Search results for: mathematical modeling membrane bioreactor
4577 Experimental and Numerical Investigations on Flexural Behavior of Macro-Synthetic FRC
Authors: Ashkan Shafee, Ahamd Fahimifar, Sajjad V. Maghvan
Abstract:
Promotion of the Fiber Reinforced Concrete (FRC) as a construction material for civil engineering projects has invoked numerous researchers to investigate their mechanical behavior. Even though there is satisfactory information about the effects of fiber type and length, concrete mixture, casting type and other variables on the strength and deformability parameters of FRC, the numerical modeling of such materials still needs research attention. The focus of this study is to investigate the feasibility of Concrete Damaged Plasticity (CDP) model in prediction of Macro-synthetic FRC structures behavior. CDP model requires the tensile behavior of concrete to be well characterized. For this purpose, a series of uniaxial direct tension and four point bending tests were conducted on the notched specimens to define bilinear tension softening (post-peak tension stress-strain) behavior. With these parameters obtained, the flexural behavior of macro-synthetic FRC beams were modeled and the results showed a good agreement with the experimental measurements.Keywords: concrete damaged plasticity, fiber reinforced concrete, finite element modeling, macro-synthetic fibers, uniaxial tensile test
Procedia PDF Downloads 4234576 Adding a Few Language-Level Constructs to Improve OOP Verifiability of Semantic Correctness
Authors: Lian Yang
Abstract:
Object-oriented programming (OOP) is the dominant programming paradigm in today’s software industry and it has literally enabled average software developers to develop millions of commercial strength software applications in the era of INTERNET revolution over the past three decades. On the other hand, the lack of strict mathematical model and domain constraint features at the language level has long perplexed the computer science academia and OOP engineering community. This situation resulted in inconsistent system qualities and hard-to-understand designs in some OOP projects. The difficulties with regards to fix the current situation are also well known. Although the power of OOP lies in its unbridled flexibility and enormously rich data modeling capability, we argue that the ambiguity and the implicit facade surrounding the conceptual model of a class and an object should be eliminated as much as possible. We listed the five major usage of class and propose to separate them by proposing new language constructs. By using well-established theories of set and FSM, we propose to apply certain simple, generic, and yet effective constraints at OOP language level in an attempt to find a possible solution to the above-mentioned issues regarding OOP. The goal is to make OOP more theoretically sound as well as to aid programmers uncover warning signs of irregularities and domain-specific issues in applications early on the development stage and catch semantic mistakes at runtime, improving correctness verifiability of software programs. On the other hand, the aim of this paper is more practical than theoretical.Keywords: new language constructs, set theory, FSM theory, user defined value type, function groups, membership qualification attribute (MQA), check-constraint (CC)
Procedia PDF Downloads 2454575 Temporal Estimation of Hydrodynamic Parameter Variability in Constructed Wetlands
Authors: Mohammad Moezzibadi, Isabelle Charpentier, Adrien Wanko, Robert Mosé
Abstract:
The calibration of hydrodynamic parameters for subsurface constructed wetlands (CWs) is a sensitive process since highly non-linear equations are involved in unsaturated flow modeling. CW systems are engineered systems designed to favour natural treatment processes involving wetland vegetation, soil, and their microbial flora. Their significant efficiency at reducing the ecological impact of urban runoff has been recently proved in the field. Numerical flow modeling in a vertical variably saturated CW is here carried out by implementing the Richards model by means of a mixed hybrid finite element method (MHFEM), particularly well adapted to the simulation of heterogeneous media, and the van Genuchten-Mualem parametrization. For validation purposes, MHFEM results were compared to those of HYDRUS (a software based on a finite element discretization). As van Genuchten-Mualem soil hydrodynamic parameters depend on water content, their estimation is subject to considerable experimental and numerical studies. In particular, the sensitivity analysis performed with respect to the van Genuchten-Mualem parameters reveals a predominant influence of the shape parameters α, n and the saturated conductivity of the filter on the piezometric heads, during saturation and desaturation. Modeling issues arise when the soil reaches oven-dry conditions. A particular attention should also be brought to boundary condition modeling (surface ponding or evaporation) to be able to tackle different sequences of rainfall-runoff events. For proper parameter identification, large field datasets would be needed. As these are usually not available, notably due to the randomness of the storm events, we thus propose a simple, robust and low-cost numerical method for the inverse modeling of the soil hydrodynamic properties. Among the methods, the variational data assimilation technique introduced by Le Dimet and Talagrand is applied. To that end, a variational data assimilation technique is implemented by applying automatic differentiation (AD) to augment computer codes with derivative computations. Note that very little effort is needed to obtain the differentiated code using the on-line Tapenade AD engine. Field data are collected for a three-layered CW located in Strasbourg (Alsace, France) at the water edge of the urban water stream Ostwaldergraben, during several months. Identification experiments are conducted by comparing measured and computed piezometric head by means of the least square objective function. The temporal variability of hydrodynamic parameter is then assessed and analyzed.Keywords: automatic differentiation, constructed wetland, inverse method, mixed hybrid FEM, sensitivity analysis
Procedia PDF Downloads 1674574 Modeling Drying and Pyrolysis of Moist Wood Particles at Slow Heating Rates
Authors: Avdhesh K. Sharma
Abstract:
Formulation for drying and pyrolysis process in packed beds at slow heating rates is presented. Drying of biomass particles bed is described by mass diffusion equation and local moisture-vapour-equilibrium relations. In gasifiers, volatilization rate during pyrolysis of biomass is modeled by using apparent kinetic rate expression, while product compositions at slow heating rates is modeled using empirical fitted mass ratios (i.e., CO/CO2, ME/CO2, H2O/CO2) in terms of pyrolysis temperature. The drying module is validated fairly with available chemical kinetics scheme and found that the testing zone in gasifier bed constituted of relatively smaller particles having high airflow with high isothermal temperature expedite the drying process. Further, volatile releases more quickly within the shorter zone height at high temperatures (isothermal). Both, moisture loss and volatile release profiles are found to be sensitive to temperature, although the influence of initial moisture content on volatile release profile is not so sensitive.Keywords: modeling downdraft gasifier, drying, pyrolysis, moist woody biomass
Procedia PDF Downloads 1204573 The Applications of Wire Print in Composite Material Research and Fabrication Process
Authors: Hsu Yi-Chia, Hoy June-Hao
Abstract:
FDM (Fused Deposition Modeling) is a rapid proofing method without mold, however, high material and time costs have always been a major disadvantage. Wire-printing is the next generation technology that can more flexible, and also easier to apply on a 3D printer and robotic arms printing. It can create its own construction methods. The research is mainly divided into three parts. The first is about the method of parameterizing the generated paths and the conversion of g-code to the wire-printing. The second is about material attempts and the application of effects. Third, is about the improvement of the operation of mechanical equipment and the design of robotic tool-head. The purpose of this study is to develop a new wire-print method that can efficiently generate line segments and paths in three- dimensions space. The parametric modeling software transforms the digital model into a 3D printer or robotic arms g-code, this article uses thermoplastics/ clay/composites materials for testing. The combination of materials and wire-print process makes architects and designers have the ability to research and develop works and construction in the future.Keywords: parametric software, wire print, robotic arms fabrication, composite filament additive manufacturing
Procedia PDF Downloads 1344572 Preparation of Ceramic Membranes from Syrian Sand Loaded with Silver Nanoparticles for Water Treatment
Authors: Abdulrazzaq Hammal
Abstract:
In this study, Syrian sand was used to create ceramic membranes. The process of preparing the membranes involved several steps, starting with the purification of the studied sand using hydrochloric acid, sorting according to granular size, and mixing the sand with liquid sodium silicates as a binder. Next, the effects of binder ratio, pressure formation, treatment temperature, and sand grain size were studied. Further, nanoparticles of silver were added to the formed membranes to improve their ability to purify bacterially polluted water. Prepared membranes were quite successful in removing bacteria and chemicals from water, and the water's requirements were brought up to level with Syrian drinking water standards.Keywords: ceramic, membrane, water, wastewater
Procedia PDF Downloads 694571 A Numerical Study of the Interaction between Residual Stress Profiles Induced by Quasi-Static Plastification
Authors: Guilherme F. Guimaraes, Alfredo R. De Faria, Ronnie R. Rego, Andre L. R. D'Oliveira
Abstract:
The development of methods for predicting manufacturing phenomena steadily grows due to their high potential to contribute to the component’s performance and durability. One of the most relevant phenomena in manufacturing is the residual stress state development through the manufacturing chain. In most cases, the residual stresses have their origin due to heterogenous plastifications produced by the processes. Although a few manufacturing processes have been successfully approached by numerical modeling, there is still a lack of understanding on how these processes' interactions will affect the final stress state. The objective of this work is to analyze the influence of previous stresses on the residual stress state induced by plastic deformation of a quasi-static indentation. The model consists of a simplified approach of shot peening, modeling four cases with variations in indenter size and force. This model was validated through topography, measured by optical 3D focus-variation, and residual stress, measured with the X-ray diffraction technique. The validated model was then exposed to several initial stress states, and the effect on the final residual stress was analyzed.Keywords: plasticity, residual stress, finite element method, manufacturing
Procedia PDF Downloads 2114570 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements
Authors: Yasmeen A. S. Essawy, Khaled Nassar
Abstract:
With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.Keywords: building information modeling (BIM), elemental graph data model (EGDM), geometric and topological data models, graph theory
Procedia PDF Downloads 3864569 Review of Hydrologic Applications of Conceptual Models for Precipitation-Runoff Process
Authors: Oluwatosin Olofintoye, Josiah Adeyemo, Gbemileke Shomade
Abstract:
The relationship between rainfall and runoff is an important issue in surface water hydrology therefore the understanding and development of accurate rainfall-runoff models and their applications in water resources planning, management and operation are of paramount importance in hydrological studies. This paper reviews some of the previous works on the rainfall-runoff process modeling. The hydrologic applications of conceptual models and artificial neural networks (ANNs) for the precipitation-runoff process modeling were studied. Gradient training methods such as error back-propagation (BP) and evolutionary algorithms (EAs) are discussed in relation to the training of artificial neural networks and it is shown that application of EAs to artificial neural networks training could be an alternative to other training methods. Therefore, further research interest to exploit the abundant expert knowledge in the area of artificial intelligence for the solution of hydrologic and water resources planning and management problems is needed.Keywords: artificial intelligence, artificial neural networks, evolutionary algorithms, gradient training method, rainfall-runoff model
Procedia PDF Downloads 4604568 Mathematical Knowledge a Prerequisite for Science Education Courses in Tertiary Institution
Authors: Esther Yemisi Akinjiola
Abstract:
Mathematics has been regarded as the backbone of science and technological development, without which no nation can achieve any sustainable growth and development. Mathematics is a useful tool to simplify science by quantification of phenomena; hence physics and chemistry cannot be done without Calculus and Statistics. Mathematics is used in physical science to calculate the measurement of objects and their characteristics, as well as to show the relationship between different functions and properties. Mathematics is the building block for everything in our daily lives, including the use of mobile devices, architecture design, ancient arts, engineering sports, and. among others. Therefore the study of Mathematics is made compulsory at primary, basic, and secondary school levels. Thus, this paper discusses the concepts of Mathematics, science, and their relationships. Also, it discusses Mathematics contents needed to study science-oriented courses such as physics education, chemistry education, and biology education in the tertiary institution. The paper concluded that without adequate knowledge of Mathematics, it will be difficult, if not impossible, for science education students to cope in their field of study.Keywords: mathematical knowledge, prerequisite, science education, tertiary institution
Procedia PDF Downloads 954567 Short Arc Technique for Baselines Determinations
Authors: Gamal F.Attia
Abstract:
The baselines are the distances and lengths of the chords between projections of the positions of the laser stations on the reference ellipsoid. For the satellite geodesy, it is very important to determine the optimal length of orbital arc along which laser measurements are to be carried out. It is clear that for the dynamical methods long arcs (one month or more) are to be used. According to which more errors of modeling of different physical forces such as earth's gravitational field, air drag, solar radiation pressure, and others that may influence the accuracy of the estimation of the satellites position, at the same time the measured errors con be almost completely excluded and high stability in determination of relative coordinate system can be achieved. It is possible to diminish the influence of the errors of modeling by using short-arcs of the satellite orbit (several revolutions or days), but the station's coordinates estimated by different arcs con differ from each other by a larger quantity than statistical zero. Under the semidynamical ‘short arc’ method one or several passes of the satellite in one of simultaneous visibility from both ends of the chord is known and the estimated parameter in this case is the length of the chord. The comparison of the same baselines calculated with long and short arcs methods shows a good agreement and even speaks in favor of the last one. In this paper the Short Arc technique has been explained and 3 baselines have been determined using the ‘short arc’ method.Keywords: baselines, short arc, dynamical, gravitational field
Procedia PDF Downloads 4674566 A Prototype for Biological Breakdown of Plastic Bags in Desert Areas
Authors: Yassets Egaña, Patricio Núñez, Juan C. Rios, Ivan Balic, Alex Manquez, Yarela Flores, Maria C. Gatica, Sergio Diez De Medina, Rocio Tijaro-Rojas
Abstract:
Globally, humans produce millions of tons of waste per year. An important percentage of this waste is plastic, which frequently ends up in landfills and oceans. During the last decades, the greatest plastics production in history have been made, a few amount of this plastic is recycled, the rest ending up as plastic pollution in soils and seas. Plastic pollution is disastrous for the environment, affecting essential species, quality of consumption water, and some economic activities such as tourism, in different parts of the world. Due to its durability and decomposition on micro-plastics, animals and humans are accumulating a variety of plastic components without having clear their effects on human health, economy, and wildlife. In dry regions as the Atacama Desert, up to 95% of the water consumption comes from underground reservoirs, therefore preventing the soil pollution is an urgent need. This contribution focused on isolating, genotyping and optimizing microorganisms that use plastic waste as the only source of food to construct a batch-type bioreactor able to degrade in a faster way the plastic waste before it gets the desert soils and groundwater consumed by people living in this areas. Preliminary results, under laboratory conditions, has shown an improved degradation of polyethylene when three species of bacteria and three of fungi act on a selected plastic material. These microorganisms have been inoculated in dry soils, initially lacking organic matter, under environmental conditions in the laboratory. Our team designed and constructed a prototype using the natural conditions of the region and the best experimental results.Keywords: biological breakdown, plastic bags, prototype, desert regions
Procedia PDF Downloads 2884565 A Global Fuel Combustion Data Product and Its Application
Authors: Shu Tao, Rong Wang, Huizhong Shen, Ye Huang
Abstract:
High-resolution mapping of fuel combustion is essential for reducing uncertainties in assessments of greenhouse gases and air pollutant emissions. Such inventories provide valuable information for inferring carbon sinks, modeling pollutant transport, and developing control strategies. Previous inventories included only a few fuel types and were derived using national population proxies which may distort the geographical variation within countries. In this study, a global 0.1 degree by 0.1 degree geo-referenced inventory of fuel combustion (PKU-FUEL-2007) was developed for 64 fuel sub-types along with uncertainty analysis for the year 2007. Sub-national fuel consumption of large countries and major power-station locations were used. The disaggregation error can be reduced significantly by using the sub-nationally energy data, because the uneven distribution of per-capita fuel consumption within countries is taken into consideration. The PKU-FUEL was used to generate global emission inventories of CO2 (PKU-CO2-2007), polycyclic aromatic hydrocarbons (PKU-PAHs-2007), and black carbons (PKU-BC-2007). Atmospheric transport modeling and expsoure assessment were conducted for BC and PAHs based on the inventory.Keywords: fuel, emission, BC, PAHs, atmospheric transport, exposure
Procedia PDF Downloads 3314564 Nonlocal Phenomena in Quantum Mechanics
Authors: Kazim G. Atman, Hüseyin Sirin
Abstract:
In theoretical physics, nonlocal phenomena has always been subject of debate. However, in the conventional mathematical approach where the developments of the physical systems are investigated by using the standard mathematical tools, nonlocal effects are not taken into account. In order to investigate the nonlocality in quantum mechanics and fractal property of space, fractional derivative operators are employed in this study. In this manner, fractional creation and annihilation operators are introduced and Einstein coefficients are taken into account as an application of concomitant formalism in quantum field theory. Therefore, each energy mode of photons are considered as fractional quantized harmonic oscillator hereby Einstein coefficients are obtained. Nevertheless, wave function and energy eigenvalues of fractional quantum mechanical harmonic oscillator are obtained via the fractional derivative order α which is a measure of the influence of nonlocal effects. In the case α = 1, where space becomes homogeneous and continuous, standard physical conclusions are recovered.Keywords: Einstein’s Coefficients, Fractional Calculus, Fractional Quantum Mechanics, Nonlocal Theories
Procedia PDF Downloads 1754563 English Language Competency among the Mathematics Teachers as the Precursor for Performance in Mathematics
Authors: Mirriam M. Moleko, Sekanse A. Ntsala
Abstract:
Language in mathematics instruction enables the teacher to communicate mathematical knowledge to the learners with precision. It also enables the learner to deal with mathematical activities effectively. This scholarly piece was motivated by the fact that mathematics performance in the South African primary classrooms has not been satisfactory, and English, which is a Language of Learning and Teaching (LoLT) for the majority of the learners, has been singled out as one of the major impediments. This is not only on the part of the learners, but also on the part of the teachers as well. The study thus focused on the lack of competency in English among the primary school teachers as one of the possible causes of poor performance in mathematics in primary classrooms. The qualitative processes, which were premised on the social interaction theory as a lens, sourced the narratives of 10 newly qualified primary school mathematics teachers from the disadvantaged schools on the matter. This was achieved through the use of semi-structured interviews and focus group discussions. The data, which were analyzed thematically, highlighted the actuality that the challenges cut across the pre-service stage to the in-service stage. The findings revealed that the undergraduate mathematics courses in the number of the institutions neglect the importance of language. The study further revealed that the in-service mathematics teachers lack adequate linguistic command, thereby finding it difficult to successfully teach some mathematical concepts, or even to outline instructions clearly. The study thus suggests the need for training institutions to focus on improving the teachers’ English language competency. The need for intensive in-service training targeting the problem areas was also highlighted. The study thus contributes to the body of knowledge by providing suggestions on how the mathematics teachers’ language incompetency can be mitigated.Keywords: Competency, English language proficiency, language of learning and teaching, primary mathematics teachers
Procedia PDF Downloads 1834562 Inhibitions in Implementing Green Supply Chain Management at Hospitals
Authors: M. Aruna, Uma Gunasilan
Abstract:
Hospitals play an ample role in securing the health of a country. Nevertheless, they also have an unhealthy side. Ecological issues strengthen ill-health throughout the domain which subsequently puts pressure on hospital supply chains. Medical waste indeed is hazardous for environment and subsequently for human. The hospital waste management is of immense prominence due to its infectious and hazardous nature that can source many effects on human health and the environment. Government regulations and public cognizance regarding hospital waste issues have imposed hospital units to admit these strategies. The innovative technologies and instruments have been developed to handle hospital wastes. Green supply chain management practices are common in the United States. In India, Green Supply Chain management (GSCM) has just started to be recognized and practiced. GSCM are green, integrated and ecologically optimized. In Green supply chain management environmental sustainability is found to be an important driver. Eleven barriers are identified in this work. Interpretive Structural Modeling (ISM) technique is used for ranking the obstructions.Keywords: green supply chain management (GSCM), hospital waste management (HWM), interpretive structural modeling (ISM), medical waste (MW)
Procedia PDF Downloads 3234561 Mine Project Evaluations in the Rising of Uncertainty: Real Options Analysis
Authors: I. Inthanongsone, C. Drebenstedt, J. C. Bongaerts, P. Sontamino
Abstract:
The major concern in evaluating the value of mining projects related to the deficiency of the traditional discounted cash flow (DCF) method. This method does not take uncertainties into account and, hence it does not allow for an economic assessment of managerial flexibility and operational adaptability, which are increasingly determining long-term corporate success. Such an assessment can be performed with the real options valuation (ROV) approach, since it allows for a comparative evaluation of unforeseen uncertainties in a project life cycle. This paper presents an economic evaluation model for open pit mining projects based on real options valuation approach. Uncertainties in the model are caused by metal prices and cost uncertainties and the system dynamics (SD) modeling method is used to structure and solve the real options model. The model is applied to a case study. It can be shown that that managerial flexibility reacting to uncertainties may create additional value to a mining project in comparison to the outcomes of a DCF method. One important insight for management dealing with uncertainty is seen in choosing the optimal time to exercise strategic options.Keywords: DCF methods, ROV approach, system dynamics modeling methods, uncertainty
Procedia PDF Downloads 5064560 Fluid–Structure Interaction Modeling of Wind Turbines
Authors: Andre F. A. Cyrino
Abstract:
Knowing that the technological advance is the focus on the efficient extraction of energy from wind, and therefore in the design of wind turbine structures, this work aims the study of the fluid-structure interaction of an idealized wind turbine. The blade was studied as a beam attached to a cylindrical Hub with rotation axis pointing the air flow that passes through the rotor. Using the calculus of variations and the finite difference method the blade will be simulated by a discrete number of nodes and the aerodynamic forces were evaluated. The study presented here was written on Matlab and performs a numeric simulation of a simplified model of windmill containing a Hub and three blades modeled as Euler-Bernoulli beams for small strains and under the constant and uniform wind. The mathematical approach is done by Hamilton’s Extended Principle with the aerodynamic loads applied on the nodes considering the local relative wind speed, angle of attack and aerodynamic lift and drag coefficients. Due to the wide range of angles of attack, a wind turbine blade operates, the airfoil used on the model was NREL SERI S809 which allowed obtaining equations for Cl and Cd as functions of the angle of attack, based on a NASA study. Tridimensional flow effects were no taken in part, as well as torsion of the beam, which only bends. The results showed the dynamic response of the system in terms of displacement and rotational speed as the turbine reached the final speed. Although the results were not compared to real windmills or more complete models, the resulting values were consistent with the size of the system and wind speed.Keywords: blade aerodynamics, fluid–structure interaction, wind turbine aerodynamics, wind turbine blade
Procedia PDF Downloads 2714559 Prediction of Time to Crack Reinforced Concrete by Chloride Induced Corrosion
Authors: Anuruddha Jayasuriya, Thanakorn Pheeraphan
Abstract:
In this paper, a review of different mathematical models which can be used as prediction tools to assess the time to crack reinforced concrete (RC) due to corrosion is investigated. This investigation leads to an experimental study to validate a selected prediction model. Most of these mathematical models depend upon the mechanical behaviors, chemical behaviors, electrochemical behaviors or geometric aspects of the RC members during a corrosion process. The experimental program is designed to verify the accuracy of a well-selected mathematical model from a rigorous literature study. Fundamentally, the experimental program exemplifies both one-dimensional chloride diffusion using RC squared slab elements of 500 mm by 500 mm and two-dimensional chloride diffusion using RC squared column elements of 225 mm by 225 mm by 500 mm. Each set consists of three water-to-cement ratios (w/c); 0.4, 0.5, 0.6 and two cover depths; 25 mm and 50 mm. 12 mm bars are used for column elements and 16 mm bars are used for slab elements. All the samples are subjected to accelerated chloride corrosion in a chloride bath of 5% (w/w) sodium chloride (NaCl) solution. Based on a pre-screening of different models, it is clear that the well-selected mathematical model had included mechanical properties, chemical and electrochemical properties, nature of corrosion whether it is accelerated or natural, and the amount of porous area that rust products can accommodate before exerting expansive pressure on the surrounding concrete. The experimental results have shown that the selected model for both one-dimensional and two-dimensional chloride diffusion had ±20% and ±10% respective accuracies compared to the experimental output. The half-cell potential readings are also used to see the corrosion probability, and experimental results have shown that the mass loss is proportional to the negative half-cell potential readings that are obtained. Additionally, a statistical analysis is carried out in order to determine the most influential factor that affects the time to corrode the reinforcement in the concrete due to chloride diffusion. The factors considered for this analysis are w/c, bar diameter, and cover depth. The analysis is accomplished by using Minitab statistical software, and it showed that cover depth is the significant effect on the time to crack the concrete from chloride induced corrosion than other factors considered. Thus, the time predictions can be illustrated through the selected mathematical model as it covers a wide range of factors affecting the corrosion process, and it can be used to predetermine the durability concern of RC structures that are vulnerable to chloride exposure. And eventually, it is further concluded that cover thickness plays a vital role in durability in terms of chloride diffusion.Keywords: accelerated corrosion, chloride diffusion, corrosion cracks, passivation layer, reinforcement corrosion
Procedia PDF Downloads 2234558 Assessment of Golestan Dam Break Using Finite Volume Method
Authors: Ebrahim Alamatian, Seyed Mehdi Afzalnia
Abstract:
One of the most vital hydraulic structures is the dam. Regarding the unrecoverable damages which may occur after a dam break phenomenon, analyzing dams’ break is absolutely essential. GOLESTAN dam is located in the western South of Mashhad city in Iran. GOLESTAN dam break might lead to severe problems due to adjacent tourist and entertainment areas. In this paper, a numerical code based on the finite volume method was applied for assessing the risk of GOLESTAN dam break. As to this issue, first, a canal with a triangular barrier was modeled so as to verify the capability of the concerned code. Comparing analytical, experimental and numerical results showed that water level in the model results is in a good agreement with the similar water level in the analytical solutions and experimental data. The results of dam break modeling are revealed that two of the bridges, that are PARTOIE and NAMAYESHGAH, located downstream in the flow direction, are at risk following the potential GOLESTAN dam break. Therefore, the required times to conduct the precautionary measures at bridges were calculated at about 12 and 21 minutes, respectively. Thus, it is crucial to announce people about the possible risks of the dam break in order to decrease likely losses.Keywords: numerical model, shallow water equations, GOLESTAN dam break, dry and wet beds modeling
Procedia PDF Downloads 1464557 Investigation on the Energy Impact of Spatial Geometry in a Residential Building Using Building Information Modeling Technology
Authors: Shashank. S. Bagane, H. N. Rajendra Prasad
Abstract:
Building Information Modeling (BIM) has currently developed into a potent solution. The consistent development of BIM technology in the sphere of Architecture, Engineering, and Construction (AEC) industry has enhanced the effectiveness of construction and decision making. However, aggrandized global warming and energy crisis has impacted on building energy analysis. It is now becoming an important factor to be considered in the AEC industry. Amalgamating energy analysis in the planning and design phase of a structure has become a necessity. In the current construction industry, estimating energy usage and reducing its footprint is of high priority. The construction industry is giving more prominence to sustainability alongside energy efficiency. This demand is compelling the designers, planners, and engineers to inspect the sustainable performance throughout the building's life cycle. The current study primarily focuses on energy consumption, space arrangement, and spatial geometry of a residential building. Most commonly residential structures in India are constructed considering Vastu Shastra. Vastu designs are intended to integrate architecture with nature and utilizing geometric patterns, symmetry, and directional alignments. In the current study, a residential brick masonry structure is considered for BIM analysis, Architectural model of the structure will be created using Revit software, later the orientation and spatial arrangement will be finalized based on Vastu principles. Furthermore, the structure will be investigated for the impact of building orientation and spatial arrangements on energy using Green Building Studio software. Based on the BIM analysis of the structure, energy consumption of subsequent building orientations will be understood. A well-orientated building having good spatial arrangement can save a considerable amount of energy throughout its life cycle and reduces the need for heating and lighting which will prove to diminish energy usage and improve the energy efficiency of the residential building.Keywords: building information modeling, energy impact, spatial geometry, vastu
Procedia PDF Downloads 1644556 Modeling the Intricate Relationship between miRNA Dysregulation and Breast Cancer Development
Authors: Sajed Sarabandi, Mostafa Rostampour Vajari
Abstract:
Breast cancer is the most frequent form of cancer among women and the fifth-leading cause of cancer-related deaths. A common feature of cancer cells is their ability to survive and evade apoptosis. Understanding the mechanisms of these pathways and their regulatory factors can lead to the development of effective treatment strategies. In this study, we aim to model the effect of key miRNAs, which are significant regulatory factors in breast cancer. We designed a Petri net focusing on two crucial pathways, proliferation, and apoptosis, and identified the role of miRNAs in these pathways. Our analysis indicates that the upregulation of miRNAs 99a and 372 can effectively increase apoptosis and decrease proliferation. Moreover, we demonstrate that miRNA-600, previously reported as a potential candidate for treatment, may not be a suitable target due to its dual activity in proliferation. Therefore, further research is required to investigate the potential of this miRNA in cancer treatment. Our model shows that a combination of miRNA upregulation and knockdown can efficiently influence key genes such as MDM2 and PTEN, leading to the activation of apoptosis in cancer cells. Ultimately, our model successfully simulates the connection between regulatory miRNAs and key genes in breast cancer.Keywords: breast cancer, microRNAs, bio-modeling, Petri net
Procedia PDF Downloads 434555 Exploring the Applications of Modular Forms in Cryptography
Authors: Berhane Tewelday Weldhiwot
Abstract:
This research investigates the pivotal role of modular forms in modern cryptographic systems, particularly focusing on their applications in secure communications and data integrity. Modular forms, which are complex analytic functions with rich arithmetic properties, have gained prominence due to their connections to number theory and algebraic geometry. This study begins by outlining the fundamental concepts of modular forms and their historical development, followed by a detailed examination of their applications in cryptographic protocols such as elliptic curve cryptography and zero-knowledge proofs. By employing techniques from analytic number theory, the research delves into how modular forms can enhance the efficiency and security of cryptographic algorithms. The findings suggest that leveraging modular forms not only improves computational performance but also fortifies security measures against emerging threats in digital communication. This work aims to contribute to the ongoing discourse on integrating advanced mathematical theories into practical applications, ultimately fostering innovation in cryptographic methodologies.Keywords: modular forms, cryptography, elliptic curves, applications, mathematical theory
Procedia PDF Downloads 274554 Bioreactor Simulator Design: Measuring Built Environment Health and Ecological Implications from Post-Consumer Textiles
Authors: Julia DeVoy, Olivia Berlin
Abstract:
The United States exports over 1.6 billion pounds of post-consumer textiles every year, primarily to countries in the Global South. These textiles make their way to landfills and open-air dumps where they decompose, contaminating water systems and releasing harmful greenhouse gases. Through this inequitable system of waste disposal, countries with less political and economic power are coerced into accepting the environmental and health consequences of over-consumption in the Global North. Thus, the global trade of post-consumer textile waste represents a serious issue of environmental justice and a public health hazard. Our research located, characterizes, and quantifies the environmental and human health risks that occur when post-consumer textiles are left to decompose in landfills and open-air dumps in the Global South. In our work, we make use of United Nations International Trade Statistics data to map the global distribution of post-consumer textiles exported from the United States. Next, we present our landfill simulating reactor designed to measure toxicity of leachate resulting from the decomposition of textiles in developing countries and to quantify the related greenhouse gas emissions. This design makes use of low-cost and sustainable materials to promote frugal innovation and make landfill reactors more accessible. Finally, we describe how the data generated from these tools can be leveraged to inform individual consumer behaviors, local policies around textile waste disposal, and global advocacy efforts to mitigate the environmental harms caused by textile waste.Keywords: sustainability, textile design, public health, built environment
Procedia PDF Downloads 1364553 Rd-PLS Regression: From the Analysis of Two Blocks of Variables to Path Modeling
Authors: E. Tchandao Mangamana, V. Cariou, E. Vigneau, R. Glele Kakai, E. M. Qannari
Abstract:
A new definition of a latent variable associated with a dataset makes it possible to propose variants of the PLS2 regression and the multi-block PLS (MB-PLS). We shall refer to these variants as Rd-PLS regression and Rd-MB-PLS respectively because they are inspired by both Redundancy analysis and PLS regression. Usually, a latent variable t associated with a dataset Z is defined as a linear combination of the variables of Z with the constraint that the length of the loading weights vector equals 1. Formally, t=Zw with ‖w‖=1. Denoting by Z' the transpose of Z, we define herein, a latent variable by t=ZZ’q with the constraint that the auxiliary variable q has a norm equal to 1. This new definition of a latent variable entails that, as previously, t is a linear combination of the variables in Z and, in addition, the loading vector w=Z’q is constrained to be a linear combination of the rows of Z. More importantly, t could be interpreted as a kind of projection of the auxiliary variable q onto the space generated by the variables in Z, since it is collinear to the first PLS1 component of q onto Z. Consider the situation in which we aim to predict a dataset Y from another dataset X. These two datasets relate to the same individuals and are assumed to be centered. Let us consider a latent variable u=YY’q to which we associate the variable t= XX’YY’q. Rd-PLS consists in seeking q (and therefore u and t) so that the covariance between t and u is maximum. The solution to this problem is straightforward and consists in setting q to the eigenvector of YY’XX’YY’ associated with the largest eigenvalue. For the determination of higher order components, we deflate X and Y with respect to the latent variable t. Extending Rd-PLS to the context of multi-block data is relatively easy. Starting from a latent variable u=YY’q, we consider its ‘projection’ on the space generated by the variables of each block Xk (k=1, ..., K) namely, tk= XkXk'YY’q. Thereafter, Rd-MB-PLS seeks q in order to maximize the average of the covariances of u with tk (k=1, ..., K). The solution to this problem is given by q, eigenvector of YY’XX’YY’, where X is the dataset obtained by horizontally merging datasets Xk (k=1, ..., K). For the determination of latent variables of order higher than 1, we use a deflation of Y and Xk with respect to the variable t= XX’YY’q. In the same vein, extending Rd-MB-PLS to the path modeling setting is straightforward. Methods are illustrated on the basis of case studies and performance of Rd-PLS and Rd-MB-PLS in terms of prediction is compared to that of PLS2 and MB-PLS.Keywords: multiblock data analysis, partial least squares regression, path modeling, redundancy analysis
Procedia PDF Downloads 1534552 Helical Motions Dynamics and Hydraulics of River Channel Confluences
Authors: Ali Aghazadegan, Ali Shokria, Julia Mullarneya, Jon Tunnicliffe
Abstract:
River channel confluences are dynamic systems with branching structures that exhibit a high degree of complexity both in natural and man-made open channel networks. Recent and past fields and modeling have investigated the river dynamics modeling of confluent based on a series of over-simplified assumptions (i.e. straight tributary channel with a bend with a 90° junction angle). Accurate assessment of such systems is important to the design and management of hydraulic structures and river engineering processes. Despite their importance, there has been little study of the hydrodynamics characteristics of river confluences, and the link between flow hydrodynamics and confluence morphodynamics in the confluence is still incompletely understood. This paper studies flow structures in confluences, morphodynamics and deposition patterns in 30 and 90 degrees confluences with different flow conditions. The results show that the junction angle is primarily the key factor for the determination of the confluence bed morphology and sediment pattern, while the discharge ratio is a secondary factor. It also shows that super elevation created by mixing flows is a key function of the morphodynamics patterns.Keywords: helical flow, river confluence, bed morphology , secondary flows, shear layer
Procedia PDF Downloads 1504551 Development of a Natural Anti-cancer Formulation Which Can Target Triple Negative Breast Cancer Stem Cells
Authors: Samashi Munaweera
Abstract:
Cancer stem cells (CSC) are responsible for the initiation, extensive proliferation and metastasis of cancer. CSCs, including breast cancer stem cells (bCSCs) have a capacity to generate chemo and radiotherapy resistance heterogeneous population of cells. Over-expressed ABCB1 has been reported as a main reason for drug resistance of CSCs via activating drug efflux pumps by creating pores in the cell membrane. The overall efficiency of chemotherapeutic agents might be enhanced by blocking the ABCB protein efflux pump in the CSC membrane. There is an urgent need to search for persuasive natural drugs which can target CSCs. Anti-cancer properties of Hylocereus undatus on cancer CSCs have not yet been studied. In the present study, the anti-cancer effects of the peel and flesh of H. undatus fruit on bCSCs were evaluated with the aim of developing a marketable anti-cancer nutraceutical formulation. The flesh and peel of H. undatus were freeze-dried and sequentially extracted into four different solvents (hexane, chloroform, ethyl acetate and ethanol). All extracts (eight extracts) were dried under reduced pressure, and different concentrations (12.5-400 µg/mL) were treated on bCSCs isolated from a triple-negative chemo-resistant breast cancer phenotype (MDA-MB-231 cells). Anti-proliferative effects of all extracts and paclitaxel (positive control) were determined by a colorimetric assay (WST-1 based). Since peel-chloroform (IC50= 54.8 µg/mL) and flesh-ethyl acetate (IC50= 150.5 µg/mL) extras exerted a potent anti-proliferative effect at 72 h post-incubation, a combinatorial formulation (CF) was developed with the most active peel-chloroform extract and 20 µg/mL of verapamil (a known ABCB1 drug efflux pump blocker) first time in the world. Anti-proliferative effects and pro-apoptotic effects of CF were confirmed by estimating activated caspase3 and caspase7 levels and apoptotic morphological features in the CF-treated bCSCs compared to untreated and only verapamil (20 µg/mL) treated bCSCs, and CF treated normal mammary epithelial cells (MCF-10A). The antiproliferative effects of CF (16.4 µg/mL) are greater than paclitaxel (19.2 µg/mL) and three folds greater than peel-chloroform extract (IC50= 54.8 µg/mL) on bCSCs while exerting less effects on normal cells (> 400 µg/mL). Collectively, CF can be considered as a potential initiative of a nutraceutical formulation that can target CSCs.Keywords: breast cancer stem cells (bCSCs), Hylocereus undatus, combinatorial formulation (CF), ABCB 1 protein, verapamil
Procedia PDF Downloads 374550 Design of Enhanced Adaptive Filter for Integrated Navigation System of FOG-SINS and Star Tracker
Authors: Nassim Bessaad, Qilian Bao, Zhao Jiangkang
Abstract:
The fiber optics gyroscope in the strap-down inertial navigation system (FOG-SINS) suffers from precision degradation due to the influence of random errors. In this work, an enhanced Allan variance (AV) stochastic modeling method combined with discrete wavelet transform (DWT) for signal denoising is implemented to estimate the random process in the FOG signal. Furthermore, we devise a measurement-based iterative adaptive Sage-Husa nonlinear filter with augmented states to integrate a star tracker sensor with SINS. The proposed filter adapts the measurement noise covariance matrix based on the available data. Moreover, the enhanced stochastic modeling scheme is invested in tuning the process noise covariance matrix and the augmented state Gauss-Markov process parameters. Finally, the effectiveness of the proposed filter is investigated by employing the collected data in laboratory conditions. The result shows the filter's improved accuracy in comparison with the conventional Kalman filter (CKF).Keywords: inertial navigation, adaptive filtering, star tracker, FOG
Procedia PDF Downloads 834549 Parameters Affecting Load Capacity of Reinforced Concrete Ring Deep Beams
Authors: Atef Ahmad Bleibel
Abstract:
Most codes of practice, like ACI 318-14, require the use of strut-and-tie modeling to analyze and design reinforced concrete deep beams. Though, investigations that conducted on deep beams do not include ring deep beams of influential parameters. This work presents an analytical parametric study using strut-and-tie modeling stated by ACI 318-14 to predict load capacity of 20 reinforced concrete ring deep beam specimens with different parameters. The parameters that were under consideration in the current work are ring diameter (Dc), number of supports (NS), width of ring beam (bw), concrete compressive strength (f'c) and width of bearing plate (Bp). It is found that the load capacity decreases by about 14-36% when ring diameter increases by about 25-75%. It is also found that load capacity increases by about 62-189% when number of supports increases by about 33-100%, while the load capacity increases by about 25-75% when the beam ring width increases by about 25-75%. Finally, it is found that load capacity increases by about 24-76% when compressive strength increases by about 24-76%, while the load capacity increases by about 5-16% when Bp increases by about 25-75%.Keywords: load parameters, reinforced concrete, ring deep beam, strut and tie
Procedia PDF Downloads 1084548 Transportation and Urban Land-Use System for the Sustainability of Cities, a Case Study of Muscat
Authors: Bader Eddin Al Asali, N. Srinivasa Reddy
Abstract:
Cities are dynamic in nature and are characterized by concentration of people, infrastructure, services and markets, which offer opportunities for production and consumption. Often growth and development in urban areas is not systematic, and is directed by number of factors like natural growth, land prices, housing availability, job locations-the central business district (CBD’s), transportation routes, distribution of resources, geographical boundaries, administrative policies, etc. One sided spatial and geographical development in cities leads to the unequal spatial distribution of population and jobs, resulting in high transportation activity. City development can be measured by the parameters such as urban size, urban form, urban shape, and urban structure. Urban Size is the city size and defined by the population of the city, and urban form is the location and size of the economic activity (CBD) over the geographical space. Urban shape is the geometrical shape of the city over which the distribution of population and economic activity occupied. And Urban Structure is the transport network within which the population and activity centers are connected by hierarchy of roads. Among the urban land-use systems transportation plays significant role and is one of the largest energy consuming sector. Transportation interaction among the land uses is measured in Passenger-Km and mean trip length, and is often used as a proxy for measurement of energy consumption in transportation sector. Among the trips generated in cities, work trips constitute more than 70 percent. Work trips are originated from the place of residence and destination to the place of employment. To understand the role of urban parameters on transportation interaction, theoretical cities of different size and urban specifications are generated through building block exercise using a specially developed interactive C++ programme and land use transportation modeling is carried. The land-use transportation modeling exercise helps in understanding the role of urban parameters and also to classify the cities for their urban form, structure, and shape. Muscat the capital city of Oman underwent rapid urbanization over the last four decades is taken as a case study for its classification. Also, a pilot survey is carried to capture urban travel characteristics. Analysis of land-use transportation modeling with field data classified Muscat as a linear city with polycentric CBD. Conclusions are drawn suggestion are given for policy making for the sustainability of Muscat City.Keywords: land-use transportation, transportation modeling urban form, urban structure, urban rule parameters
Procedia PDF Downloads 273