Search results for: plant microbial fuel cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8711

Search results for: plant microbial fuel cell

6851 Anti-Oxidant and Anti-Cancer Activity of Helix aspersa Aqueous Extract

Authors: Ibtissem El Ouar, Cornelia Braicu, Dalila Naimi, Alexendru Irimie, Ioana Berindan-Neagoe

Abstract:

Helix aspersa, 'the garden snail' is a big land snail widely found in the Mediterranean countries, it is one of the most consumed species in the west of Algeria. It is commonly used in zootherapy to purify blood and to treat cardiovascular diseases and liver problems. The aim of our study is to investigate, the antitumor activity of an aqueous extract from Helix aspersa prepared by the traditional method on Hs578T; a triple negative breast cancer cell line. Firstly, the free radical scavenging activity of H. aspersa extract was assessed by measuring its capability for scavenging the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), as well as its ability to reduce ferric ion by the FRAP assay (ferric reducing ability). The cytotoxic effect of H. aspersa extract against Hs578T cells was evaluated by the MTT test (3-(4,5- dimethylthiazl-2-yl)-2,5- diphenyltetrazolium bromide)) while the mode of cell death induced by the extract has been determined by fluorescence microscopy using acredine orange/ethidium bromide (AO/EB) probe. The level of TNFα has also measured in cell medium by ELISA method. The results suggest that H. aspersa extract has an antioxidant activity, especially at high concentrations, it can reduce DPPH radical and ferric ion. The MTT test shows that H. aspersa extract has a great cytotoxic effect against breast cancer cells, the IC50 value correspond of the dilution 1% of the crude extract. Moreover, the AO/EB staining shows that TNFα induced necrosis is the main form of cell death induced by the extract. In conclusion, the present study may open new perspectives in the search for new natural anticancer drugs.

Keywords: breast cancer, Helix aspersa, Hs578t cell line, necrosis

Procedia PDF Downloads 404
6850 Cloning and Functional Analysis of NtPIN1a Promoter Under Various Abiotic Stresses in Nicotiana Tabacum

Authors: Zia Ullah, Muhammad Asim, Shi Sujuan, Rayyan Khan, Aaqib Shaheen, LIU Haobao

Abstract:

The plant-specific auxin efflux proteins PIN-FORMED (PIN) have been well depicted in many plant species for their essential roles in regulating the transport of auxins in several phases of plant growth. Little is known about the various functions of the PIN family genes in the Nicotiana tabacum (N. tabacum) species during plant growth. To define the expression pattern of the NtPIN1a gene under abiotic stresses and hormone treatment, transgenic tobacco with promoterNtPIN1a::GUS construct was employed. Comprehensive computational analyses of the NtPIN1a promoter confirmed the existence of common core promoter elements including CAAT-box, TATA-box, hormone, and abiotic stress-responsive elements such as ABRE, P-box, MYC, MYB, ARE, and GC-motifs. The transgenic plants with the promoter of NtPIN1a displayed a promising expression of β-glucuronidase (GUS) in germinating seeds, root tips, shoot-apex, and developing leaves under optimal conditions. While the differential expression of GUS in moderate salt, drought, low potassium stresses, and externally high auxin level at two different time points, suggested NtPIN1a played a key role in growth processes and the plants’ response to abiotic stresses. This analysis provides a foundation for more in-depth discoveries of the biological functions of NtPIN1a in Nicotiana species and this promoter may be employed in genetic engineering of other crops for enhanced stress tolerance.

Keywords: tobacco, nicotiana tabacum, pin, promoter, GUS, abiotic stresses, auxin

Procedia PDF Downloads 80
6849 [Keynote Talk]: Bioactive Cyclic Dipeptides of Microbial Origin in Discovery of Cytokine Inhibitors

Authors: Sajeli A. Begum, Ameer Basha, Kirti Hira, Rukaiyya Khan

Abstract:

Cyclic dipeptides are simple diketopiperazine derivatives being investigated by several scientists for their biological effects which include anticancer, antimicrobial, haematological, anticonvulsant, immunomodulatory effect, etc. They are potentially active microbial metabolites having been synthesized too, for developing into drug candidates. Cultures of Pseudomonas species have earlier been reported to produce cyclic dipeptides, helping in quorum sensing signals and bacterial–host colonization phenomena during infections, causing cell anti-proliferation and immunosuppression. Fluorescing Pseudomonas species have been identified to secrete lipid derivatives, peptides, pyrroles, phenazines, indoles, aminoacids, pterines, pseudomonic acids and some antibiotics. In the present work, results of investigation on the cyclic dipeptide metabolites secreted by the culture broth of Pseudomonas species as potent pro-inflammatory cytokine inhibitors are discussed. The bacterial strain was isolated from the rhizospheric soil of groundnut crop and identified as Pseudomonas aeruginosa by 16S rDNA sequence (GenBank Accession No. KT625586). Culture broth of this strain was prepared by inoculating into King’s B broth and incubating at 30 ºC for 7 days. The ethyl acetate extract of culture broth was prepared and lyophilized to get a dry residue (EEPA). Lipopolysaccharide (LPS)-induced ELISA assay proved the inhibition of tumor necrosis factor-alpha (TNF-α) secretion in culture supernatant of RAW 264.7 cells by EEPA (IC50 38.8 μg/mL). The effect of oral administration of EEPA on plasma TNF-α level in rats was tested by ELISA kit. The LPS mediated plasma TNF-α level was reduced to 45% with 125 mg/kg dose of EEPA. Isolation of the chemical constituents of EEPA through column chromatography yielded ten cyclic dipeptides, which were characterized using nuclear magnetic resonance and mass spectroscopic techniques. These cyclic dipeptides are biosynthesized in microorganisms by multifunctional assembly of non-ribosomal peptide synthases and cyclic dipeptide synthase. Cyclo (Gly-L-Pro) was found to be more potentially (IC50 value 4.5 μg/mL) inhibiting TNF-α production followed by cyclo (trans-4-hydroxy-L-Pro-L-Phe) (IC50 value 14.2 μg/mL) and the effect was equal to that of standard immunosuppressant drug, prednisolone. Further, the effect was analyzed by determining mRNA expression of TNF-α in LPS-stimulated RAW 264.7 macrophages using quantitative real-time reverse transcription polymerase chain reaction. EEPA and isolated cyclic dipeptides demonstrated diminution of TNF-α mRNA expression levels in a dose-dependent manner under the tested conditions. Also, they were found to control the expression of other pro-inflammatory cytokines like IL-1β and IL-6, when tested through their mRNA expression levels in LPS-stimulated RAW 264.7 macrophages under LPS-stimulated conditions. In addition, significant inhibition effect was found on Nitric oxide production. Further all the compounds exhibited weak toxicity to LPS-induced RAW 264.7 cells. Thus the outcome of the study disclosed the effectiveness of EEPA and the isolated cyclic dipeptides in down-regulating key cytokines involved in pathophysiology of autoimmune diseases.In another study led by the investigators, microbial cyclic dipeptides were found to exhibit excellent antimicrobial effect against Fusarium moniliforme which is an important causative agent of Sorghum grain mold disease. Thus, cyclic dipeptides are emerging small molecular drug candidates for various autoimmune diseases.

Keywords: cyclic dipeptides, cytokines, Fusarium moniliforme, Pseudomonas, TNF-alpha

Procedia PDF Downloads 199
6848 Antimicrobial, Antioxidant and Cytotoxic Activities of Cleoma viscosa Linn. Crude Extracts

Authors: Suttijit Sriwatcharakul

Abstract:

The bioactivity studies from the weed ethanolic crude extracts from leaf, stem, pod and root of wild spider flower; Cleoma viscosa Linn. were analyzed for the growth inhibition of 6 bacterial species; Salmonella typhimurium TISTR 5562, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus TISTR 1466, Streptococcus epidermidis ATCC 1228, Escherichia coli DMST 4212 and Bacillus subtilis ATCC 6633 with initial concentration crude extract of 50 mg/ml. The agar well diffusion results found that the extracts inhibit only gram positive bacteria species; S. aureus, S. epidermidis and B. subtilis. The minimum inhibition concentration study with gram positive strains revealed that leaf crude extract give the best result of the lowest concentration compared with other plant parts to inhibit the growth of S. aureus, S. epidermidis and B. subtilis at 0.78, 0.39 and lower than 0.39 mg/ml, respectively. The determination of total phenolic compounds in the crude extracts exhibited the highest phenolic content was 10.41 mg GAE/g dry weight in leaf crude extract. Analyzed the efficacy of free radical scavenging by using DPPH radical scavenging assay with all crude extracts showed value of IC50 of leaf, stem, pod and root crude extracts were 8.32, 12.26, 21.62 and 35.99 mg/ml, respectively. Studied cytotoxicity of crude extracts on human breast adenocarcinoma cell line by MTT assay found that pod extract had the most cytotoxicity CC50 value, 32.41 µg/ml. Antioxidant activity and cytotoxicity of crude extracts exhibited that the more increase of extract concentration, the more activities indicated. According to the bioactivities results, the leaf crude extract of Cleoma viscosa Linn. is the most interesting plant part for further work to search the beneficial of this weed.

Keywords: antimicrobial, antioxidant activity, Cleoma viscosa Linn., cytotoxicity test, total phenolic compound

Procedia PDF Downloads 257
6847 Self-Energy Sufficiency Assessment of the Biorefinery Annexed to a Typical South African Sugar Mill

Authors: M. Ali Mandegari, S. Farzad, , J. F. Görgens

Abstract:

Sugar is one of the main agricultural industries in South Africa and approximately livelihoods of one million South Africans are indirectly dependent on sugar industry which is economically struggling with some problems and should re-invent in order to ensure a long-term sustainability. Second generation biorefinery is defined as a process to use waste fibrous for the production of biofuel, chemicals animal food, and electricity. Bioethanol is by far the most widely used biofuel for transportation worldwide and many challenges in front of bioethanol production were solved. Biorefinery annexed to the existing sugar mill for production of bioethanol and electricity is proposed to sugar industry and is addressed in this study. Since flowsheet development is the key element of the bioethanol process, in this work, a biorefinery (bioethanol and electricity production) annexed to a typical South African sugar mill considering 65ton/h dry sugarcane bagasse and tops/trash as feedstock was simulated. Aspen PlusTM V8.6 was applied as simulator and realistic simulation development approach was followed to reflect the practical behaviour of the plant. Latest results of other researches considering pretreatment, hydrolysis, fermentation, enzyme production, bioethanol production and other supplementary units such as evaporation, water treatment, boiler, and steam/electricity generation units were adopted to establish a comprehensive biorefinery simulation. Steam explosion with SO2 was selected for pretreatment due to minimum inhibitor production and simultaneous saccharification and fermentation (SSF) configuration was adopted for enzymatic hydrolysis and fermentation of cellulose and hydrolyze. Bioethanol purification was simulated by two distillation columns with side stream and fuel grade bioethanol (99.5%) was achieved using molecular sieve in order to minimize the capital and operating costs. Also boiler and steam/power generation were completed using industrial design data. Results indicates that the annexed biorefinery can be self-energy sufficient when 35% of feedstock (tops/trash) bypass the biorefinery process and directly be loaded to the boiler to produce sufficient steam and power for sugar mill and biorefinery plant.

Keywords: biorefinery, self-energy sufficiency, tops/trash, bioethanol, electricity

Procedia PDF Downloads 524
6846 Urban Vegetative Planning for Ambient Ozone Pollution: An Eco-Management Approach

Authors: M. Anji Reddy, R. Uma Devi

Abstract:

Environmental planning for urban development is very much needed to reduce air pollution through the enhancement of vegetative cover in the cities like Hyderabad. This can be mainly based on the selection of appropriate native plant species as bioindicators to assess the impact of ambient Ozone. In the present study, tolerant species are suggested aimed to reduce the magnitude of ambient ozone concentrations which not only increase eco-friendly vegetation but also moderate air pollution. Hyderabad city is divided into 5 zones based on Land Use/Land Cover category further each zone divided into residential, traffic, industrial, and peri-urban areas. Highest ambient ozone levels are recorded in Industrial areas followed by traffic areas in the entire study area ( > 180 µg/m3). Biomonitoring of selected sixteen local urban plant species with the help of Air Pollution Tolerance Index (APTI) showed its susceptibility to air pollution. Statistical regression models in between the tolerant plant species and ambient ozone levels suggested five plant species namely Azardirachta indica A. Juss which have a high tolerant response to ambient ozone followed by Delonix regia Hook. along with Millingtonia hortensis L.f., Alestonia Scholaries L., and Samania saman Jacq. in the industrial and traffic areas of the study area to mitigate ambient Ozone pollution and also to improve urban greenery.

Keywords: air pollution tolerance index, bio-indicators, eco-friendly vegetation, urban greenery

Procedia PDF Downloads 437
6845 The Evaluation of Fuel Desulfurization Performance of Choline-Chloride Based Deep Eutectic Solvents with Addition of Graphene Oxide as Catalyst

Authors: Chiau Yuan Lim, Hayyiratul Fatimah Mohd Zaid, Fai Kait Chong

Abstract:

Deep Eutectic Solvent (DES) is used in various applications due to its simplicity in synthesis procedure, biodegradable, inexpensive and easily available chemical ingredients. Graphene Oxide is a popular catalyst that being used in various processes due to its stacking carbon sheets in layer which theoretically rapid up the catalytic processes. In this study, choline chloride based DESs were synthesized and ChCl-PEG(1:4) was found to be the most effective DES in performing desulfurization, which it is able to remove up to 47.4% of the sulfur content in the model oil in just 10 minutes, and up to 95% of sulfur content after repeat the process for six times. ChCl-PEG(1:4) able to perform up to 32.7% desulfurization on real diesel after 6 multiple stages. Thus, future research works should focus on removing the impurities on real diesel before utilising DESs in petroleum field.

Keywords: choline chloride, deep eutectic solvent, fuel desulfurization, graphene oxide

Procedia PDF Downloads 138
6844 Impact of Climate Change on Some Physiological Parameters of Cyclic Female Egyptian Buffalo

Authors: Nabil Abu-Heakal, Ismail Abo-Ghanema, Basma Hamed Merghani

Abstract:

The aim of this investigation is to study the effect of seasonal variations in Egypt on hematological parameters, reproductive and metabolic hormones of Egyptian buffalo-cows. This study lasted one year extending from December 2009 to November 2010 and was conducted on sixty buffalo-cows. Group of 5 buffalo-cows at estrus phase were selected monthly. Then, after blood sampling through tail vein puncture in the 2nd day after natural service, they were divided in two samples: one with anticoagulant for hematological analysis and the other without anticoagulant for serum separation. Results of this investigation revealed that the highest atmospheric temperature was in hot summer 32.61±1.12°C versus 26.18±1.67°C in spring and 19.92±0.70°C in winter season, while the highest relative humidity % was in winter season 43.50±1.60% versus 32.50±2.29% in summer season. The rise in temperature-humidity index from 63.73±1.29 in winter to 78.53±1.58 in summer indicates severe heat stress which is associated with significant reduction in total red blood cell count (3.20±0.15×106), hemoglobin concentration (8.83±0.43 g/dl), packed cell volume (30.73±0.12%), lymphocytes % (40.66±2.33 %), serum progesterone hormone concentration (0.56±0.03 ng/mll), estradiol17-B concentration (16.8±0.64 ng/ml), triiodothyronin (T3) concentration (2.33±0.33 ng/ml) and thyroxin hormone (T4) concentration (21.66±1.66 ng/ml), while hot summer resulted in significant increase in mean cell volume (96.55±2.25 fl), mean cell hemoglobin (30.81±1.33 pg), total white blood cell count (10.63±0.97×103), neutrophils % (49.66±2.33%), serum prolactin hormone (PRL) concentration (23.45±1.72 ng/ml) and cortisol hormone concentration (4.47±0.33 ng/ml) compared to winter season. There was no significant seasonal variation in mean cell hemoglobin concentration (MCHC). It was concluded that in Egypt there was a seasonal variation in atmospheric temperature, relative humidity, temperature humidity index (THI) and the rise in THI above the upper critical level (72 units), which, for lactating buffalo-cows in Egypt is the major constraint on buffalo-cows' hematological parameters and hormonal secretion that affects animal reproduction. Hence, we should improve climatic conditions inside the dairy farm to eliminate or reduce summer infertility.

Keywords: buffalo, climate change, Egypt, physiological parameters

Procedia PDF Downloads 639
6843 The Effect of Combined Fluid Shear Stress and Cyclic Stretch on Endothelial Cells

Authors: Daphne Meza, Louie Abejar, David A. Rubenstein, Wei Yin

Abstract:

Endothelial cell (ECs) morphology and function is highly impacted by the mechanical stresses these cells experience in vivo. Any change in the mechanical environment can trigger pathological EC responses. A detailed understanding of EC morphological response and function upon subjection to individual and simultaneous mechanical stimuli is needed for advancement in mechanobiology and preventive medicine. To investigate this, a programmable device capable of simultaneously applying physiological fluid shear stress (FSS) and cyclic strain (CS) has been developed, characterized and validated. Its validation was performed both experimentally, through tracer tracking, and theoretically, through the use of a computational fluid dynamics model. The effectiveness of the device was evaluated through EC morphology changes under mechanical loading conditions. Changes in cell morphology were evaluated through: cell and nucleus elongation, cell alignment and junctional actin production. The results demonstrated that the combined FSS-CS stimulation induced visible changes in EC morphology. Upon simultaneous fluid shear stress and biaxial tensile strain stimulation, cells were elongated and generally aligned with the flow direction, with stress fibers highlighted along the cell junctions. The concurrent stimulation from shear stress and biaxial cyclic stretch led to a significant increase in cell elongation compared to untreated cells. This, however, was significantly lower than that induced by shear stress alone, indicating that the biaxial tensile strain may counteract the elongating effect of shear stress to maintain the shape of ECs. A similar trend was seen in alignment, where the alignment induced by the concurrent application of shear stress and cyclic stretch fell in between that induced by shear stress and tensile stretch alone, indicating the opposite role shear stress and tensile strain may play in cell alignment. Junctional actin accumulation was increased upon shear stress alone or simultaneously with tensile stretch. Tensile stretch alone did not change junctional actin accumulation, indicating the dominant role of shear stress in damaging EC junctions. These results demonstrate that the shearing-stretching device is capable of applying well characterized dynamic shear stress and tensile strain to cultured ECs. Using this device, EC response to altered mechanical environment in vivo can be characterized in vitro.

Keywords: cyclic stretch, endothelial cells, fluid shear stress, vascular biology

Procedia PDF Downloads 369
6842 Optimization and Evaluation of Different Pathways to Produce Biofuel from Biomass

Authors: Xiang Zheng, Zhaoping Zhong

Abstract:

In this study, Aspen Plus was used to simulate the whole process of biomass conversion to liquid fuel in different ways, and the main results of material and energy flow were obtained. The process optimization and evaluation were carried out on the four routes of cellulosic biomass pyrolysis gasification low-carbon olefin synthesis olefin oligomerization, biomass water pyrolysis and polymerization to jet fuel, biomass fermentation to ethanol, and biomass pyrolysis to liquid fuel. The environmental impacts of three biomass species (poplar wood, corn stover, and rice husk) were compared by the gasification synthesis pathway. The global warming potential, acidification potential, and eutrophication potential of the three biomasses were the same as those of rice husk > poplar wood > corn stover. In terms of human health hazard potential and solid waste potential, the results were poplar > rice husk > corn stover. In the popular pathway, 100 kg of poplar biomass was input to obtain 11.9 kg of aviation coal fraction and 6.3 kg of gasoline fraction. The energy conversion rate of the system was 31.6% when the output product energy included only the aviation coal product. In the basic process of hydrothermal depolymerization process, 14.41 kg aviation kerosene was produced per 100 kg biomass. The energy conversion rate of the basic process was 33.09%, which can be increased to 38.47% after the optimal utilization of lignin gasification and steam reforming for hydrogen production. The total exergy efficiency of the system increased from 30.48% to 34.43% after optimization, and the exergy loss mainly came from the concentration of precursor dilute solution. Global warming potential in environmental impact is mostly affected by the production process. Poplar wood was used as raw material in the process of ethanol production from cellulosic biomass. The simulation results showed that 827.4 kg of pretreatment mixture, 450.6 kg of fermentation broth, and 24.8 kg of ethanol were produced per 100 kg of biomass. The power output of boiler combustion reached 94.1 MJ, the unit power consumption in the process was 174.9 MJ, and the energy conversion rate was 33.5%. The environmental impact was mainly concentrated in the production process and agricultural processes. On the basis of the original biomass pyrolysis to liquid fuel, the enzymatic hydrolysis lignin residue produced by cellulose fermentation to produce ethanol was used as the pyrolysis raw material, and the fermentation and pyrolysis processes were coupled. In the coupled process, 24.8 kg ethanol and 4.78 kg upgraded liquid fuel were produced per 100 kg biomass with an energy conversion rate of 35.13%.

Keywords: biomass conversion, biofuel, process optimization, life cycle assessment

Procedia PDF Downloads 62
6841 Effect of Aging Time on CeO2 Nanoparticle Size Distribution Synthesized via Sol-Gel Method

Authors: Navid Zanganeh, Hafez Balavi, Farbod Sharif, Mahla Zabet, Marzieh Bakhtiary Noodeh

Abstract:

Cerium oxide (CeO2) also known as cerium dioxide or ceria is a pale yellow-white powder with various applications in the industry from wood coating to cosmetics, filtration, fuel cell electrolytes, gas sensors, hybrid solar cells and catalysts. In this research, attempts were made to synthesize and characterization of CeO2 nano-particles via sol-gel method. In addition, the effect of aging time on the size of particles was investigated. For this purpose, the aging times adjusted 48, 56, 64, and 72 min. The obtained particles were characterized by x-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), transmitted electron microscopy (TEM), and Brunauer–Emmett–Teller (BET). As a result, XRD patterns confirmed the formation of CeO2 nanoparticles. SEM and TEM images illustrated the nano-particles with cluster shape, spherical and a nano-size range which was in agreement with XRD results. The finest particles (7.3 nm) was obtained at the optimum condition which was aging time of 48 min, calcination temperature at 400 ⁰C, and cerium concentration of 0.004 mol. Average specific surface area of the particles at optimum condition was measured by BET analysis and recorded as 47.57 m2/g.

Keywords: aging time, CeO2 nanoparticles, size distribution, sol-gel

Procedia PDF Downloads 442
6840 The Cell Viability Study of Extracts of Bark, Flowers, Leaves and Seeds of Indian Dhak Tree, Flame of Forest

Authors: Madhavi S. Apte, Milind Bhitre

Abstract:

In pharmaceutical research and new drug development, medicinal plants have important roles. Similarly, Indian dhak tree belonging to family Fabaceae has been widely used in the traditional Indian medical system of ‘Ayurveda’ for the treatment of a variety of ailments. Hence the cell viability study was undertaken to evaluate and compare the activity of extracts of various parts like flower, bark, leaf, seed by conducting MTT assay method along with other pharmacognostical studies. The methanolic extracts of bark, flowers, leaves, and seeds were used for the study. The cell viability MTT assay was performed using the standard operating procedures. The extracts were dissolved in DMSO and serially diluted with complete medium to get the concentrations range of test concentration. DMSO concentration was kept < 0.1% in all the samples. HUVEC cells maintained in appropriate conditions were seeded in 96 well plates and treated with different concentrations of the test samples and incubated at 37°C, 5% CO₂ for 96 hours. MTT reagent was added to the wells and incubated for 4 hours; the dark blue formazan product formed by the cells was dissolved in DMSO under a safety cabinet and read at 550nm. Percentage inhibitions were calculated and plotted with the concentrations used to calculate the IC50 values. The bark, flower, leaves and seed extracts have shown the cytotoxicity activity and can be further studied for antiangiogenesis activity.

Keywords: pharmacognosy, Cell viability, MTT assay, anti-angiogenesis

Procedia PDF Downloads 279
6839 Microbiological Examination and Antimicrobial Susceptibility of Microorganisms Isolated from Salt Mining Site in Ebonyi State

Authors: Anyimc, C. J. Aneke, J. O. Orji, O. Nworie, U. C. C. Egbule

Abstract:

The microbial examination and antimicrobial susceptibility profile of microorganism isolated from the salt mining site in Ebonyi state were evaluated in the present study using a standard microbiological technique. A total of 300 samples were randomly collected in three sample groups (A, B, and C) of 100 each. Isolation, Identification and characterization of organization present on the soil samples were determined by culturing, gram-staining and biochemical technique. The result showed the following organisms were isolated with their frequency as follow: Bacillus species (37.3%) and Staphylococcus species(23.5%) had the highest frequency in the whole Sample group A and B while Klebsiella specie (15.7%), Pseudomonas species(13.7%), and Erwinia species (9.8%) had the least. Rhizopus species (42.0%) and Aspergillus species (26.0%) were the highest fungi isolated, followed by Penicillum species (20.0%) while Mucor species (4.0%), and Fusarium species (8.0%) recorded the least. Sample group C showed high microbial population of all the microbial isolates when compared to sample group A and B. Disc diffusion method was used to determine the susceptibility of isolated bacteria to various antibiotics (oxfloxacin, pefloxacin, ciprorex, augumentin, gentamycin, ciproflox, septrin, ampicillin), while agar well diffusion method was used to determine the susceptibility of isolated fungi to some antifungal drugs (metronidazole, ketoconazole, itraconazole fluconazole). The antibacterial activity of the antibiotics used showed that ciproflux has the best inhibitory effect on all the test bacteria. Ketoconazole showed the highest inhibitory effect on the fungal isolates, followed by itraconazole, while metronidazole and fluconazole showed the least inhibitory effect on the entire test fungal isolates. Hence, the multiple drug resistance of most isolates to appropriate drugs of choice are of great public health concern and cells for periodic monitoring of antibiograms to detect possible changing patterns. Microbes isolated in the salt mining site can also be used as a source of gene(s) that can increase salt tolerance in different crop species through genetic engineering.

Keywords: microorganisms, antibacterial, antifungal, resistance, salt mining site, Ebonyi State

Procedia PDF Downloads 297
6838 High-Dimensional Single-Cell Imaging Maps Inflammatory Cell Types in Pulmonary Arterial Hypertension

Authors: Selena Ferrian, Erin Mccaffrey, Toshie Saito, Aiqin Cao, Noah Greenwald, Mark Robert Nicolls, Trevor Bruce, Roham T. Zamanian, Patricia Del Rosario, Marlene Rabinovitch, Michael Angelo

Abstract:

Recent experimental and clinical observations are advancing immunotherapies to clinical trials in pulmonary arterial hypertension (PAH). However, comprehensive mapping of the immune landscape in pulmonary arteries (PAs) is necessary to understand how immune cell subsets interact to induce pulmonary vascular pathology. We used multiplexed ion beam imaging by time-of-flight (MIBI-TOF) to interrogate the immune landscape in PAs from idiopathic (IPAH) and hereditary (HPAH) PAH patients. Massive immune infiltration in I/HPAH was observed with intramural infiltration linked to PA occlusive changes. The spatial context of CD11c+DCs expressing SAMHD1, TIM-3 and IDO-1 within immune-enriched microenvironments and neutrophils were associated with greater immune activation in HPAH. Furthermore, CD11c-DC3s (mo-DC-like cells) within a smooth muscle cell (SMC) enriched microenvironment were linked to vessel score, proliferating SMCs, and inflamed endothelial cells. Experimental data in cultured cells reinforced a causal relationship between neutrophils and mo-DCs in mediating pulmonary arterial SMC proliferation. These findings merit consideration in developing effective immunotherapies for PAH.

Keywords: pulmonary arterial hypertension, vascular remodeling, indoleamine 2-3-dioxygenase 1 (IDO-1), neutrophils, monocyte-derived dendritic cells, BMPR2 mutation, interferon gamma (IFN-γ)

Procedia PDF Downloads 160
6837 Increased Efficiency during Oxygen Carrier Aided Combustion of Municipal Solid Waste in an Industrial Scaled Circulating Fluidized Bed-Boiler

Authors: Angelica Corcoran, Fredrik Lind, Pavleta Knutsson, Henrik Thunman

Abstract:

Solid waste volumes are at current predominately deposited on landfill. Furthermore, the impending climate change requires new solutions for a sustainable future energy mix. Currently, solid waste is globally utilized to small extent as fuel during combustion for heat and power production. Due to its variable composition and size, solid waste is considered difficult to combust and requires a technology with high fuel flexibility. One of the commercial technologies used for combustion of such difficult fuels is circulating fluidized beds (CFB). In a CFB boiler, fine particles of a solid material are used as 'bed material', which is accelerated by the incoming combustion air that causes the bed material to fluidize. The chosen bed material has conventionally been silica sand with the main purpose of being a heat carrier, as it transfers heat released by the combustion to the heat-transfer surfaces. However, the release of volatile compounds occurs rapidly in comparison with the lateral mixing in the combustion chamber. To ensure complete combustion a surplus of air is introduced, which decreases the total efficiency of the boiler. In recent years, the concept of partly or entirely replacing the silica sand with an oxygen carrier as bed material has been developed. By introducing an oxygen carrier to the combustion chamber, combustion can be spread out both temporally and spatially in the boiler. Specifically, the oxygen carrier can take up oxygen from the combustion air where it is in abundance and release it to combustible gases where oxygen is in deficit. The concept is referred to as oxygen carrier aided combustion (OCAC) where the natural ore ilmenite (FeTiO3) has been the oxygen carrier used. The authors have validated the oxygen buffering ability of ilmenite during combustion of biomass in Chalmers 12-MWth CFB boiler in previous publications. Furthermore, the concept has been demonstrated on full industrial scale during combustion of municipal solid waste (MSW) in E.ON’s 75 MWth CFB boiler. The experimental campaigns have showed increased mass transfer of oxygen inside the boiler when combustion both biomass and MSW. As a result, a higher degree of burnout is achieved inside the combustion chamber and the plant can be operated at a lower surplus of air. Moreover, the buffer of oxygen provided by the oxygen carrier makes the system less sensitive to disruptions in operation. In conclusion, combusting difficult fuels with OCAC results in higher operation stability and an increase in boiler efficiency.

Keywords: OCAC, ilmenite, combustion, CFB

Procedia PDF Downloads 230
6836 Production of Renewable and Clean Bio-Fuel (DME) from Biomethanol over Copper Modified Alumina Catalyst

Authors: Ahmed I. Osman, Jehad K. Abu-Dahrieh, David W. Rooney, Jillian Thompson

Abstract:

The effect of loading of copper on the catalytic performance of different alumina support during the dehydration of methanol to dimethyl ether (DME) was performed in a fixed bed reactor. There are two levels of loading; low loading (1, 2, 4 and 6% Cu wt/wt) and high loading (10 and 15% Cu wt/wt) on both AC350 (alumina catalyst calcined at 350) and AC550 (alumina catalyst calcined at 550), to study the effect of loading and the effect of the support during methanol dehydration to DME (MTD). The catalysts were characterized by TGA, XRD, BET, TPD-NH3, TEM and DRIFT-Pyridine. Under reaction conditions where the temperature ranged from 180-300˚C with a WHSV= 12.1 h-1 it was found that all the catalysts calcined at 550˚C showed higher activity than those calcined at 350˚C. In this study, the optimum catalyst was 6% Cu/AC550. This catalyst showed a high degree of stability, had one half activity of the pure catalyst (AC550) and double the activity of the optimum catalyst calcined at 350˚C (6% Cu/AC350). So, we recommended 6% Cu/AC550 for the production of DME from methanol.

Keywords: bio-fuel, nano composite catalyst, DME, Cu-Al2O3

Procedia PDF Downloads 284
6835 Incidence and Molecular Mechanism of Human Pathogenic Bacterial Interaction with Phylloplane of Solanum lycopersicum

Authors: Indu Gaur, Neha Bhadauria, Shilpi Shilpi, Susmita Goswami, Prem D. Sharma, Prabir K. Paul

Abstract:

The concept of organic agriculture has been accepted as novelty in Indian society, but there is no data available on the human pathogens colonizing plant parts due to such practices. Also, the pattern and mechanism of their colonization need to be understood in order to devise possible strategies for their prevention. In the present study, human pathogenic bacteria were isolated from organically grown tomato plants and five of them were identified as Klebsiella pneumoniae, Enterobacter ludwigii, Serratia fonticola, Stenotrophomonas maltophilia and Chryseobacterium jejuense. Tomato plants were grown in controlled aseptic conditions with 25±1˚C, 70% humidity and 12 hour L/D photoperiod. Six weeks old plants were divided into 6 groups of 25 plants each and treated as follows: Group 1: K. pneumonia, Group 2: E. ludwigii, Group 3: S. fonticola, Group 4: S. maltophilia, Group 5: C. jejuense, Group 6: Sterile distilled water (control). The inoculums for all treatments were prepared by overnight growth with uniform concentration of 108 cells/ml. Leaf samples from above groups were collected at 0.5, 2, 4, 6 and 24 hours post inoculation for the colony forming unit counts (CFU/cm2 of leaf area) of individual pathogens using leaf impression method. These CFU counts were used for the in vivo colonization assay and adherence assay of individual pathogens. Also, resistance of these pathogens to at least 12 antibiotics was studied. Based on these findings S. fonticola was found to be most prominently colonizing the phylloplane of tomato and was further studied. Tomato plants grown in controlled aseptic conditions same as mentioned above were divided into 2 groups of 25 plants each and treated as follows: Group 1: S. fonticola, Group 2: Sterile distilled water (control). Leaf samples from above groups were collected at 0, 24, 48, 72 and 96 hours post inoculation and homogenized in suitable buffers for surface and cell wall protein isolation. Protein samples thus obtained were subjected to isocratic SDS-gel electrophoresis and analyzed. It was observed that presence of S. fonticola could induce the expression of at least 3 additional cell wall proteins at different time intervals. Surface proteins also showed variation in the expression pattern at different sampling intervals. Further identification of these proteins by MALDI-MS and bioinformatics tools revealed the gene(s) involved in the interaction of S. fonticola with tomato phylloplane.

Keywords: cell wall proteins, human pathogenic bacteria, phylloplane, solanum lycopersicum

Procedia PDF Downloads 219
6834 Characterization of a Dentigerous Cyst Cell Line and Its Secretion of Metalloproteinases

Authors: Muñiz-Lino Marcos A.

Abstract:

The ectomesenchymal tissues involved in tooth development and their remnants are the origin of different odontogenic lesions, including tumors and cysts of the jaws, with a wide range of clinical behaviors. A dentigerous cyst (DC) represents approximately 20% of all cases of odontogenic cysts, and it has been demonstrated that it can develop benign and malignant odontogenic tumors. DC is characterized by bone destruction of the area surrounding the crown of a tooth that has not erupted and contains liquid. The treatment of odontogenic tumors and cysts usually involves a partial or total removal of the jaw, causing important secondary co-morbidities. However, molecules implicated in DC pathogenesis, as well as in its development into odontogenic tumors, remain unknown. A cellular model may be useful to study these molecules, but that model has not been established yet. Here, we reported the establishment of a cell culture derived from a dentigerous cyst. This cell line was named DeCy-1. In spite of its ectomesenchymal morphology, DeCy-1 cells express epithelial markers such as cytokeratins 5, 6, and 8. Furthermore, these cells express the ODAM protein, which is present in odontogenesis and in dental follicles, indicating that DeCy-1 cells are derived from odontogenic epithelium. Analysis by electron microscopy of this cell line showed that it has a high vesicular activity, suggesting that DeCy-1 could secrete molecules that may be involved in DC pathogenesis. Thus, secreted proteins were analyzed by PAGE-SDS where we observed approximately 11 bands. In addition, the capacity of these secretions to degrade proteins was analyzed by gelatin substrate zymography. A degradation band of about 62 kDa was found in these assays. Western blot assays suggested that the matrix metalloproteinase 2 (MMP-2) is responsible for this protease activity. Thus, our results indicate that the establishment of a cell line derived from DC is a useful in vitro model to study the biology of this odontogenic lesion and its participation in the development of odontogenic tumors.

Keywords: dentigerous cyst, ameloblastoma, MMP-2, odontogenic tumors

Procedia PDF Downloads 11
6833 Assessing the Bioactivity and Cell Viability of Apatite-Wollastonite Glass Ceramics Prepared via Spray Pyrolysis

Authors: Andualem Workie

Abstract:

In this study, we examined the sinterability and bioactivity of MgO-SiO₂-P₂O₅-CaO-CaF₂ glass compositions created through spray pyrolysis. We evaluated the bioactivity of the materials by immersing them for varying periods of time in simulated bodily fluid (SBF) and found that bioactivity was related to the sintering temperature and soaking time. The material's pH value during immersion in SBF was within the range of 7.4-8.2, which is below 8.5 and improves compatibility and reduces toxicity in biological applications. We used X-ray diffraction and scanning electron microscopy to determine the phase compositions and morphologies of the samples and found that the 1100°C sintered A-W GC sample exhibited the highest bioactivity after soaking in SBF. This sample was dominated by fluorapatite, wollastonite, and whitlockite crystals scattered throughout the glass matrix. The crystallinity (%) of the A-W GC increased as its bioactivity improved, making it more suitable for use in pharmaceutical applications. We also conducted a cytotoxicity test on A-W GC samples sintered at different temperatures and found that the glass-ceramics were non-toxic to MC3T3-E1 cells at all extraction concentrations, except for those sintered at 700°C at concentrations of 250, 200, and 150 mg/ml where cell viability (%) was below the threshold of 70%.

Keywords: apatite wollastonite glass ceramics, bioactivity, calcination, cell viability

Procedia PDF Downloads 83
6832 Evaluation of the Boiling Liquid Expanding Vapor Explosion Thermal Effects in Hassi R'Mel Gas Processing Plant Using Fire Dynamics Simulator

Authors: Brady Manescau, Ilyas Sellami, Khaled Chetehouna, Charles De Izarra, Rachid Nait-Said, Fati Zidani

Abstract:

During a fire in an oil and gas refinery, several thermal accidents can occur and cause serious damage to people and environment. Among these accidents, the BLEVE (Boiling Liquid Expanding Vapor Explosion) is most observed and remains a major concern for risk decision-makers. It corresponds to a violent vaporization of explosive nature following the rupture of a vessel containing a liquid at a temperature significantly higher than its normal boiling point at atmospheric pressure. Their effects on the environment generally appear in three ways: blast overpressure, radiation from the fireball if the liquid involved is flammable and fragment hazards. In order to estimate the potential damage that would be caused by such an explosion, risk decision-makers often use quantitative risk analysis (QRA). This analysis is a rigorous and advanced approach that requires a reliable data in order to obtain a good estimate and control of risks. However, in most cases, the data used in QRA are obtained from the empirical correlations. These empirical correlations generally overestimate BLEVE effects because they are based on simplifications and do not take into account real parameters like the geometry effect. Considering that these risk analyses are based on an assessment of BLEVE effects on human life and plant equipment, more precise and reliable data should be provided. From this point of view, the CFD modeling of BLEVE effects appears as a solution to the empirical law limitations. In this context, the main objective is to develop a numerical tool in order to predict BLEVE thermal effects using the CFD code FDS version 6. Simulations are carried out with a mesh size of 1 m. The fireball source is modeled as a vertical release of hot fuel in a short time. The modeling of fireball dynamics is based on a single step combustion using an EDC model coupled with the default LES turbulence model. Fireball characteristics (diameter, height, heat flux and lifetime) issued from the large scale BAM experiment are used to demonstrate the ability of FDS to simulate the various steps of the BLEVE phenomenon from ignition up to total burnout. The influence of release parameters such as the injection rate and the radiative fraction on the fireball heat flux is also presented. Predictions are very encouraging and show good agreement in comparison with BAM experiment data. In addition, a numerical study is carried out on an operational propane accumulator in an Algerian gas processing plant of SONATRACH company located in the Hassi R’Mel Gas Field (the largest gas field in Algeria).

Keywords: BLEVE effects, CFD, FDS, fireball, LES, QRA

Procedia PDF Downloads 175
6831 Lanthanum Strontium Titanate Based Anode Materials for Intermediate Temperature Solid Oxide Fuel Cells

Authors: A. Saurabh Singh, B. Raghvendra, C. Prabhakar Singh

Abstract:

Solid Oxide Fuel Cells (SOFCs) are one of the most attractive electrochemical energy conversion systems, as these devices present a clean energy production, thus promising high efficiencies and low environmental impact. The electrodes are the main components that decisively control the performance of a SOFC. Conventional, anode materials (like Ni-YSZ) are operates at very high temperature. Therefore, cost-effective materials which operate at relatively lower temperatures are still required. In present study, we have synthesized La doped Strontium Titanate via solid state reaction route. The structural, microstructural and density of the pellet have been investigated employing XRD, SEM and Archimedes Principle, respectively. The electrical conductivity of the systems has been determined by impedance spectroscopy techniques. The electrical conductivity of the Lanthanum Strontium Titanate (LST) has been found to be higher than the composite Ni-YSZ system at 700 °C.

Keywords: IT-SOFC, LST, Lanthanum Strontium Titanate, electrical conductivity

Procedia PDF Downloads 372
6830 Evaluation of Naringenin Role in Inhibiton of Lung Tumor Progression in Mice

Authors: Vishnu Varthan Vaithiyalingamjagannathan, M. N. Sathishkumar, K. S. Lakhsmi, D. Satheeshkumar, Srividyaammayappanrajam

Abstract:

Background:Naringenin, aglycone flavonoid possess certain activities like anti-oxidant, anti-estrogenic, anti-diabetic, cardioprotective, anti-obesity,anti-inflammatory, hepatoprotective and also have anti-cancer characteristics like carcinogenic inactivation, cell cycle arrest, anti-proliferation, apoptosis, anti-angiogenesis and enhances anti-oxidant activity. Methodology:The inhibitory effect of Naringenin in lung tumor progression estimated with adenocarcinoma (A549) cell lines (in vitro) and C57BL/6 mice injected with 5 X 106A549 cell lines (in vivo) in a tri-dose manner (Naringenin 100mg/kg,150mg/kg, and 200mg/kg) compared with standard chemotherapy drug cisplatin (7mg/kg). Results:The results of the present study revealed a dose-dependent activity in Naringenin and combination with cisplatin at a higher dose which showed decreased tumor progression in mice. In vitro studies carried out for estimation of cell survival and Nitric Oxide (NO) level, shows dose dependent action of Naringenin with IC50 value of 42µg/ml. In vivo studies were carried out in C57BL/6 mice. Naringenin satisfied the condition of an anti-cancer molecule with its characteristics in fragmentation assay, Zymography assay, anti-oxidant, and myeloperoxidase studies, than cisplatin which failed in anti-oxidant and myeloperoxidase effect. Both in vitro and in vivo establishes dose dependent decrease in NO levels. But whereas, Naringenin showed adverse results in Matrix Metalloproteinase (MMP) enzymatic levels with increase in dose levels. Conclusion:From the present study, Naringenin could suppress the lung tumor progression when given individually and also in combinatorial with standard chemotherapy drug.

Keywords: naringenin, in vitro, cell line, anticancer

Procedia PDF Downloads 423
6829 The Fiscal and Macroeconomic Impacts of Reforming Energy Subsidy Policy in Malaysia

Authors: Nora Yusma Bte Mohamed Yusoff, Hussain Ali Bekhet

Abstract:

The rationalization of a gradual subsidies reforms plan has been set out by the Malaysian government to achieve the high-income nation target. This paper attempts to analyze the impacts of energy subsidy reform policy on fiscal deficit and macroeconomics variables in Malaysia. The Computable General Equilibrium (CGE) Model is employed. Three simulations based on different groups of scenarios have been developed. Importantly, the overall results indicate that removal of fuel subsidy has significantly improved the real GDP and reduced the government fiscal deficit. On the other hand, the removal of the fuel subsidy has increased most of the local commodity prices, especially energy commodities. The findings of the study could provide some imperative inputs for policy makers, especially to identify the right policy mechanism. This is especially ensures the subsidy savings from subsidy removal could be transferred back into the domestic economy in the form of infrastructure development, compensation and increases in others sector output contributions towards a sustainable economic growth.

Keywords: CGE, deficit, energy, reform, subsidy

Procedia PDF Downloads 251
6828 The Effects of Local Factors on the Concentrations and Flora of Viable Fungi in School Buildings

Authors: H. Salonen, E. Castagnoli, C. Vornanen-Winqvist, R. Mikkola, C. Duchaine, L. Morawska, J. Kurnitski

Abstract:

A wide range of health effects among occupants are associated with the exposure to bioaerosols from fungal sources. Although the accurate role of these aerosols in causing the symptoms and diseases is poorly understood, the important effect of bioaerosol exposure on human health is well recognized. Thus, there is a need to determine all of the contributing factors related to the concentration of fungi in indoor air. In this study, we reviewed and summarized the different factors affecting the concentrations of viable fungi in school buildings. The literature research was conducted using Pubmed and Google Scholar. In addition, we searched the lists of references of selected articles. According to the literature, the main factors influencing the concentration of viable fungi in the school buildings are moisture damage in building structures, the season (temperature and humidity conditions), the type and rate of ventilation, the number and activities of occupants and diurnal variations. This study offers valuable information that can be used in the interpretation of the fungal analysis and to decrease microbial exposure by reducing known sources and/or contributing factors. However, more studies of different local factors contributing to the human microbial exposure in school buildings—as well as other type of buildings and different indoor environments—are needed.

Keywords: fungi, concentration, indoor, school, contributing factor

Procedia PDF Downloads 253
6827 Natural Bio-Active Product from Marine Resources

Authors: S. Ahmed John

Abstract:

Marine forms-bacteria, actinobacteria, cynobacteria, fungi, microalgae, seaweeds mangroves and other halophytes an extremely important oceanic resources and constituting over 90% of the oceanic biomass. The marine natural products have lead to the discovery of many compounds considered worthy for clinical applications. The marine sources have the highest probability of yielding natural products. Natural derivatives play an important role to prevent the cancer incidences as synthetic drug transformation in mangrove. 28.12% of anticancer compound extracted from the mangroves. Exchocaria agollocha has the anti cancer compounds. The present investigation reveals the potential of the Exchocaria agollocha with biotechnological applications for anti cancer, antimicrobial drug discovery, environmental remediation, and developing new resources for the industrial process. The anti-cancer activity of Exchocaria agollocha was screened from 3.906 to 1000 µg/ml of concentration with the dilution leads to 1:1 to 1:128 following methanol and chloroform extracts. The cell viability in the Exchocaria agollocha was maximum at the lower concentration where as low at the higher concentration of methanol and chloroform extracts when compare to control. At 3.906 concentration, 85.32 and 81.96 of cell viability was found at 1:128 dilution of methanol and chloroform extracts respectively. At the concentration of 31.25 following 1:16 dilution, the cell viability was 65.55 in methanol and 45.55 in chloroform extracts. However, at the higher concentration, the cell viability 22.35 and 8.12 was recorded in the extracts of methanol and chloroform. The cell viability was more in methanol when compare to chloroform extracts at lower concentration. The present findings gives current trends in screening and the activity analysis of metabolites from mangrove resources and to expose the models to bring a new sustain for tackling cancer. Bioactive compounds of Exchocaria agollocha have extensive use in treatment of many diseases and serve as a compound and templates for synthetic modification.

Keywords: bio-active product, compounds, natural products and microalgae

Procedia PDF Downloads 235
6826 Effects of Selected Plant-Derived Nutraceuticals on the Quality and Shelf-Life Stability of Frankfurter Type Sausages during Storage

Authors: Kazem Alirezalu, Javad Hesari, Zabihollah Nemati, Boukaga Farmani

Abstract:

The application of natural plant extracts which are rich in promising antioxidants and antimicrobial ingredients in the production of frankfurter-type sausages addresses consumer demands for healthier, more functional meat products. The effects of olive leaves, green tea and Urtica dioica L. extracts on physicochemical, microbiological and sensory characteristic of frankfurter-type sausage were investigated during 45 days of storage at 4 °C. The results revealed that pH and phenolic compounds decreased significantly (P < 0.05) in all samples during storage. Sausages containing 500 ppm green tea extract (1.78 mg/kg) showed the lowest TBARS values compared to olive leaves (2.01 mg/kg), Urtica dioica L. (2.26 mg/kg) extracts and control (2.74 mg/kg). Plant extracts significantly (P < 0.05) reduced the count of total mesophilic bacteria, yeast and mold by at least 2 log cycles (CFU/g) than those of control samples. Sensory characteristics of texture showed no difference (P > 0.05) between sausage samples, but sausage containing Urtica dioica L. extract had the highest score regarding flavor, freshness odor, and overall acceptability. Based on the results, sausage containing plant extracts could have a significant impact on antimicrobial activity, antioxidant capacity, sensory score, and shelf life stability of frankfurter-type sausage.

Keywords: antimicrobial, antioxidant, frankfurter-type sausage, green tea, olive oil, shelf life, Urtica dioica L.

Procedia PDF Downloads 178
6825 A Simple Colorimetric Assay for Paraquat Detection Using Negatively Charged Silver Nanopaticles

Authors: Weena Siangphro, Orawon Chailapakul, Kriangsak Songsrirote

Abstract:

A simple, rapid, sensitive, and economical method based on colorimetry for the determination of paraquat, a widely used herbicide, was developed. Citrate-coated silver nanoparticles (AgNPs) were synthesized as colorimetric probe. The mechanism of the assay is related to aggregation of negatively charged AgNPs induced by positively-charged paraquat resulting from coulombic attraction which causes the color change from deep greenish yellow to pale yellow upon the concentrations of paraquat. Silica gel was exploited as paraquat adsorbent for purification and pre-concentration prior to the direct determination with negatively charged AgNPs without elution step required. The validity of the proposed approach was evaluated by spiking standard paraquat in water and plant samples. Recoveries of paraquat in water samples were 93.6-95.4%, while those in plant samples were 86.6-89.5% by using the optimized extraction procedure. The absorbance of AgNPs at 400 nm was linearly related to the concentration of paraquat over the range of 0.05-50 mg/L with detection limits of 0.05 ppm for water samples, and 0.10 ppm for plant samples.

Keywords: colorimetric assay, paraquat, silica gel, silver nanoparticles

Procedia PDF Downloads 228
6824 Comparative and Combined Toxicity of NiO and Mn₃O₄ Nanoparticles as Assessed in vitro and in vivo

Authors: Ilzira A. Minigalieva, Tatiana V. Bushueva, Eleonore Frohlich, Vladimir Panov, Ekaterina Shishkina, Boris A. Katsnelson

Abstract:

Background: The overwhelming majority of the experimental studies in the field of metal nanotoxicology have been performed on cultures of established cell lines, with very few researchers focusing on animal experiments, while a juxtaposition of conclusions inferred from these two types of research is blatantly lacking. The least studied aspect of this problem relates to characterizing and predicting the combined toxicity of metallic nanoparticles. Methods: Comparative and combined toxic effects of purposefully prepared spherical NiO and Mn₃O₄ nanoparticles (mean diameters 16.7 ± 8.2 nm and 18.4 ± 5.4 nm respectively) were estimated on cultures of human cell lines: MRC-5 fibroblasts, THP-1 monocytes, SY-SY5Y neuroblastoma cells, as well as on the latter two lines differentiated to macrophages and neurons, respectively. The combined cytotoxicity was mathematically modeled using the response surface methodology. Results: The comparative assessment of the studied NPs unspecific toxicity previously obtained in vivo was satisfactorily reproduced by the present in vitro tests. However, with respect to manganese-specific brain damage which had been demonstrated by us in animal experiment with the same NPs, the testing on neuronall cell culture showed only a certain enhancing effect of Mn₃O₄-NPs on the toxic action of NiO-NPs, while the role of the latter prevailed. Conclusion: From the point of view of the preventive toxicology, the experimental modeling of metallic NPs combined toxicity on cell cultures can give non-reliable predictions of the in vivo action’s effects.

Keywords: manganese oxide, nickel oxide, nanoparticles, in vitro toxicity

Procedia PDF Downloads 284
6823 Effect of Silver Nanoparticles on Seed Germination of Crop Plants

Authors: Zainab M. Almutairi, Amjad Alharbi

Abstract:

The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2, and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.

Keywords: citrullus lanatus, cucurbita pepo, seed germination, seedling growth, silver nanoparticles, zea mays

Procedia PDF Downloads 291
6822 Silver Nanoparticles Synthesized in Plant Extract Against Acute Hepatopancreatic Necrosis of Shrimp: Estimated By Multiple Models

Authors: Luz del Carmen Rubí Félix Peña, Jose Adan Felix-Ortiz, Ely Sara Lopez-Alvarez, Wenceslao Valenzuela-Quiñonez

Abstract:

On a global scale, Mexico is the sixth largest producer of farmed white shrimp (Penaeus vannamei). The activity suffered significant economic losses due to acute hepatopancreatic necrosis (AHPND) caused by a strain of Vibrio parahaemolyticus. For control, the first option is the application of antibiotics in food, causing changes in the environment and bacterial communities, which has produced greater virulence and resistance of pathogenic bacteria. An alternative treatment is silver nanoparticles (AgNPs) generated by green synthesis, which have shown an antibacterial capacity by destroying the cell membrane or denaturing the cell. However, the doses at which these are effective are still unknown. The aim is to calculate the minimum inhibitory concentration (MIC) using the Gompertz, Richard, and Logistic model of biosynthesized AgNPs against a strain of V. parahaemolyticus. Through the testing of different formulations of AgNPs synthesized from Euphorbia prostrate (Ep) extracts against V. parahaemolyticus causing AHPND in white shrimp. Aqueous and ethanol extracts were obtained, and the concentration of phenols and flavonoids was quantified. In the antibiograms, AgNPs were formulated in ethanol extracts of Ep (20 and 30%). The inhibition halo at well dilution test were 18±1.7 and 17.67±2.1 mm against V. parahaemolyticus. A broth microdilution was performed with the inhibitory agents (aqueous and ethanolic extracts and AgNPs) and 20 μL of the inoculum of V. parahaemolyticus. The MIC for AgNPs was 6.2-9.3 μg/mL and for ethanol extract of 49-73 mg/mL. The Akaike index (AIC) was used to choose the Gompertz model for ethanol extracts of Ep as the best data descriptor (AIC=204.8, 10%; 45.5, 20%, and 204.8, 30%). The Richards model was at AgNPs ethanol extract with AIC=-9.3 (10%), -17.5 (20 and 30%). The MIC calculated for EP extracts with the modified Gompertz model were 20 mg/mL (10% and 20% extract) and 40 mg/mL at 30%, while Richard was winner for AgNPs-synthesized it was 5 μg/mL (10% and 20%) and 8 μg/mL (30%). The solver tool Excel was used for the calculations of the models and inhibition curves against V.parahaemolyticus.

Keywords: green synthesis, euphorbia prostata, phenols, flavonoids, bactericide

Procedia PDF Downloads 89