Search results for: time series feature extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22049

Search results for: time series feature extraction

20189 Application of Multiwall Carbon Nanotubes with Anionic Surfactant to Cement Paste

Authors: Maciej Szelag

Abstract:

The discovery of the carbon nanotubes (CNT), has led to a breakthrough in the material engineering. The CNT is characterized by very large surface area, very high Young's modulus (about 2 TPa), unmatched durability, high tensile strength (about 50 GPa) and bending strength. Their diameter usually oscillates in the range from 1 to 100 nm, and the length from 10 nm to 10-2 m. The relatively new approach is the CNT’s application in the concrete technology. The biggest problem in the use of the CNT to cement composites is their uneven dispersion and low adhesion to the cement paste. Putting the nanotubes alone into the cement matrix does not produce any effect because they tend to agglomerate, due to their large surface area. Most often, the CNT is used as an aqueous suspension in the presence of a surfactant that has previously been sonicated. The paper presents the results of investigations of the basic physical properties (apparent density, shrinkage) and mechanical properties (compression and tensile strength) of cement paste with the addition of the multiwall carbon nanotubes (MWCNT). The studies were carried out on four series of specimens (made of two different Portland Cement). Within each series, samples were made with three w/c ratios – 0.4, 0.5, 0.6 (water/cement). Two series were an unmodified cement matrix. In the remaining two series, the MWCNT was added in amount of 0.1% by cement’s weight. The MWCNT was used as an aqueous dispersion in the presence of a surfactant – SDS – sodium dodecyl sulfate (C₁₂H₂₅OSO₂ONa). So prepared aqueous solution was sonicated for 30 minutes. Then the MWCNT aqueous dispersion and cement were mixed using a mechanical stirrer. The parameters were tested after 28 days of maturation. Additionally, the change of these parameters was determined after samples temperature loading at 250°C for 4 hours (thermal shock). Measurement of the apparent density indicated that cement paste with the MWCNT addition was about 30% lighter than conventional cement matrix. This is due to the fact that the use of the MWCNT water dispersion in the presence of surfactant in the form of SDS resulted in the formation of air pores, which were trapped in the volume of the material. SDS as an anionic surfactant exhibits characteristics specific to blowing agents – gaseous and foaming substances. Because of the increased porosity of the cement paste with the MWCNT, they have obtained lower compressive and tensile strengths compared to the cement paste without additive. It has been observed, however, that the smallest decreases in the compressive and tensile strength after exposure to the elevated temperature achieved samples with the MWCNT. The MWCNT (well dispersed in the cement matrix) can form bridges between hydrates in a nanoscale of the material’s structure. Thus, this may result in an increase in the coherent cohesion of the cement material subjected to a thermal shock. The obtained material could be used for the production of an aerated concrete or using lightweight aggregates for the production of a lightweight concrete.

Keywords: cement paste, elevated temperature, mechanical parameters, multiwall carbon nanotubes, physical parameters, SDS

Procedia PDF Downloads 352
20188 A Program of Data Analysis on the Possible State of the Antibiotic Resistance in Bangladesh Environment in 2019

Authors: S. D. Kadir

Abstract:

Background: Antibiotics have always been at the centrum of the revolution of modern microbiology. Micro-organisms and its pathogenicity, resistant organisms, inappropriate or over usage of various types of antibiotic agents are fuelled multidrug-resistant pathogenic organisms. Our present time review report mainly focuses on the therapeutic condition of antibiotic resistance and the possible roots behind the development of antibiotic resistance in Bangladesh in 2019. Methodology: The systemic review has progressed through a series of research analyses on various manuscripts published on Google Scholar, PubMed, Research Gate, and collected relevant information from established popular healthcare and diagnostic center and its subdivisions all over Bangladesh. Our research analysis on the possible assurance of antibiotic resistance been ensured by the selective medical reports and on random assay on the extent of individual antibiotic in 2019. Results: 5 research articles, 50 medical report summary, and around 5 patients have been interviewed while going through the estimation process. We have prioritized research articles where the research analysis been performed by the appropriate use of the Kirby-Bauer method. Kirby-Bauer technique is preferred as it provides greater efficiency, ensures lower performance expenditure, and supplies greater convenience and simplification in the application. In most of the reviews, clinical and laboratory standards institute guidelines were strictly followed. Most of our reports indicate significant resistance shown by the Beta-lactam drugs. Specifically by the derivatives of Penicillin's, Cephalosporin's (rare use of the first generation Cephalosporin and overuse of the second and third generation of Cephalosporin and misuse of the fourth generation of Cephalosporin), which are responsible for almost 67 percent of the bacterial resistance. Moreover, approximately 20 percent of the resistance was due to the fact of drug pumping from the bacterial cell by tetracycline and sulphonamides and their derivatives. Conclusion: 90 percent of the approximate antibiotic resistance is due to the usage of relative and true broad-spectrum antibiotics. The environment has been created by the following circumstances where; the excessive usage of broad-spectrum antibiotics had led to a condition where the disruption of native bacteria and a series of anti-microbial resistance causing a disturbance of the surrounding environments in medium, leading to a state of super-infection.

Keywords: antibiotics, antibiotic resistance, Kirby Bauer method, microbiology

Procedia PDF Downloads 119
20187 Optimization of Digestive Conditions of Opuntia ficus-indica var. Saboten using Food-Grade Enzymes

Authors: Byung Wook Yang, Sae Kyul Kim, Seung Il Ahn, Jae Hee Choi, Heejung Jung, Yejin Choi, Byung Yong Kim, Young Tae Hahm

Abstract:

Opuntia ficus-indica is a member of the Cactaceae family that is widely grown in all the semiarid countries throughout the world. Opuntia ficus-indica var. Saboten (OFS), commonly known as prickly pear cactus, is commercially cultivated as a dietary foodstuffs and medicinal stuffs in Jeju Island, Korea. Owing to high viscosity of OFS’ pad, its application to the commercial field has been limited. When the low viscosity of OFS’s pad is obtained, it is useful for the manufacture of healthy food in the related field. This study was performed to obtain the optimal digestion conditions of food-grade enzymes (Pectinex, Viscozyme and Celluclast) with the powder of OFS stem. And also, the contents of water-soluble dietary fiber (WSDF) of the dried powder prepared by the extraction of OFS stem were monitored and optimized using the response surface methodology (RSM), which included 20 experimental points with 3 replicates for two independent variables (fermentation temperature and time). A central composite design was used to monitor the effect of fermentation temperature (30-90 °C, X1) and fermentation time (1-10h, X2) on dependent variables, such as viscosity (Y1), water-soluble dietary fiber (Y2) and dietary fiber yield (Y3). Estimated maximum values at predicted optimum conditions were in agreement with experimental values. Optimum temperature and duration were 50°C and 12 hours, respectively. Viscosity value reached 3.4 poise. Yield of water-soluble dietary fiber is determined in progress.

Keywords: Opuntia ficus-indica var. saboten, enzymatic fermentation, response surface methodology, water-soluble dietary fiber, viscosity

Procedia PDF Downloads 345
20186 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning

Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz

Abstract:

Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.

Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics

Procedia PDF Downloads 116
20185 Modeling and Simulation Methods Using MATLAB/Simulink

Authors: Jamuna Konda, Umamaheswara Reddy Karumuri, Sriramya Muthugi, Varun Pishati, Ravi Shakya,

Abstract:

This paper investigates the challenges involved in mathematical modeling of plant simulation models ensuring the performance of the plant models much closer to the real time physical model. The paper includes the analysis performed and investigation on different methods of modeling, design and development for plant model. Issues which impact the design time, model accuracy as real time model, tool dependence are analyzed. The real time hardware plant would be a combination of multiple physical models. It is more challenging to test the complete system with all possible test scenarios. There are possibilities of failure or damage of the system due to any unwanted test execution on real time.

Keywords: model based design (MBD), MATLAB, Simulink, stateflow, plant model, real time model, real-time workshop (RTW), target language compiler (TLC)

Procedia PDF Downloads 341
20184 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool

Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi

Abstract:

The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.

Keywords: data analysis, deep learning, LSTM neural network, netflix

Procedia PDF Downloads 247
20183 Stress and Rhythm in the Educated Nigerian Accent of English

Authors: Nkereke M. Essien

Abstract:

The intention of this paper is to examine stress in the Educated Nigerian Accent of English (ENAE) with the aim of analyzing stress and rhythmic patterns of Nigerian English. Our aim also is to isolate differences and similarities in the stress patterns studied and also know what forms the accent of these Educated Nigerian English (ENE) which marks them off from other groups or English’s of the world, to ascertain and characterize it and to provide documented evidence for its existence. Nigerian stress and rhythmic patterns are significantly different from the British English stress and rhythmic patterns consequently, the educated Nigerian English (ENE) features more stressed syllables than the native speakers’ varieties. The excessive stressed of syllables causes a contiguous “Ss” in the rhythmic flow of ENE, and this brings about a “jerky rhythm’ which distorts communication. To ascertain this claim, ten (10) Nigerian speakers who are educated in the English Language were selected by a stratified Random Sampling technique from two Federal Universities in Nigeria. This classification belongs to the education to the educated class or standard variety. Their performance was compared to that of a Briton (control). The Metrical system of analysis was used. The respondents were made to read some words and utterance which was recorded and analyzed perceptually, statistically and acoustically using the one-way Analysis of Variance (ANOVA). The Turky-Kramer Post Hoc test, the Wilcoxon Matched Pairs Signed Ranks test, and the Praat analysis software were used in the analysis. It was revealed from our findings that the Educated Nigerian English speakers feature more stressed syllables in their productions by spending more time in pronouncing stressed syllables and sometimes lesser time in pronouncing the unstressed syllables. Their overall tempo was faster. The ENE speakers used tone to mark prominence while the native speaker used stress to mark pronounce, typified by the control. We concluded that the stress pattern of the ENE speakers was significantly different from the native speaker’s variety represented by the control’s performance.

Keywords: accent, Nigerian English, rhythm, stress

Procedia PDF Downloads 238
20182 Operating System Based Virtualization Models in Cloud Computing

Authors: Dev Ras Pandey, Bharat Mishra, S. K. Tripathi

Abstract:

Cloud computing is ready to transform the structure of businesses and learning through supplying the real-time applications and provide an immediate help for small to medium sized businesses. The ability to run a hypervisor inside a virtual machine is important feature of virtualization and it is called nested virtualization. In today’s growing field of information technology, many of the virtualization models are available, that provide a convenient approach to implement, but decision for a single model selection is difficult. This paper explains the applications of operating system based virtualization in cloud computing with an appropriate/suitable model with their different specifications and user’s requirements. In the present paper, most popular models are selected, and the selection was based on container and hypervisor based virtualization. Selected models were compared with a wide range of user’s requirements as number of CPUs, memory size, nested virtualization supports, live migration and commercial supports, etc. and we identified a most suitable model of virtualization.

Keywords: virtualization, OS based virtualization, container based virtualization, hypervisor based virtualization

Procedia PDF Downloads 325
20181 Is the Okun's Law Valid in Tunisia?

Authors: El Andari Chifaa, Bouaziz Rached

Abstract:

The central focus of this paper was to check whether the Okun’s law in Tunisia is valid or not. For this purpose, we have used quarterly time series data during the period 1990Q1-2014Q1. Firstly, we applied the error correction model instead of the difference version of Okun's Law, the Engle-Granger and Johansen test are employed to find out long run association between unemployment, production, and how error correction mechanism (ECM) is used for short run dynamic. Secondly, we used the gap version of Okun’s law where the estimation is done from three band pass filters which are mathematical tools used in macro-economic and especially in business cycles theory. The finding of the study indicates that the inverse relationship between unemployment and output is verified in the short and long term, and the Okun's law holds for the Tunisian economy, but with an Okun’s coefficient lower than required. Therefore, our empirical results have important implications for structural and cyclical policymakers in Tunisia to promote economic growth in a context of lower unemployment growth.

Keywords: Okun’s law, validity, unit root, cointegration, error correction model, bandpass filters

Procedia PDF Downloads 315
20180 A Robust and Efficient Segmentation Method Applied for Cardiac Left Ventricle with Abnormal Shapes

Authors: Peifei Zhu, Zisheng Li, Yasuki Kakishita, Mayumi Suzuki, Tomoaki Chono

Abstract:

Segmentation of left ventricle (LV) from cardiac ultrasound images provides a quantitative functional analysis of the heart to diagnose disease. Active Shape Model (ASM) is a widely used approach for LV segmentation but suffers from the drawback that initialization of the shape model is not sufficiently close to the target, especially when dealing with abnormal shapes in disease. In this work, a two-step framework is proposed to improve the accuracy and speed of the model-based segmentation. Firstly, a robust and efficient detector based on Hough forest is proposed to localize cardiac feature points, and such points are used to predict the initial fitting of the LV shape model. Secondly, to achieve more accurate and detailed segmentation, ASM is applied to further fit the LV shape model to the cardiac ultrasound image. The performance of the proposed method is evaluated on a dataset of 800 cardiac ultrasound images that are mostly of abnormal shapes. The proposed method is compared to several combinations of ASM and existing initialization methods. The experiment results demonstrate that the accuracy of feature point detection for initialization was improved by 40% compared to the existing methods. Moreover, the proposed method significantly reduces the number of necessary ASM fitting loops, thus speeding up the whole segmentation process. Therefore, the proposed method is able to achieve more accurate and efficient segmentation results and is applicable to unusual shapes of heart with cardiac diseases, such as left atrial enlargement.

Keywords: hough forest, active shape model, segmentation, cardiac left ventricle

Procedia PDF Downloads 335
20179 FRATSAN: A New Software for Fractal Analysis of Signals

Authors: Hamidreza Namazi

Abstract:

Fractal analysis is assessing fractal characteristics of data. It consists of several methods to assign fractal characteristics to a dataset which may be a theoretical dataset or a pattern or signal extracted from phenomena including natural geometric objects, sound, market fluctuations, heart rates, digital images, molecular motion, networks, etc. Fractal analysis is now widely used in all areas of science. An important limitation of fractal analysis is that arriving at an empirically determined fractal dimension does not necessarily prove that a pattern is fractal; rather, other essential characteristics have to be considered. For this purpose a Visual C++ based software called FRATSAN (FRActal Time Series ANalyser) was developed which extract information from signals through three measures. These measures are Fractal Dimensions, Jeffrey’s Measure and Hurst Exponent. After computing these measures, the software plots the graphs for each measure. Besides computing three measures the software can classify whether the signal is fractal or no. In fact, the software uses a dynamic method of analysis for all the measures. A sliding window is selected with a value equal to 10% of the total number of data entries. This sliding window is moved one data entry at a time to obtain all the measures. This makes the computation very sensitive to slight changes in data, thereby giving the user an acute analysis of the data. In order to test the performance of this software a set of EEG signals was given as input and the results were computed and plotted. This software is useful not only for fundamental fractal analysis of signals but can be used for other purposes. For instance by analyzing the Hurst exponent plot of a given EEG signal in patients with epilepsy the onset of seizure can be predicted by noticing the sudden changes in the plot.

Keywords: EEG signals, fractal analysis, fractal dimension, hurst exponent, Jeffrey’s measure

Procedia PDF Downloads 466
20178 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets

Authors: Kothuri Sriraman, Mattupalli Komal Teja

Abstract:

In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).

Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm

Procedia PDF Downloads 346
20177 Re-Creating Women of the Past in Historical Series on Mexican Television: The Work of Patricia Arriaga Jordan

Authors: Maria De Los Angeles Rodriguez Cadena

Abstract:

This paper discusses how the fictional versions of women of the past contribute to advance today’s ideas of social justice, personal freedom and emancipation as well as to highlight the creative challenge of constructing people and events on fictional narratives on television that incorporate multiple and simultaneous layers of meaning and complexity. This project builds on existing scholarship on audiovisual texts by exploring an influential but under-studied director. In two Mexican television series, Patricia Arriaga Jordan, an award-winning television producer, scriptwriter and director, constructs the life of two outstanding women that have played an influential role in national history and captured Mexican’s popular imagination for generations: Sor Juana Inés de la Cruz, and Malinche. Malinche (2018) tells the story of an extraordinary indigenous woman, Malintzin, during the Spanish Conquest (1511-1550) that is considered to have played a key role in the fall of the Aztec empire by acting as translator, negotiator and cultural mediator for the Spanish conquerors. Juana Ines (2016) portrays Sor Juana, a poet, essayist, playwright, theologian, philosopher, nun, of XVII century colonial Mexico, one of the brightest minds of her time, and now recognized as the first feminist of the Americas who wrote on the rights of women to an education, religious authority and feminist advocacy. Both series, as fictional narratives that recreate defining historical periods, specific events and relevant characters in the History of Mexico can be read as an example of what is called texts of cultural memory. A cultural memory text is a narrative that bonds the concepts of history, identity and belonging, and that is realized and disseminated through symbolic systems such as written documents, visual images, and dramatic representation. Cultural memory, through its narratives of historical fiction, emphasizes memory processes (historiography) and its implications and artifacts (cultural memory) mainly through the medial frameworks of remembering, which are the medial process by which memories (narratives, documents) participate in public knowledge and become collective memory. Historical fiction on television not only creates a portrayal of the past related to the real lives of protagonists, but it also significantly contributes to understand the past as an ever-evolving entity that highlights both, the necessary connection with the present as part of a developing sense of collective identity and belonging, as well as the relevance of the medium in which the past is represented and that ultimately supports the process of historical awareness. Through the emblematic recreation of national heroines and historical events in the unique context of historical drama on television, those texts constitute a venue where concepts of the past and the traditionally established ideas about history and heroines are highlighted, questioned and transformed.

Keywords: cultural memory, historical fiction, Mexico, television, women directors

Procedia PDF Downloads 132
20176 Code Embedding for Software Vulnerability Discovery Based on Semantic Information

Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson

Abstract:

Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.

Keywords: code representation, deep learning, source code semantics, vulnerability discovery

Procedia PDF Downloads 155
20175 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning

Authors: Pei Yi Lin

Abstract:

Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.

Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model

Procedia PDF Downloads 73
20174 Rethinking the Value of Pancreatic Cyst CEA Levels from Endoscopic Ultrasound Fine-Needle Aspiration (EUS-FNA): A Longitudinal Analysis

Authors: Giselle Tran, Ralitza Parina, Phuong T. Nguyen

Abstract:

Background/Aims: Pancreatic cysts (PC) have recently become an increasingly common entity, often diagnosed as incidental findings on cross-sectional imaging. Clinically, management of the lesions is difficult because of uncertainties in their potential for malignant degeneration. Prior series have reported that carcinoembryonic antigen (CEA), a biomarker collected from cyst fluid aspiration, has a high diagnostic accuracy for discriminating between mucinous and non-mucinous lesions, at the patient’s initial presentation. To the author’s best knowledge, no prior studies have reported PC CEA levels obtained from endoscopic ultrasound fine-needle aspiration (EUS-FNA) over years of serial EUS surveillance imaging. Methods: We report a consecutive retrospective series of 624 patients who underwent EUS evaluation for a PC between 11/20/2009 and 11/13/2018. Of these patients, 401 patients had CEA values obtained at the point of entry. Of these, 157 patients had two or more CEA values obtained over the course of their EUS surveillance. Of the 157 patients (96 F, 61 M; mean age 68 [range, 62-76]), the mean interval of EUS follow-up was 29.7 months [3.5-128]. The mean number of EUS procedures was 3 [2-7]. To assess CEA value fluctuations, we defined an appreciable increase in CEA as "spikes" – two-times increase in CEA on a subsequent EUS-FNA of the same cyst, with the second CEA value being greater than 1000 ng/mL. Using this definition, cysts with a spike in CEA were compared to those without a spike in a bivariate analysis to determine if a CEA spike is associated with poorer outcomes and the presence of high-risk features. Results: Of the 157 patients analyzed, 29 had a spike in CEA. Of these 29 patients, 5 had a cyst with size increase >0.5cm (p=0.93); 2 had a large cyst, >3cm (p=0.77); 1 had a cyst that developed a new solid component (p=0.03); 7 had a cyst with a solid component at any time during surveillance (p=0.08); 21 had a complex cyst (p=0.34); 4 had a cyst categorized as "Statistically Higher Risk" based on molecular analysis (p=0.11); and 0 underwent surgical resection (p=0.28). Conclusion: With serial EUS imaging in the surveillance of PC, an increase in CEA level defined as a spike did not predict poorer outcomes. Most notably, a spike in CEA did not correlate with the number of patients sent to surgery or patients with an appreciable increase in cyst size. A spike in CEA did not correlate with the development of a solid nodule within the PC nor progression on molecular analysis. Future studies should focus on the selected use of CEA analysis when patients undergo EUS surveillance evaluation for PCs.

Keywords: carcinoembryonic antigen (CEA), endoscopic ultrasound (EUS), fine-needle aspiration (FNA), pancreatic cyst, spike

Procedia PDF Downloads 141
20173 Interdialytic Acupuncture Is an Add-on Option for Preserving Residual Renal Function: A Case Series Report

Authors: Lai Tzu-Hsuan, Lai Jung-Nien, Lin Jaung-Geng, Kao Shung-Te, Hsuan-Kuang Jung

Abstract:

Background: Whether acupuncture therapy contributes to preserving residual renal function (RRF) remains largely unknown. This case series evidenced the potential beneficial effects of acupuncture for preserving RRF in five patients with the end-stage renal disease under hemodialysis (HD) treatment. Participants: Five patients on HD receiving eight sessions of weekly 30-min interdialytic acupuncture (Inter-A) with residual urine volume (rUV) and residual glomerular filtration rate (rGFR) recorded once every two weeks were included for analysis. Outcomes: Changes in rUV and rGFR calculated using 24-hour urine collection data were analyzed to assess RRF. Variations in hemoglobin, urea Kt/V and serum albumin levels measured monthly were analyzed to evaluate HD adequacy. Results: After eight Inter-A sessions, mean (standard deviation (SD)) rUV and rGFR increased from 612 (184) ml/day and 1.48 (.94) ml/min/1.73 m2 at baseline to 803(289) ml/day and 2.04(1.17) ml/min/1.73m2 at 2- and 4-week follow-up, respectively. The mean percentage difference increased by 31% in rUV and 38% in rGFR. Routine measurements on HD adequacy also showed improvement. Conclusions: Acupuncture might be an optional add-on treatment for HD population with poor control of water; however, further well-designed controlled trials are warranted.

Keywords: end-stage renal disease, hemodialysis, acupuncture, residual renal function, residual urine volume

Procedia PDF Downloads 128
20172 Energy Consumption and Economic Growth: Testimony of Selected Sub-Saharan Africa Countries

Authors: Alfred Quarcoo

Abstract:

The main purpose of this paper is to examine the causal relationship between energy consumption and economic growth in Sub-Saharan Africa using panel data techniques. An annual data on energy consumption and Economic Growth (proxied by real gross domestic product per capita) spanning from 1990 to 2016 from the World bank index database was used. The results of the Augmented Dickey–Fuller unit root test shows that the series for all countries are not stationary at levels. However, the log of economic growth in Benin and Congo become stationary after taking the differences of the data, and log of energy consumption become stationary for all countries and Log of economic growth in Kenya and Zimbabwe were found to be stationary after taking the second differences of the panel series. The findings of the Johansen cointegration test demonstrate that the variables Log of Energy Consumption and Log of economic growth are not co-integrated for the cases of Kenya and Zimbabwe, so no long-run relationship between the variables were established in any country. The Granger causality test indicates that there is a unidirectional causality running from energy use to economic growth in Kenya and no causal linkage between Energy consumption and economic growth in Benin, Congo and Zimbabwe.

Keywords: Cointegration, Granger Causality, Sub-Sahara Africa, World Bank Development Indicators

Procedia PDF Downloads 49
20171 Small Entrepreneurs as Creators of Chaos: Increasing Returns Requires Scaling

Authors: M. B. Neace, Xin GAo

Abstract:

Small entrepreneurs are ubiquitous. Regardless of location their success depends on several behavioral characteristics and several market conditions. In this concept paper, we extend this paradigm to include elements from the science of chaos. Our observations, research findings, literature search and intuition lead us to the proposition that all entrepreneurs seek increasing returns, as did the many small entrepreneurs we have interviewed over the years. There will be a few whose initial perturbations may create tsunami-like waves of increasing returns over time resulting in very large market consequences–the butterfly impact. When small entrepreneurs perturb the market-place and their initial efforts take root a series of phase-space transitions begin to occur. They sustain the stream of increasing returns by scaling up. Chaos theory contributes to our understanding of this phenomenon. Sustaining and nourishing increasing returns of small entrepreneurs as complex adaptive systems requires scaling. In this paper we focus on the most critical element of the small entrepreneur scaling process–the mindset of the owner-operator.

Keywords: entrepreneur, increasing returns, scaling, chaos

Procedia PDF Downloads 455
20170 The Significance of Organizational Failure Based on the Instance of Samsung Lions Case

Authors: Jae Soo Do, Kyoung Seok Kim

Abstract:

Korea baseball experts reckoned Samsung Lions as the best baseball team. It has the unparalleled records of winning first place in the pennant race for five straight years from 2011 to 2015 and winning the Korean series for four years in a row from 2011 to 2014. However, the team made an unbelievably miserable record of ninth place in the pennant race in 2016 and 2017. How come the strong competitive superiority has gone and what kind of slump made the team how it is now. This study investigates this organizational failure case of Samsung Lions, the professional baseball team in Korea. What factors have brought the organizational failure to Samsung Lions? Based on an in-depth examination on how a league-fore-runner drastically lost its competitive superiority, this verifies the necessity of risk management to which common corporations as well as sport teams can be subject at any time in these days.

Keywords: Samsung Lions, organizational failure, baseball, slump

Procedia PDF Downloads 314
20169 Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data

Authors: Adarsh Shroff

Abstract:

Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining.

Keywords: big data, map reduce, incremental processing, iterative computation

Procedia PDF Downloads 349
20168 In Vitro Antioxidant and Cytotoxic Activities Against Human Oral Cancer and Human Laryngeal Cancer of Limonia acidissima L. Bark Extracts

Authors: Kriyapa lairungruang, Arunporn Itharat

Abstract:

Limonia acidissima L. (LA) (Common name: wood apple, Thai name: ma-khwit) is a medicinal plant which has long been used in Thai traditional medicine. Its bark is used for treatment of diarrhea, abscess, wound healing and inflammation and it is also used in oral cancer. Thus, this research aimed to investigate antioxidant and cytotoxic activities of the LA bark extracts produced by various extraction methods. Different extraction procedures were used to extract LA bark for biological activity testing: boiling in water, maceration with 95% ethanol, maceration with 50% ethanol and water boiling of each the 95% and the 50% ethanolic residues. All extracts were tested for antioxidant activity using DPPH radical scavenging assay, cytotoxic activity against human laryngeal epidermoid carcinoma (HEp-2) cells and human oral epidermoid carcinoma (KB) cells using sulforhodamine B (SRB) assay. The results found that the 95% ethanolic extract of LA bark showed the highest antioxidant activity with EC50 values of 29.76±1.88 µg/ml. For cytotoxic activity, the 50% ethanolic extract showed the best cytotoxic activity against HEp-2 and KB cells with IC50 values of 9.55±1.68 and 18.90±0.86 µg/ml, respectively. This study demonstrated that the 95% ethanolic extract of LA bark showed moderate antioxidant activity and the 50% ethanolic extract provided potent cytotoxic activity against HEp-2 and KB cells. These results confirm the traditional use of LA for the treatment of oral cancer and laryngeal cancer, and also support its ongoing use.

Keywords: antioxidant activity, cytotoxic activity, Laryngeal epidermoid carcinoma, Limonia acidissima L., oral epidermoid carcinoma

Procedia PDF Downloads 477
20167 Trend Analysis of Rainfall: A Climate Change Paradigm

Authors: Shyamli Singh, Ishupinder Kaur, Vinod K. Sharma

Abstract:

Climate Change refers to the change in climate for extended period of time. Climate is changing from the past history of earth but anthropogenic activities accelerate this rate of change and which is now being a global issue. Increase in greenhouse gas emissions is causing global warming and climate change related issues at an alarming rate. Increasing temperature results in climate variability across the globe. Changes in rainfall patterns, intensity and extreme events are some of the impacts of climate change. Rainfall variability refers to the degree to which rainfall patterns varies over a region (spatial) or through time period (temporal). Temporal rainfall variability can be directly or indirectly linked to climate change. Such variability in rainfall increases the vulnerability of communities towards climate change. Increasing urbanization and unplanned developmental activities, the air quality is deteriorating. This paper mainly focuses on the rainfall variability due to increasing level of greenhouse gases. Rainfall data of 65 years (1951-2015) of Safdarjung station of Delhi was collected from Indian Meteorological Department and analyzed using Mann-Kendall test for time-series data analysis. Mann-Kendall test is a statistical tool helps in analysis of trend in the given data sets. The slope of the trend can be measured through Sen’s slope estimator. Data was analyzed monthly, seasonally and yearly across the period of 65 years. The monthly rainfall data for the said period do not follow any increasing or decreasing trend. Monsoon season shows no increasing trend but here was an increasing trend in the pre-monsoon season. Hence, the actual rainfall differs from the normal trend of the rainfall. Through this analysis, it can be projected that there will be an increase in pre-monsoon rainfall than the actual monsoon season. Pre-monsoon rainfall causes cooling effect and results in drier monsoon season. This will increase the vulnerability of communities towards climate change and also effect related developmental activities.

Keywords: greenhouse gases, Mann-Kendall test, rainfall variability, Sen's slope

Procedia PDF Downloads 204
20166 A Local Invariant Generalized Hough Transform Method for Integrated Circuit Visual Positioning

Authors: Wei Feilong

Abstract:

In this study, an local invariant generalized Houghtransform (LI-GHT) method is proposed for integrated circuit (IC) visual positioning. The original generalized Hough transform (GHT) is robust to external noise; however, it is not suitable for visual positioning of IC chips due to the four-dimensionality (4D) of parameter space which leads to the substantial storage requirement and high computational complexity. The proposed LI-GHT method can reduce the dimensionality of parameter space to 2D thanks to the rotational invariance of local invariant geometric feature and it can estimate the accuracy position and rotation angle of IC chips in real-time under noise and blur influence. The experiment results show that the proposed LI-GHT can estimate position and rotation angle of IC chips with high accuracy and fast speed. The proposed LI-GHT algorithm was implemented in IC visual positioning system of radio frequency identification (RFID) packaging equipment.

Keywords: Integrated Circuit Visual Positioning, Generalized Hough Transform, Local invariant Generalized Hough Transform, ICpacking equipment

Procedia PDF Downloads 263
20165 Research on Air pollution Spatiotemporal Forecast Model Based on LSTM

Authors: JingWei Yu, Hong Yang Yu

Abstract:

At present, the increasingly serious air pollution in various cities of China has made people pay more attention to the air quality index(hereinafter referred to as AQI) of their living areas. To face this situation, it is of great significance to predict air pollution in heavily polluted areas. In this paper, based on the time series model of LSTM, a spatiotemporal prediction model of PM2.5 concentration in Mianyang, Sichuan Province, is established. The model fully considers the temporal variability and spatial distribution characteristics of PM2.5 concentration. The spatial correlation of air quality at different locations is based on the Air quality status of other nearby monitoring stations, including AQI and meteorological data to predict the air quality of a monitoring station. The experimental results show that the method has good prediction accuracy that the fitting degree with the actual measured data reaches more than 0.7, which can be applied to the modeling and prediction of the spatial and temporal distribution of regional PM2.5 concentration.

Keywords: LSTM, PM2.5, neural networks, spatio-temporal prediction

Procedia PDF Downloads 132
20164 Impact of Western Music Instruments on Indian Classical Music

Authors: Hukam Chand

Abstract:

Over the past few years, the performance of Indian classical music has been improved a lot due to the technical inclusion of western instruments. Infect, the Indian classical music is all about raags which portray a mood and sentiments expressed through a microtonal scale based on natural harmonic series. And, most of the western instruments are not based on natural harmonic series and the tonal system is the only system which has considerable influence on the Indian classical music. However, the use of western instruments has been growing day by day in one way or the other by the Indian artists due to their quality of harmony. As a result of which, there are some common instruments such as harmonium, violin, guitar, saxophone, synthesizer which are being used commonly by Indian and western artists. On the other hand, a lot of fusion has taken place in the music of both sides due to the similar characteristics in their instruments. For example, harmonium which was originally the western instrument has now acquired an important position in Indian classical music to perform raags. Besides, a lot of suggestions for improving in the Indian music have been given by the artists for technical modification in the western instruments to cater the needs of Indian music through melody approach. Pt. Vishav Mohan Bhatt an Indian musician has developed Mohan Veena (called guitar) to perform raags. N. Rajam the Indian lady Violinist has made a remarkable work on Indian classical music by accompanied with vocal music. The purpose of the present research paper is to highlight the changes in Indian Classical Music through performance by using modified western music instruments.

Keywords: Indian classical music, Western instruments, harmonium, guitar, Violin and impact

Procedia PDF Downloads 519
20163 Space Telemetry Anomaly Detection Based On Statistical PCA Algorithm

Authors: Bassem Nassar, Wessam Hussein, Medhat Mokhtar

Abstract:

The crucial concern of satellite operations is to ensure the health and safety of satellites. The worst case in this perspective is probably the loss of a mission but the more common interruption of satellite functionality can result in compromised mission objectives. All the data acquiring from the spacecraft are known as Telemetry (TM), which contains the wealth information related to the health of all its subsystems. Each single item of information is contained in a telemetry parameter, which represents a time-variant property (i.e. a status or a measurement) to be checked. As a consequence, there is a continuous improvement of TM monitoring systems in order to reduce the time required to respond to changes in a satellite's state of health. A fast conception of the current state of the satellite is thus very important in order to respond to occurring failures. Statistical multivariate latent techniques are one of the vital learning tools that are used to tackle the aforementioned problem coherently. Information extraction from such rich data sources using advanced statistical methodologies is a challenging task due to the massive volume of data. To solve this problem, in this paper, we present a proposed unsupervised learning algorithm based on Principle Component Analysis (PCA) technique. The algorithm is particularly applied on an actual remote sensing spacecraft. Data from the Attitude Determination and Control System (ADCS) was acquired under two operation conditions: normal and faulty states. The models were built and tested under these conditions and the results shows that the algorithm could successfully differentiate between these operations conditions. Furthermore, the algorithm provides competent information in prediction as well as adding more insight and physical interpretation to the ADCS operation.

Keywords: space telemetry monitoring, multivariate analysis, PCA algorithm, space operations

Procedia PDF Downloads 415
20162 Promoting Biofuels in India: Assessing Land Use Shifts Using Econometric Acreage Response Models

Authors: Y. Bhatt, N. Ghosh, N. Tiwari

Abstract:

Acreage response function are modeled taking account of expected harvest prices, weather related variables and other non-price variables allowing for partial adjustment possibility. At the outset, based on the literature on price expectation formation, we explored suitable formulations for estimating the farmer’s expected prices. Assuming that farmers form expectations rationally, the prices of food and biofuel crops are modeled using time-series methods for possible ARCH/GARCH effects to account for volatility. The prices projected on the basis of the models are then inserted to proxy for the expected prices in the acreage response functions. Food crop acreages in different growing states are found sensitive to their prices relative to those of one or more of the biofuel crops considered. The required percentage improvement in food crop yields is worked to offset the acreage loss.

Keywords: acreage response function, biofuel, food security, sustainable development

Procedia PDF Downloads 299
20161 Scenario Based Reaction Time Analysis for Seafarers

Authors: Umut Tac, Leyla Tavacioglu, Pelin Bolat

Abstract:

Human factor has been one of the elements that cause vulnerabilities which can be resulted with accidents in maritime transportation. When the roots of human factor based accidents are analyzed, gaps in performing cognitive abilities (reaction time, attention, memory…) are faced as the main reasons for the vulnerabilities in complex environment of maritime systems. Thus cognitive processes in maritime systems have arisen important subject that should be investigated comprehensively. At this point, neurocognitive tests such as reaction time analysis tests have been used as coherent tools that enable us to make valid assessments for cognitive status. In this respect, the aim of this study is to evaluate the reaction time (response time or latency) of seafarers due to their occupational experience and age. For this study, reaction time for different maneuverers has been taken while the participants were performing a sea voyage through a simulator which was run up with a certain scenario. After collecting the data for reaction time, a statistical analyze has been done to understand the relation between occupational experience and cognitive abilities.

Keywords: cognitive abilities, human factor, neurocognitive test battery, reaction time

Procedia PDF Downloads 297
20160 A Modelling Analysis of Monetary Policy Rule

Authors: Wael Bakhit, Salma Bakhit

Abstract:

This paper employs a quarterly time series to determine the timing of structural breaks for interest rates in USA over the last 60 years. The Chow test is used for investigating the non-stationary, where the date of the potential break is assumed to be known. Moreover, an empirical examination of the financial sector was made to check if it is positively related to deviations from an assumed interest rate as given in a standard Taylor rule. The empirical analysis is strengthened by analysing the rule from a historical perspective and a look at the effect of setting the interest rate by the central bank on financial imbalances. The empirical evidence indicates that deviation in monetary policy has a potential causal factor in the build-up of financial imbalances and the subsequent crisis where macro prudential intervention could have beneficial effect. Thus, our findings tend to support the view which states that the probable existence of central banks has been a source of global financial crisis since the past decade.

Keywords: Taylor rule, financial imbalances, central banks, econometrics

Procedia PDF Downloads 385