evaluation, the support vector machine model with a linear kernel performed best, achieving an area under the curve of 89.3% and accuracy of 88%, surpassing the 80% accuracy of the training sample. We then generated a set of simulated data and carried out a series of experiments which demonstrated that models trained on imperfect data can (but do not always) outperform the accuracy of the training data, e.g., the area under the curve for some models is higher than 80% when trained on the data with an error rate of 40%. Our experiments also showed that the error resistance of linear modeling is associated with larger sample size, error type, and linearity of the data (all p-values < 0.001). In conclusion, this study sheds light on the usefulness of imperfect data in clinical research via weakly-supervised learning.

Keywords: weakly-supervised learning, support vector machine, prediction, delirium, simulation

Procedia PDF Downloads 199
25684 Analysis on the Converged Method of Korean Scientific and Mathematical Fields and Liberal Arts Programme: Focusing on the Intervention Patterns in Liberal Arts

Authors: Jinhui Bak, Bumjin Kim

Abstract:

The purpose of this study is to analyze how the scientific and mathematical fields (STEM) and liberal arts (A) work together in the STEAM program. In the future STEAM programs that have been designed and developed, the humanities will act not just as a 'tool' for science technology and mathematics, but as a 'core' content to have an equivalent status. STEAM was first introduced to the Republic of Korea in 2011 when the Ministry of Education emphasized fostering creative convergence talent. Many programs have since been developed under the name STEAM, but with the majority of programs focusing on technology education, arts and humanities are considered secondary. As a result, arts is most likely to be accepted as an option that can be excluded from the teachers who run the STEAM program. If what we ultimately pursue through STEAM education is in fostering STEAM literacy, we should no longer turn arts into a tooling area for STEM. Based on this consciousness, this study analyzed over 160 STEAM programs in middle and high schools, which were produced and distributed by the Ministry of Education and the Korea Science and Technology Foundation from 2012 to 2017. The framework of analyses referenced two criteria presented in the related prior studies: normative convergence and technological convergence. In addition, we divide Arts into fine arts and liberal arts and focused on Korean Language Course which is in liberal arts and analyzed what kind of curriculum standards were selected, and what kind of process the Korean language department participated in teaching and learning. In this study, to ensure the reliability of the analysis results, we have chosen to cross-check the individual analysis results of the two researchers and only if they are consistent. We also conducted a reliability check on the analysis results of three middle and high school teachers involved in the STEAM education program. Analyzing 10 programs selected randomly from the analyzed programs, Cronbach's α .853 showed a reliable level. The results of this study are summarized as follows. First, the convergence ratio of the liberal arts was lowest in the department of moral at 14.58%. Second, the normative convergence is 28.19%, which is lower than that of the technological convergence. Third, the language and achievement criteria selected for the program were limited to functional areas such as listening, talking, reading and writing. This means that the convergence of Korean language departments is made only by the necessary tools to communicate opinions or promote scientific products. In this study, we intend to compare these results with the STEAM programs in the United States and abroad to explore what elements or key concepts are required for the achievement criteria for Korean language and curriculum. This is meaningful in that the humanities field (A), including Korean, provides basic data that can be fused into 'equivalent qualifications' with science (S), technical engineering (TE) and mathematics (M).

Keywords: Korean STEAM Programme, liberal arts, STEAM curriculum, STEAM Literacy, STEM

Procedia PDF Downloads 158
25683 Teachers’ Experiences regarding Use of Information and Communication Technology for Visually Impaired Students

Authors: Zikra Faiz, Zaheer Asghar, Nisar Abid

Abstract:

Information and Communication Technologies (ICTs) includes computers, the Internet, and electronic delivery systems such as televisions, radios, multimedia, and overhead projectors etc. In the modern world, ICTs is considered as an essential element of the teaching-learning process. The study was aimed to discover the usage of ICTs in Special Education Institutions for Visually Impaired students, Lahore, Pakistan. Objectives of the study were to explore the problems faced by teachers while using ICT in the classroom. The study was phenomenology in nature; a qualitative survey method was used through a semi-structured interview protocol developed by the researchers. The sample comprised of eighty faculty members selected through a purposive sampling technique. Data were analyzed through thematic analysis technique with the help of open coding. The study findings revealed that multimedia, projectors, computers, laptops and LEDs are used in special education institutes to enhance the teaching-learning process. Teachers believed that ICTs could enhance the knowledge of visually impaired students and every student should use these technologies in the classroom. It was concluded that multimedia, projectors and laptops are used in classroom by teachers and students. ICTs can promote effectively through the training of teachers and students. It was suggested that the government should take steps to enhance ICTs in teacher training and other institutions by pre-service and in-service training of teachers.

Keywords: information and communication technologies, in-services teachers, special education institutions

Procedia PDF Downloads 127
25682 Transforming Healthcare Data Privacy: Integrating Blockchain with Zero-Knowledge Proofs and Cryptographic Security

Authors: Kenneth Harper

Abstract:

Blockchain technology presents solutions for managing healthcare data, addressing critical challenges in privacy, integrity, and access. This paper explores how privacy-preserving technologies, such as zero-knowledge proofs (ZKPs) and homomorphic encryption (HE), enhance decentralized healthcare platforms by enabling secure computations and patient data protection. An examination of the mathematical foundations of these methods, their practical applications, and how they meet the evolving demands of healthcare data security is unveiled. Using real-world examples, this research highlights industry-leading implementations and offers a roadmap for future applications in secure, decentralized healthcare ecosystems.

Keywords: blockchain, cryptography, data privacy, decentralized data management, differential privacy, healthcare, healthcare data security, homomorphic encryption, privacy-preserving technologies, secure computations, zero-knowledge proofs

Procedia PDF Downloads 19
25681 Clustering Ethno-Informatics of Naming Village in Java Island Using Data Mining

Authors: Atje Setiawan Abdullah, Budi Nurani Ruchjana, I. Gede Nyoman Mindra Jaya, Eddy Hermawan

Abstract:

Ethnoscience is used to see the culture with a scientific perspective, which may help to understand how people develop various forms of knowledge and belief, initially focusing on the ecology and history of the contributions that have been there. One of the areas studied in ethnoscience is etno-informatics, is the application of informatics in the culture. In this study the science of informatics used is data mining, a process to automatically extract knowledge from large databases, to obtain interesting patterns in order to obtain a knowledge. While the application of culture described by naming database village on the island of Java were obtained from Geographic Indonesia Information Agency (BIG), 2014. The purpose of this study is; first, to classify the naming of the village on the island of Java based on the structure of the word naming the village, including the prefix of the word, syllable contained, and complete word. Second to classify the meaning of naming the village based on specific categories, as well as its role in the community behavioral characteristics. Third, how to visualize the naming of the village to a map location, to see the similarity of naming villages in each province. In this research we have developed two theorems, i.e theorems area as a result of research studies have collected intersection naming villages in each province on the island of Java, and the composition of the wedge theorem sets the provinces in Java is used to view the peculiarities of a location study. The methodology in this study base on the method of Knowledge Discovery in Database (KDD) on data mining, the process includes preprocessing, data mining and post processing. The results showed that the Java community prioritizes merit in running his life, always working hard to achieve a more prosperous life, and love as well as water and environmental sustainment. Naming villages in each location adjacent province has a high degree of similarity, and influence each other. Cultural similarities in the province of Central Java, East Java and West Java-Banten have a high similarity, whereas in Jakarta-Yogyakarta has a low similarity. This research resulted in the cultural character of communities within the meaning of the naming of the village on the island of Java, this character is expected to serve as a guide in the behavior of people's daily life on the island of Java.

Keywords: ethnoscience, ethno-informatics, data mining, clustering, Java island culture

Procedia PDF Downloads 283
25680 Operating Speed Models on Tangent Sections of Two-Lane Rural Roads

Authors: Dražen Cvitanić, Biljana Maljković

Abstract:

This paper presents models for predicting operating speeds on tangent sections of two-lane rural roads developed on continuous speed data. The data corresponds to 20 drivers of different ages and driving experiences, driving their own cars along an 18 km long section of a state road. The data were first used for determination of maximum operating speeds on tangents and their comparison with speeds in the middle of tangents i.e. speed data used in most of operating speed studies. Analysis of continuous speed data indicated that the spot speed data are not reliable indicators of relevant speeds. After that, operating speed models for tangent sections were developed. There was no significant difference between models developed using speed data in the middle of tangent sections and models developed using maximum operating speeds on tangent sections. All developed models have higher coefficient of determination then models developed on spot speed data. Thus, it can be concluded that the method of measuring has more significant impact on the quality of operating speed model than the location of measurement.

Keywords: operating speed, continuous speed data, tangent sections, spot speed, consistency

Procedia PDF Downloads 452
25679 Thai Student Ability on Speexx Language Training Program

Authors: Toby Gibbs, Glen Craigie, Suwaree Yordchim

Abstract:

Using the Speexx Online Language Training Program with Thai students has allowed us to evaluate their learning comprehension and track their progression through the English language program. Speexx sets the standard for excellence and innovation in web-based language training and online coaching services. The program is designed to improve the business communication skills of language learners for Thai students. Speexx consists of English lessons, exercises, tests, web boards, and supplementary lessons to help students practice English. The sample groups are 191 Thai sophomores studying Business English with the department of Humanities and Social Science. The data was received by standard deviation (S.D.) value from questionnaires and samples provided from the Speexx training program. The results found that most Thai sophomores fail the Speexx training program due to their learning comprehension of the English language is below average. With persisted efforts on new training methods, the success of the Speexx Language Training Program can break through the cultural barriers and help future students adopt English as a second language. The Speexx results revealed four main factors affecting the success as follows: 1) Future English training should be pursued in applied Speexx development. 2) Thai students didn’t see the benefit of having an Online Language Training Program. 3) There is a great need to educate the next generation of learners on the benefits of Speexx within the community. 4) A great majority of Thai Sophomores didn't know what Speexx was. A guideline for self-reliance planning consisted of four aspects: 1) Development planning: by arranging groups to further improve English abilities with the Speexx Language Training program and encourage using Speexx every day. Local communities need to develop awareness of the usefulness of Speexx and share the value of using the program among family and friends. 2) Humanities and Social Science staff should develop skills using this Online Language Training Program to expand on the benefits of Speexx within their departments. 3) Further research should be pursued on the Thai Students progression with Speexx and how it helps them improve their language skills with Business English. 4) University’s and Language centers should focus on using Speexx to encourage learning for any language, not just English.

Keywords: ability, comprehension, sophomore, speexx

Procedia PDF Downloads 369
25678 Childhood Obesity in Japan: Trends in Obesity Prevalence among Japanese Kids under 17 Years Old from 2007 to 2016

Authors: Houda Mnif Sellami, Toshi Umehara, Yuriko Yamazaki, Reie Matoba, Anna Sakashita, Yoshimi Abe, Hiroyuki Otake, Satoko Morita, Yoshitaka Akiyama, Chieko Morisawa, Eiji Omura, Masako Yazawa, Yoshie Koike, Mitsugu Tokunaga, Seiki Wada, Shinya Minagawa, Masafumi Matsuda

Abstract:

Childhood obesity has been, for decades, a very serious public health problem worldwide. Some Asian countries have already reached alarming rates, as lifestyle changed dramatically in this part of the world. In many concerned countries, strategies including educational, promotional and awareness-raising activities have been established to combat obesity within kids. Objective: To estimate the obesity and also the underweight trends of Japanese kids from 5 to 17 years, by single year of age and by gender, over the last decade. Methods We used the data from the cross-sectional annual Nationwide surveys (National Nutrition Survey, Japan, Ministry of education, culture, sports, science and technology) conducted from 2007 to 2016. We compared trajectories of obesity prevalence, with the data on sex and age groups. We also analyzed energy and macronutrients intakes of Japanese kids using Ministry of Health, Labor and Welfare-Japan annual data, from 2007 to 2014. Results: From 2007 to 2016, Boys obesity was higher than Girls obesity for the over 6 YO participants. Both Boys and Girls obesity trends had 2 peaks of prevalence at (11-13 YO) and then at (15-16 YO). From 2007 to 2012, Kids obesity decreased considerably in both sex and all year of age; then obesity decline was more modest till 2016.On the other side, Kids underweight prevalence increased in both sexes. The macronutrients analyze couldn’t show an evident association between obesity trends and foods intake. Conclusion: Japanese kids’ obesity has been decreased since 2007, in opposition to some other countries reports. We didn’t find an observed association with food intake using Health Ministry data; we need further investigation to estimate energy intake, lifestyle and physical activity by year of age to know whether there is any possible relation.

Keywords: childhood, Japan, obesity, underweight

Procedia PDF Downloads 289
25677 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data

Authors: S. Nickolas, Shobha K.

Abstract:

The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.

Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing

Procedia PDF Downloads 274
25676 The Effect That the Data Assimilation of Qinghai-Tibet Plateau Has on a Precipitation Forecast

Authors: Ruixia Liu

Abstract:

Qinghai-Tibet Plateau has an important influence on the precipitation of its lower reaches. Data from remote sensing has itself advantage and numerical prediction model which assimilates RS data will be better than other. We got the assimilation data of MHS and terrestrial and sounding from GSI, and introduced the result into WRF, then got the result of RH and precipitation forecast. We found that assimilating MHS and terrestrial and sounding made the forecast on precipitation, area and the center of the precipitation more accurate by comparing the result of 1h,6h,12h, and 24h. Analyzing the difference of the initial field, we knew that the data assimilating about Qinghai-Tibet Plateau influence its lower reaches forecast by affecting on initial temperature and RH.

Keywords: Qinghai-Tibet Plateau, precipitation, data assimilation, GSI

Procedia PDF Downloads 234
25675 Inclusion of Transgender in Mainstream Secondary Schools of Bangladesh: Perceptions and Issues

Authors: Shanaj Parvin Jonaki

Abstract:

After the first wave of the feminist movement, gender has become one of the most important issues to be researched in social science. Many gender theories have been invented and opened a new window to look at. These works showed how gender is a social construct, how gender has been used to oppress, how to rule. While it's the education system’s duty to guide students to understand the concept of gender, it sometimes shows gender-based discrimination. Transgenders exclusion from educational institutes of Bangladesh justifies this very statement. This study aims to figure out how people perceive transgenders’ identity, their inclusion in secondary schools, as well as the underlying barriers in the pathway of inclusion in the context of Bangladesh. A qualitative approach was taken to explore different perspectives towards transgender inclusion from several stakeholders such as students, parents, and teachers of secondary schools and transgenders as well. Data were collected through focus group discussion and interview by convenient sampling. 15 students, 10 parents, and 5 teachers were selected from Bangla Medium school as well as from Madrasha. Collected data were analyzed thematically and were run by experts of gender, education, and psychology to identify the core barriers of inclusion. The study revealed that most of the students, teachers, and parents lacked the knowledge of non-binary gender identities, and they showed unwillingness towards the inclusion of transgender in schools because of the cultural context of Bangladesh. Moreover, this study suggests future initiatives to be taken to ensure the inclusion of transgenders in a secondary school in our country and analyzes it through the lens of feminist theories.

Keywords: education, gender, inclusion, transgender

Procedia PDF Downloads 191
25674 Positive Affect, Negative Affect, Organizational and Motivational Factor on the Acceptance of Big Data Technologies

Authors: Sook Ching Yee, Angela Siew Hoong Lee

Abstract:

Big data technologies have become a trend to exploit business opportunities and provide valuable business insights through the analysis of big data. However, there are still many organizations that have yet to adopt big data technologies especially small and medium organizations (SME). This study uses the technology acceptance model (TAM) to look into several constructs in the TAM and other additional constructs which are positive affect, negative affect, organizational factor and motivational factor. The conceptual model proposed in the study will be tested on the relationship and influence of positive affect, negative affect, organizational factor and motivational factor towards the intention to use big data technologies to produce an outcome. Empirical research is used in this study by conducting a survey to collect data.

Keywords: big data technologies, motivational factor, negative affect, organizational factor, positive affect, technology acceptance model (TAM)

Procedia PDF Downloads 362
25673 Big Data Analysis with Rhipe

Authors: Byung Ho Jung, Ji Eun Shin, Dong Hoon Lim

Abstract:

Rhipe that integrates R and Hadoop environment made it possible to process and analyze massive amounts of data using a distributed processing environment. In this paper, we implemented multiple regression analysis using Rhipe with various data sizes of actual data. Experimental results for comparing the performance of our Rhipe with stats and biglm packages available on bigmemory, showed that our Rhipe was more fast than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases. We also compared the computing speeds of pseudo-distributed and fully-distributed modes for configuring Hadoop cluster. The results showed that fully-distributed mode was faster than pseudo-distributed mode, and computing speeds of fully-distributed mode were faster as the number of data nodes increases.

Keywords: big data, Hadoop, Parallel regression analysis, R, Rhipe

Procedia PDF Downloads 497
25672 Integrative Biology Teaching and Learning Model Based on STEM Education

Authors: Narupot Putwattana

Abstract:

Changes in global situation such as environmental and economic crisis brought the new perspective for science education called integrative biology. STEM has been increasingly mentioned for several educational researches as the approach which combines the concept in Science (S), Technology (T), Engineering (E) and Mathematics (M) to apply in teaching and learning process so as to strengthen the 21st-century skills such as creativity and critical thinking. Recent studies demonstrated STEM as the pedagogy which described the engineering process along with the science classroom activities. So far, pedagogical contents for STEM explaining the content in biology have been scarce. A qualitative literature review was conducted so as to gather the articles based on electronic databases (google scholar). STEM education, engineering design, teaching and learning of biology were used as main keywords to find out researches involving with the application of STEM in biology teaching and learning process. All articles were analyzed to obtain appropriate teaching and learning model that unify the core concept of biology. The synthesized model comprised of engineering design, inquiry-based learning, biological prototype and biologically-inspired design (BID). STEM content and context integration were used as the theoretical framework to create the integrative biology instructional model for STEM education. Several disciplines contents such as biology, engineering, and technology were regarded for inquiry-based learning to build biological prototype. Direct and indirect integrations were used to provide the knowledge into the biology related STEM strategy. Meanwhile, engineering design and BID showed the occupational context for engineer and biologist. Technological and mathematical aspects were required to be inspected in terms of co-teaching method. Lastly, other variables such as critical thinking and problem-solving skills should be more considered in the further researches.

Keywords: biomimicry, engineering approach, STEM education, teaching and learning model

Procedia PDF Downloads 255
25671 Security in Resource Constraints Network Light Weight Encryption for Z-MAC

Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy

Abstract:

Wireless sensor network was formed by a combination of nodes, systematically it transmitting the data to their base stations, this transmission data can be easily compromised if the limited processing power and the data consistency from these nodes are kept in mind; there is always a discussion to address the secure data transfer or transmission in actual time. This will present a mechanism to securely transmit the data over a chain of sensor nodes without compromising the throughput of the network by utilizing available battery resources available in the sensor node. Our methodology takes many different advantages of Z-MAC protocol for its efficiency, and it provides a unique key by sharing the mechanism using neighbor node MAC address. We present a light weighted data integrity layer which is embedded in the Z-MAC protocol to prove that our protocol performs well than Z-MAC when we introduce the different attack scenarios.

Keywords: hybrid MAC protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node dataprocessing, Z-MAC

Procedia PDF Downloads 144
25670 Survival Data with Incomplete Missing Categorical Covariates

Authors: Madaki Umar Yusuf, Mohd Rizam B. Abubakar

Abstract:

The survival censored data with incomplete covariate data is a common occurrence in many studies in which the outcome is survival time. With model when the missing covariates are categorical, a useful technique for obtaining parameter estimates is the EM by the method of weights. The survival outcome for the class of generalized linear model is applied and this method requires the estimation of the parameters of the distribution of the covariates. In this paper, we propose some clinical trials with ve covariates, four of which have some missing values which clearly show that they were fully censored data.

Keywords: EM algorithm, incomplete categorical covariates, ignorable missing data, missing at random (MAR), Weibull Distribution

Procedia PDF Downloads 406
25669 A Study of Blockchain Oracles

Authors: Abdeljalil Beniiche

Abstract:

The limitation with smart contracts is that they cannot access external data that might be required to control the execution of business logic. Oracles can be used to provide external data to smart contracts. An oracle is an interface that delivers data from external data outside the blockchain to a smart contract to consume. Oracle can deliver different types of data depending on the industry and requirements. In this paper, we study and describe the widely used blockchain oracles. Then, we elaborate on his potential role, technical architecture, and design patterns. Finally, we discuss the human oracle and its key role in solving the truth problem by reaching a consensus about a certain inquiry and tasks.

Keywords: blockchain, oracles, oracles design, human oracles

Procedia PDF Downloads 136
25668 Empirical Study on Factors Influencing SEO

Authors: Pakinee Aimmanee, Phoom Chokratsamesiri

Abstract:

Search engine has become an essential tool nowadays for people to search for their needed information on the internet. In this work, we evaluate the performance of the search engine from three factors: the keyword frequency, the number of inbound links, and the difficulty of the keyword. The evaluations are based on the ranking position and the number of days that Google has seen or detect the webpage. We find that the keyword frequency and the difficulty of the keyword do not affect the Google ranking where the number of inbound links gives remarkable improvement of the ranking position. The optimal number of inbound links found in the experiment is 10.

Keywords: SEO, information retrieval, web search, knowledge technologies

Procedia PDF Downloads 283
25667 Immunity Boosting and Balanced Diet Prevents Viral Infections with Special Emphasis on COVID-19

Authors: K. R. Padma, K. R. Don

Abstract:

Background and aims: A balanced nutritional diet is essential in maintaining immunity and for deterrence as well as desisting of viral infections. Nevertheless, currently, very less information is available online regarding nutrition consumption during the period of coronavirus infection, i.e. (COVID-19). In our systematic review article, we portrayed and aimed to evaluate evidence from various previous clinical trials, which was based on nutritional interventions for viral diseases and given a concise overview. Methods: A systematic search was carried out employing 3 key medical databases: PubMed®, Web of Science®, and SciVerse Scopus®. Studies were performed and evaluated suitable if clinical trials in humans, appropriate immunological parameters on viral and respiratory infections, need to perform. Basic Clinical trials on nutritional vitamins, minerals, nutraceuticals as well as probiotics were included. Results: We have explored 10 review articles and extracted data for our study. A total of > 2000 participants were included and excluded several other trace elements as well as various vitamins, but in inclusion criteria mainly concentrated on those who have shown propitious immune-modulatory effects against viral respiratory infections. Conclusions: We have encapsulated the potential health benefits of some minerals, vitamins, as well as certain designer foods, nutraceuticals, and probiotics in viral infections. Based on this nutritional interventional strategy available from our present data, it could be promising to abstain and reduce the COVID-19 infection replication and boost our immunity to fight against the virus.

Keywords: COVID-19, immunity, vitamins, nutritional intervention strategy

Procedia PDF Downloads 134
25666 Multi Data Management Systems in a Cluster Randomized Trial in Poor Resource Setting: The Pneumococcal Vaccine Schedules Trial

Authors: Abdoullah Nyassi, Golam Sarwar, Sarra Baldeh, Mamadou S. K. Jallow, Bai Lamin Dondeh, Isaac Osei, Grant A. Mackenzie

Abstract:

A randomized controlled trial is the "gold standard" for evaluating the efficacy of an intervention. Large-scale, cluster-randomized trials are expensive and difficult to conduct, though. To guarantee the validity and generalizability of findings, high-quality, dependable, and accurate data management systems are necessary. Robust data management systems are crucial for optimizing and validating the quality, accuracy, and dependability of trial data. Regarding the difficulties of data gathering in clinical trials in low-resource areas, there is a scarcity of literature on this subject, which may raise concerns. Effective data management systems and implementation goals should be part of trial procedures. Publicizing the creative clinical data management techniques used in clinical trials should boost public confidence in the study's conclusions and encourage further replication. In the ongoing pneumococcal vaccine schedule study in rural Gambia, this report details the development and deployment of multi-data management systems and methodologies. We implemented six different data management, synchronization, and reporting systems using Microsoft Access, RedCap, SQL, Visual Basic, Ruby, and ASP.NET. Additionally, data synchronization tools were developed to integrate data from these systems into the central server for reporting systems. Clinician, lab, and field data validation systems and methodologies are the main topics of this report. Our process development efforts across all domains were driven by the complexity of research project data collected in real-time data, online reporting, data synchronization, and ways for cleaning and verifying data. Consequently, we effectively used multi-data management systems, demonstrating the value of creative approaches in enhancing the consistency, accuracy, and reporting of trial data in a poor resource setting.

Keywords: data management, data collection, data cleaning, cluster-randomized trial

Procedia PDF Downloads 27
25665 Design a Network for Implementation a Hospital Information System

Authors: Abdulqader Rasool Feqi Mohammed, Ergun Erçelebi̇

Abstract:

A large number of hospitals from developed countries are adopting hospital information system to bring efficiency in hospital information system. The purpose of this project is to research on new network security techniques in order to enhance the current network security structure of save a hospital information system (HIS). This is very important because, it will avoid the system from suffering any attack. Security architecture was optimized but there are need to keep researching on best means to protect the network from future attacks. In this final project research, security techniques were uncovered to produce best network security results when implemented in an integrated framework.

Keywords: hospital information system, HIS, network security techniques, internet protocol, IP, network

Procedia PDF Downloads 440
25664 To Cloudify or Not to Cloudify

Authors: Laila Yasir Al-Harthy, Ali H. Al-Badi

Abstract:

As an emerging business model, cloud computing has been initiated to satisfy the need of organizations and to push Information Technology as a utility. The shift to the cloud has changed the way Information Technology departments are managed traditionally and has raised many concerns for both, public and private sectors. The purpose of this study is to investigate the possibility of cloud computing services replacing services provided traditionally by IT departments. Therefore, it aims to 1) explore whether organizations in Oman are ready to move to the cloud; 2) identify the deciding factors leading to the adoption or rejection of cloud computing services in Oman; and 3) provide two case studies, one for a successful Cloud provider and another for a successful adopter. This paper is based on multiple research methods including conducting a set of interviews with cloud service providers and current cloud users in Oman; and collecting data using questionnaires from experts in the field and potential users of cloud services. Despite the limitation of bandwidth capacity and Internet coverage offered in Oman that create a challenge in adopting the cloud, it was found that many information technology professionals are encouraged to move to the cloud while few are resistant to change. The recent launch of a new Omani cloud service provider and the entrance of other international cloud service providers in the Omani market make this research extremely valuable as it aims to provide real-life experience as well as two case studies on the successful provision of cloud services and the successful adoption of these services.

Keywords: cloud computing, cloud deployment models, cloud service models, deciding factors

Procedia PDF Downloads 297
25663 Finding Bicluster on Gene Expression Data of Lymphoma Based on Singular Value Decomposition and Hierarchical Clustering

Authors: Alhadi Bustaman, Soeganda Formalidin, Titin Siswantining

Abstract:

DNA microarray technology is used to analyze thousand gene expression data simultaneously and a very important task for drug development and test, function annotation, and cancer diagnosis. Various clustering methods have been used for analyzing gene expression data. However, when analyzing very large and heterogeneous collections of gene expression data, conventional clustering methods often cannot produce a satisfactory solution. Biclustering algorithm has been used as an alternative approach to identifying structures from gene expression data. In this paper, we introduce a transform technique based on singular value decomposition to identify normalized matrix of gene expression data followed by Mixed-Clustering algorithm and the Lift algorithm, inspired in the node-deletion and node-addition phases proposed by Cheng and Church based on Agglomerative Hierarchical Clustering (AHC). Experimental study on standard datasets demonstrated the effectiveness of the algorithm in gene expression data.

Keywords: agglomerative hierarchical clustering (AHC), biclustering, gene expression data, lymphoma, singular value decomposition (SVD)

Procedia PDF Downloads 278
25662 An Efficient Traceability Mechanism in the Audited Cloud Data Storage

Authors: Ramya P, Lino Abraham Varghese, S. Bose

Abstract:

By cloud storage services, the data can be stored in the cloud, and can be shared across multiple users. Due to the unexpected hardware/software failures and human errors, which make the data stored in the cloud be lost or corrupted easily it affected the integrity of data in cloud. Some mechanisms have been designed to allow both data owners and public verifiers to efficiently audit cloud data integrity without retrieving the entire data from the cloud server. But public auditing on the integrity of shared data with the existing mechanisms will unavoidably reveal confidential information such as identity of the person, to public verifiers. Here a privacy-preserving mechanism is proposed to support public auditing on shared data stored in the cloud. It uses group signatures to compute verification metadata needed to audit the correctness of shared data. The identity of the signer on each block in shared data is kept confidential from public verifiers, who are easily verifying shared data integrity without retrieving the entire file. But on demand, the signer of the each block is reveal to the owner alone. Group private key is generated once by the owner in the static group, where as in the dynamic group, the group private key is change when the users revoke from the group. When the users leave from the group the already signed blocks are resigned by cloud service provider instead of owner is efficiently handled by efficient proxy re-signature scheme.

Keywords: data integrity, dynamic group, group signature, public auditing

Procedia PDF Downloads 392
25661 Security Design of Root of Trust Based on RISC-V

Authors: Kang Huang, Wanting Zhou, Shiwei Yuan, Lei Li

Abstract:

Since information technology develops rapidly, the security issue has become an increasingly critical for computer system. In particular, as cloud computing and the Internet of Things (IoT) continue to gain widespread adoption, computer systems need to new security threats and attacks. The Root of Trust (RoT) is the foundation for providing basic trusted computing, which is used to verify the security and trustworthiness of other components. Design a reliable Root of Trust and guarantee its own security are essential for improving the overall security and credibility of computer systems. In this paper, we discuss the implementation of self-security technology based on the RISC-V Root of Trust at the hardware level. To effectively safeguard the security of the Root of Trust, researches on security safeguard technology on the Root of Trust have been studied. At first, a lightweight and secure boot framework is proposed as a secure mechanism. Secondly, two kinds of memory protection mechanism are built to against memory attacks. Moreover, hardware implementation of proposed method has been also investigated. A series of experiments and tests have been carried on to verify to effectiveness of the proposed method. The experimental results demonstrated that the proposed approach is effective in verifying the integrity of the Root of Trust’s own boot rom, user instructions, and data, ensuring authenticity and enabling the secure boot of the Root of Trust’s own system. Additionally, our approach provides memory protection against certain types of memory attacks, such as cache leaks and tampering, and ensures the security of root-of-trust sensitive information, including keys.

Keywords: root of trust, secure boot, memory protection, hardware security

Procedia PDF Downloads 216
25660 Security Analysis of Mod. S Transponder Technology and Attack Examples

Authors: M. Rutkowski, J. Cwiklak, M. Grzegorzewski, M. Adamski

Abstract:

All class A Airplanes have to be equipped with Mod. S transponder for ATC surveillance purposes. This technology was designed to provide a robust and dependable solution to localize, identify and exchange data with the airplane. The purpose of this paper is to analyze potential hazards that are a result of lack of any security or encryption on a design level. Secondary Surveillance Radars rely on an active response from an airplane. SSR radar installation is broadcasting a directional interrogation signal to the planes in range on 1030MHz frequency with DPSK modulation. If the interrogation is correctly received by the transponder located on the plane, a proper answer is sent on 1090MHz with PPM modulation containing plane’s SQUAWK, barometric altitude, GPS coordinates and 24bit unique address code. This technology does not use any kind of encryption. All of the specifications from the previous chapter can be found easily on the internet. Since there is no encryption or security measure to ensure the credibility of the sender and message, it is highly hazardous to use such technology to ensure the safety of the air traffic. The only thing that identifies the airplane is the 24-bit unique address. Most of the planes have been sniffed by aviation enthusiasts and cataloged in web databases. In the moment of writing this article, The PoFung Technologies has announced that they are planning to release all band SDR transceiver – this device would be more than enough to build your own Mod. S Transponder. With fake transponder, a potential terrorist can identify as a different airplane. By replacing the transponder in a poorly controlled airspace, hijackers can enter another airspace identifying themselves as another plane and land in the desired area.

Keywords: flight safety, hijack, mod S transponder, security analysis

Procedia PDF Downloads 295