Search results for: offensive language detection
5332 The Impact of the Religious and Cultural Factors on Saudi Female Studying in Western Institutions
Authors: Sahar S. Moursi
Abstract:
Due to the unique background of the Saudi female international students who study in western institutes, they face tough challenges as English as a second language (ESL) learners. This paper draws on a Ph.D. study that examines a wide range of challenges faced by Saudi female international students when they study the English language and other academic subjects in a new culture. This research project followed the phenomenological approach and, more specifically, used the in-depth interview to provide an opportunity to the seven female participants to make their voices heard through telling their stories. The data analysis indicated that the Saudi female international students who study in western institutes are faced with religious and cultural challenges that impact their academic performance. This study is significant for the authorities in Saudi Arabia and the hosting universities as it gives essential recommendations to both sides of the aisle. It also provides the Saudi female international students with vital recommendations to better cope with those challenges.Keywords: English language learners, religious and cultural background, Saudi female students, tough challenges
Procedia PDF Downloads 1695331 Clinical Efficacy of Indigenous Software for Automatic Detection of Stages of Retinopathy of Prematurity (ROP)
Authors: Joshi Manisha, Shivaram, Anand Vinekar, Tanya Susan Mathews, Yeshaswini Nagaraj
Abstract:
Retinopathy of prematurity (ROP) is abnormal blood vessel development in the retina of the eye in a premature infant. The principal object of the invention is to provide a technique for detecting demarcation line and ridge detection for a given ROP image that facilitates early detection of ROP in stage 1 and stage 2. The demarcation line is an indicator of Stage 1 of the ROP and the ridge is the hallmark of typically Stage 2 ROP. Thirty Retcam images of Asian Indian infants obtained during routine ROP screening have been used for the analysis. A graphical user interface has been developed to detect demarcation line/ridge and to extract ground truth. This novel algorithm uses multilevel vessel enhancement to enhance tubular structures in the digital ROP images. It has been observed that the orientation of the demarcation line/ridge is normal to the direction of the blood vessels, which is used for the identification of the ridge/ demarcation line. Quantitative analysis has been presented based on gold standard images marked by expert ophthalmologist. Image based analysis has been based on the length and the position of the detected ridge. In image based evaluation, average sensitivity and positive predictive value was found to be 92.30% and 85.71% respectively. In pixel based evaluation, average sensitivity, specificity, positive predictive value and negative predictive value achieved were 60.38%, 99.66%, 52.77% and 99.75% respectively.Keywords: ROP, ridge, multilevel vessel enhancement, biomedical
Procedia PDF Downloads 4105330 The Use of Prestige Language in Tennessee Williams’s "A Streetcar Named Desire"
Authors: Stuart Noel
Abstract:
In a streetcar Named Desire, Tennessee Williams presents Blanche DuBois, a most complex and intriguing character who often uses prestige language to project the image of an upper-class speaker and to disguise her darker and complicated self. She embodies various fascinating and contrasting characteristics. Like New Orleans (the locale of the play), Blanche represents two opposing images. One image projects that of genteel, Southern charm and beauty, speaking formally and using prestige language and what some linguists refer to as “hypercorrection,” and the other image reveals that of a soiled, deteriorating façade, full of decadence and illusion. Williams said on more than one occasion that Blanche’s use of such language was a direct reflection of her personality and character (as a high school English teacher). Prestige language is an exaggeratedly elevated, pretentious, and oftentimes melodramatic form of one’s language incorporating superstandard or more standard speech than usual in order to project a highly authoritative individual identity. Speech styles carry personal identification meaning not only because they are closely associated with certain social classes but because they tend to be associated with certain conversational contexts. Features which may be considered to be “elaborated” in form (for example, full forms vs. contractions) tend to cluster together in speech registers/styles which are typically considered to be more formal and/or of higher social prestige, such as academic lectures and news broadcasts. Members of higher social classes have access to the elaborated registers which characterize formal writings and pre-planned speech events, such as lectures, while members of lower classes are relegated to using the more economical registers associated with casual, face-to-face conversational interaction, since they do not participate in as many planned speech events as upper-class speakers. Tennessee Williams’s work is characteristically concerned with the conflict between the illusions of an individual and the reality of his/her situation equated with a conflict between truth and beauty. An examination of Blanche DuBois reveals a recurring theme of art and decay and the use of prestige language to reveal artistry in language and to hide a deteriorating self. His graceful and poetic writing personifies her downfall and deterioration. Her loneliness and disappointment are the things so often strongly feared by the sensitive artists and heroes in the world. Hers is also a special and delicate human spirit that is often misunderstood and repressed by society. Blanche is afflicted with a psychic illness growing out of her inability to face the harshness of human existence. She is a sensitive, artistic, and beauty-haunted creature who is avoiding her own humanity while hiding behind her use of prestige language. And she embodies a partial projection of Williams himself.Keywords: American drama, prestige language, Southern American literature, Tennessee Williams
Procedia PDF Downloads 3725329 A Series of Teaching Modules to Prepare International Students for Real-World China
Authors: Jui-Chien Wang
Abstract:
Because of China’s continued economic growth and dominance, increasingly many students of Chinese from western countries are interested in pursuing careers related to China. Unless we do more to teach them about contemporary Chinese society and Chinese cultural codes, however, few will be able to do so successfully. Most traditional language textbooks treat these topics only cursorily, and, because of the rapid pace of China’s social and economic development, what they do cover is frequently outdated and insufficient. However, understanding contemporary Chinese society and Chinese cultural codes is essential to successfully negotiating real-world China. The current paper details one of the main ways in which the presenter has dealt with this educational lacuna: the development and implementation of a series of teaching modules for advanced Chinese language classes. Each module explores a particular area, provides resources, and raises questions to engage students in strengthening their language and cultural competencies. The teaching modules address four main areas: (1) Chinese behavioral culture; (2) critical issues in contemporary China; (3) current events in China; and (4) great social transformations in contemporary China. The presenter will also discuss lessons learned and insights gained during the development and implementation process as well as the benefits of using these modules. In addition, the presenter will offer suggestions for the application of these modules, so that other language teachers will be able to make better use of them in their own classrooms.Keywords: behavioral culture, contemporary Chinese society, cultural code, teaching module
Procedia PDF Downloads 2665328 A Generic Approach to Reuse Unified Modeling Language Components Following an Agile Process
Authors: Rim Bouhaouel, Naoufel Kraïem, Zuhoor Al Khanjari
Abstract:
Unified Modeling Language (UML) is considered as one of the widespread modeling language standardized by the Object Management Group (OMG). Therefore, the model driving engineering (MDE) community attempts to provide reuse of UML diagrams, and do not construct it from scratch. The UML model appears according to a specific software development process. The existing method generation models focused on the different techniques of transformation without considering the development process. Our work aims to construct an UML component from fragments of UML diagram basing on an agile method. We define UML fragment as a portion of a UML diagram, which express a business target. To guide the generation of fragments of UML models using an agile process, we need a flexible approach, which adapts to the agile changes and covers all its activities. We use the software product line (SPL) to derive a fragment of process agile method. This paper explains our approach, named RECUP, to generate UML fragments following an agile process, and overviews the different aspects. In this paper, we present the approach and we define the different phases and artifacts.Keywords: UML, component, fragment, agile, SPL
Procedia PDF Downloads 3975327 Analysis of a IncResU-Net Model for R-Peak Detection in ECG Signals
Authors: Beatriz Lafuente Alcázar, Yash Wani, Amit J. Nimunkar
Abstract:
Cardiovascular Diseases (CVDs) are the leading cause of death globally, and around 80% of sudden cardiac deaths are due to arrhythmias or irregular heartbeats. The majority of these pathologies are revealed by either short-term or long-term alterations in the electrocardiogram (ECG) morphology. The ECG is the main diagnostic tool in cardiology. It is a non-invasive, pain free procedure that measures the heart’s electrical activity and that allows the detecting of abnormal rhythms and underlying conditions. A cardiologist can diagnose a wide range of pathologies based on ECG’s form alterations, but the human interpretation is subjective and it is contingent to error. Moreover, ECG records can be quite prolonged in time, which can further complicate visual diagnosis, and deeply retard disease detection. In this context, deep learning methods have risen as a promising strategy to extract relevant features and eliminate individual subjectivity in ECG analysis. They facilitate the computation of large sets of data and can provide early and precise diagnoses. Therefore, the cardiology field is one of the areas that can most benefit from the implementation of deep learning algorithms. In the present study, a deep learning algorithm is trained following a novel approach, using a combination of different databases as the training set. The goal of the algorithm is to achieve the detection of R-peaks in ECG signals. Its performance is further evaluated in ECG signals with different origins and features to test the model’s ability to generalize its outcomes. Performance of the model for detection of R-peaks for clean and noisy ECGs is presented. The model is able to detect R-peaks in the presence of various types of noise, and when presented with data, it has not been trained. It is expected that this approach will increase the effectiveness and capacity of cardiologists to detect divergences in the normal cardiac activity of their patients.Keywords: arrhythmia, deep learning, electrocardiogram, machine learning, R-peaks
Procedia PDF Downloads 1865326 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking
Authors: Noga Bregman
Abstract:
Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves
Procedia PDF Downloads 525325 Enhancing Reading in English through a Phonics-Based Approach and Interactive Whiteboards
Authors: Carmen Manuela Pereira Carneiro Lucas
Abstract:
Background: The milestones on first (L1) and second (L2) language acquisition have fascinated researchers and practitioners for decades. However, the findings from the available research do not always and instantly reflect on the classroom, specifically in Teaching English to Young Learners in Portuguese primary schools. Within this, it is worth highlighting, as per previous studies, the lack of uniformity in terms of syllabus design and implementation in the classroom. Moreover, more continuous professional development opportunities would be welcome. This paper is set out to gather the “best of both worlds”, with the aim of contributing to research-informed teaching, based in actual findings from the classroom, through and after the implementation of an action-research programme for nurturing the seeds in learning how to read in English. Therefore, the purpose of this study was to examine the effectiveness of read-aloud storybooks, associated with the use of interactive whiteboards, further anchored in a phonics-based approach to teach reading and writing to Young Learners of English. Methods: Participants were 80 (n=80) native Portuguese children, attending the second year of primary school, learning English as a Foreign Language (EFL) classes, aged 7 years old. Results and Conclusions: The findings suggest that through the use of storybooks, followed by watching the respective videos, together with follow-up phonics activities are effective strategies which Teachers of English to Young Learners can certainly use to “nurture the seeds” for English language learning.Keywords: teaching English to young learners, phonics-based approach, content for language and integrated learning, English across the curriculum, interactive whiteboards, teacher training
Procedia PDF Downloads 235324 Language and Study Skill Needs: A Case Study of ESP Learners at the Language Centre of Sultan Qaboos University, Oman
Authors: Ahmed Mohamed Al-Abdali
Abstract:
Providing English for Specific Purposes (ESP) courses that are more closely geared to the learners’ needs and requirements in their fields of study undoubtedly enhance learners’ interest and success in a highly academic environment. While needs analysis is crucial to the success of ESP courses, it has not received sufficient attention from researchers in the Arab world. Oman is no exception from the Arab countries as this fact is realised in the ESP practices in the Omani higher educational context. This presentation, however, discusses the perceptions of the Language Centre (LC) students at Sultan Qaboos University (SQU), Oman, in relation to the requirements of their science colleges. The discussion of the presentation will be based on a mixed-method-approach study, which included semi-structured interviews, questionnaires and document analyses. These mixed methods have allowed for closer investigation of the participants' views, backgrounds and experiences. It is hoped that the findings of this study will be used to recommend changes to the ESP curriculum in the LC of SQU so that it better meets the needs of its students and requirements of the science colleges.Keywords: curriculum, ESP, ELT, needs analysis, college requirements
Procedia PDF Downloads 3225323 Compounding and Blending in English and Hausa Languages
Authors: Maryam Maimota
Abstract:
Words are the basic building blocks of a language. In everyday usage of a language, words are used and new words are formed and reformed in order to contain and accommodate all entities, phenomena, qualities and every aspect of the entire human life. This research study seeks to examine and compare some of the word formation processes and how they are used in forming new words in English and Hausa languages. The study focuses its main attention on blending and compounding as word formation processes and how the processes are used adequately in the formation of words in both English and Hausa languages. The research aims to find out, how compounding and blending are used, as processes of word formation in these two languages. And also, to investigate the word formation processes involved in compounding and blending in these languages, and the nature of words that are formed. Therefore, the research tries to find the answers to the following research questions; What types of compound and blended forms are found and how they are formed in the English and Hausa languages? How these compounded and blended forms functioned in both English and Hausa languages in different context such as in phrases and sentences structures? Findings of the study reveal that, there exist new kind of words formed in Hausa and English language under blending, which previous findings did not either reveal or explain in detail. Similarly, there are a lot of similarities found in the way these blends and compounds forms in the two languages, however, the data available shows that, blends in the Hausa language are more, when compared to the blends in English. The data of this study will be gathered based on discourse found in newspaper, articles, novels, and written literature of the Hausa and English languages.Keywords: blending, compounding, morphology, word formation
Procedia PDF Downloads 3815322 Purposes of Urdu Translations of the Meanings of Holy Quran
Authors: Muhammad Saleem
Abstract:
The research paper entitled above would be a comprehensive and critical study of translations of the meanings of the Holy Qur’an. The discussion will deal with the targets & purposes of Urdu (National Language of Pakistan) translators of the meanings of the Holy Qur’an. There are more than 400 translations of the meanings of the Holy Qur’an in the Urdu Language. Muslims, non-Muslims and some organizations have made translations of the meanings of the Holy Qur’an to meet various targets. It is observed that all Urdu translators have not translated the Qur’an with a single objective and motivation; rather, some are biased and strive to discredit the Qur’an. Thus, they have made unauthentic and fabricated translations of the Qur’an. Some optimistically believe that they intend to do a service, whereas others pessimistically hold that they treacherously seek to further their rule. Some of them have been observed to be against Islam, starting their activities with spite, but after perceiving the truths of Islam and the miracle and greatness of the Holy Qur’an, they submitted to Islam, embracing it with pure hearts. Some translators made their translations of the meanings of the Holy Qur’an to serve Allah, and some of them have done their translations to earn only. All these translations vary from one to another due to style, trend, type, method and style. Some Urdu translations have been made to fulfill the lingual requirements. Some translations have been made by Muslim scholars to reduce the influence of Urdu translations of the meanings of the Holy Qur’an by Non-Muslims. The article deals with the various purposes of the translators of the meanings of the Holy Qur’an.Keywords: Qur'an, translation, urdu, language
Procedia PDF Downloads 395321 Regional Identity Construction of Acehnese English Teachers in Professional Practice
Authors: Ugahara Bin Mahyuddin Yunus
Abstract:
In English Language Teaching, it cannot be denied that the backgrounds of English teachers do affect the way they teach English to their students, which in turn will affect their students’ English learning itself. Thus, it is very important to understand who the English teachers are so that how they teach English to their students can be understood. One of their backgrounds that is essential to be highlighted is their culture. Certainly, they wittingly or not will bring the perspectives and values of their culture into their daily teaching practices. In other words, their cultural identities do shape how they teach their students. Cultural identities themselves actually consist of some elements, one of which is regional identity. Indeed, the culture of the region in which English teachers identify with has impact on their beliefs and actions during teaching. For this reason, this study aims to understand how the regional identity of English teachers influence the way they teach English to their students. This study is a qualitative study conducted in a multilingual and multicultural setting, namely Aceh, Indonesia. Here, four Acehnese English teachers were involved as the research participants. In addition, this study adopted poststructuralist perspective to identity as the theoretical framework. Three research instruments were used in this study, namely semi-structured interviews, classroom observation, and teacher journal. The data gained from these instruments were then analyzed by using thematic analysis. Obviously, the research about the regional identity of English teachers in English Language Teaching has been studied worldwide. However, little is still known about it in Indonesian context, let alone Indonesia itself is a super diverse country with 34 regions. As a result, this study presents a good opportunity to advance the knowledge of how the regional identity construction of English teachers in this setting is. The findings of the study revealed that their regional identity construction in teaching was highly influenced by their indigenous language and religious faith. Even, how they teach English in classroom, in fact, is related to these two things. The conclusion that can be drawn from this study is for these English teachers, in fact, their regional identity itself constitutes their use of local language and religious identity, which are considered by them as their core identity.Keywords: English language teaching, English teachers, identity construction, regional identity
Procedia PDF Downloads 2445320 A Simple Approach to Reliability Assessment of Structures via Anomaly Detection
Authors: Rims Janeliukstis, Deniss Mironovs, Andrejs Kovalovs
Abstract:
Operational Modal Analysis (OMA) is widely applied as a method for Structural Health Monitoring for structural damage identification and assessment by tracking the changes of the identified modal parameters over time. Unfortunately, modal parameters also depend on such external factors as temperature and loads. Any structural condition assessment using modal parameters should be done taking into consideration those external factors, otherwise there is a high chance of false positives. A method of structural reliability assessment based on anomaly detection technique called Machalanobis Squared Distance (MSD) is proposed. It requires a set of reference conditions to learn healthy state of a structure, which all future parameters are compared to. In this study, structural modal parameters (natural frequency and mode shape), as well as ambient temperature and loads acting on the structure are used as features. Numerical tests were performed on a finite element model of a carbon fibre reinforced polymer composite beam with delamination damage at various locations and of various severities. The advantages of the demonstrated approach include relatively few computational steps, ability to distinguish between healthy and damaged conditions and discriminate between different damage severities. It is anticipated to be promising in reliability assessment of massively produced structural parts.Keywords: operational modal analysis, reliability assessment, anomaly detection, damage, mahalanobis squared distance
Procedia PDF Downloads 1145319 Multi-Walled Carbon Nanotubes Doped Poly (3,4 Ethylenedioxythiophene) Composites Based Electrochemical Nano-Biosensor for Organophosphate Detection
Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar
Abstract:
One of the most publicized and controversial issue in crop production is the use of agrichemicals- also known as pesticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. Therefore, detection of OPs is very necessary for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared PEDOT-MWCNT/FTO and AChE/PEDOT-MWCNT/FTO nano-biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Electrochemical studies were done using Cyclic Voltammetry (CV) or Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared nano-biosensor is observed to be 30 days and seven times, respectively. The application of the developed nano-biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed nano-biosensor made them reliable, sensitive and a low cost process.Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, nano-biosensor, oxime (2-PAM)
Procedia PDF Downloads 4355318 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks
Authors: Tesfaye Mengistu
Abstract:
Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net
Procedia PDF Downloads 1125317 Self-Directed-Car on GT Road: Grand Trunk Road
Authors: Rameez Ahmad, Aqib Mehmood, Imran Khan
Abstract:
Self-directed car (SDC) that can drive itself from one fact to another without support from a driver. Certain trust that self-directed car obligate the probable to transform the transportation manufacturing while essentially removing coincidences, and cleaning up the environment. This study realizes the effects that SDC (also called a self-driving, driver or robotic) vehicle travel demands and ride scheme is likely to have. Without the typical obstacles that allows detection of a audio vision based hardware and software construction (It (SDC) and cost benefits, the vehicle technologies, Gold (Generic Obstacle and Lane Detection) to a knowledge-based system to predict their potential and consider the shape, color, or balance) and an organized environment with colored lane patterns, lane position ban. Discovery the problematic consequence of (SDC) on GT (grand trunk road) road and brand the car further effectual.Keywords: SDC, gold, GT, knowledge-based system
Procedia PDF Downloads 3705316 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets
Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson
Abstract:
Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime
Procedia PDF Downloads 945315 Leveraging Natural Language Processing for Legal Artificial Intelligence: A Longformer Approach for Taiwanese Legal Cases
Abstract:
Legal artificial intelligence (LegalAI) has been increasing applications within legal systems, propelled by advancements in natural language processing (NLP). Compared with general documents, legal case documents are typically long text sequences with intrinsic logical structures. Most existing language models have difficulty understanding the long-distance dependencies between different structures. Another unique challenge is that while the Judiciary of Taiwan has released legal judgments from various levels of courts over the years, there remains a significant obstacle in the lack of labeled datasets. This deficiency makes it difficult to train models with strong generalization capabilities, as well as accurately evaluate model performance. To date, models in Taiwan have yet to be specifically trained on judgment data. Given these challenges, this research proposes a Longformer-based pre-trained language model explicitly devised for retrieving similar judgments in Taiwanese legal documents. This model is trained on a self-constructed dataset, which this research has independently labeled to measure judgment similarities, thereby addressing a void left by the lack of an existing labeled dataset for Taiwanese judgments. This research adopts strategies such as early stopping and gradient clipping to prevent overfitting and manage gradient explosion, respectively, thereby enhancing the model's performance. The model in this research is evaluated using both the dataset and the Average Entropy of Offense-charged Clustering (AEOC) metric, which utilizes the notion of similar case scenarios within the same type of legal cases. Our experimental results illustrate our model's significant advancements in handling similarity comparisons within extensive legal judgments. By enabling more efficient retrieval and analysis of legal case documents, our model holds the potential to facilitate legal research, aid legal decision-making, and contribute to the further development of LegalAI in Taiwan.Keywords: legal artificial intelligence, computation and language, language model, Taiwanese legal cases
Procedia PDF Downloads 725314 A Refinement Strategy Coupling Event-B and Planning Domain Definition Language (PDDL) for Planning Problems
Authors: Sabrine Ammar, Mohamed Tahar Bhiri
Abstract:
Automatic planning has a de facto standard language called Planning Domain Definition Language (PDDL) for describing planning problems. It aims to formalize the planning problems described by the concept of state space. PDDL-related dynamic analysis tools, namely planners and validators, are insufficient for verifying and validating PDDL descriptions. Indeed, these tools made it possible to detect errors a posteriori by means of test activity. In this paper, we recommend a formal approach coupling the two languages Event-B and PDDL, for automatic planning. Event-B is used for formal modeling by stepwise refinement with mathematical proofs of planning problems. Thus, this paper proposes a refinement strategy allowing to obtain reliable PDDL descriptions from an ultimate Event-B model correct by construction. The ultimate Event-B model, correct by construction which is supposed to be translatable into PDDL, is automatically translated into PDDL using our MDE Event-B2PDDL tool.Keywords: code generation, event-b, PDDL, refinement strategy, translation rules
Procedia PDF Downloads 1965313 Examining the Links between Established Principles, Iranian Teachers' Perceptions of Reading Comprehension, and Their Actual Practice in English for Specific Purposes Courses
Authors: Zahra Alimorad
Abstract:
There is a strong belief that language teachers' actual practices in the classroom context are largely determined by the underlying perceptions they hold about the nature of language and language learning. That being so, it can be envisaged that teaching procedures of ESP (English for Specific Purposes) teachers teaching reading comprehension will mainly be driven by their perceptions about the nature of reading. To examine this issue, four Iranian university professors holding Ph.D. in either TEFL (Teaching English as a Foreign Language) or English Literature who were teaching English to Engineering and Sciences students were recruited to participate in this study. To collect the necessary data, classroom observations and follow-up semi-structured interviews were used. Furthermore, the materials utilized by the teachers such as textbooks, syllabuses, and tests were also examined. Although it can be argued that their perceptions were partially compatible with the established principles, results of the study pointed to a lack of congruence between these teachers' perceptions and their practices, on the one hand, and between the established principles and the practices, on the other. While the literature mostly supports a metacognitive-strategy approach to reading comprehension, the teachers were mainly adopting a skills-based approach to the teaching of reading. That is, they primarily focused on translation as the core activity in the classroom followed by reading aloud, defining words, and explaining grammatical structures. This divergence was partly attributed to the contextual constraints and partly to students' lack of motivation by the teachers.Keywords: English teachers, perceptions, practice, principles, reading comprehension
Procedia PDF Downloads 2625312 Document-level Sentiment Analysis: An Exploratory Case Study of Low-resource Language Urdu
Authors: Ammarah Irum, Muhammad Ali Tahir
Abstract:
Document-level sentiment analysis in Urdu is a challenging Natural Language Processing (NLP) task due to the difficulty of working with lengthy texts in a language with constrained resources. Deep learning models, which are complex neural network architectures, are well-suited to text-based applications in addition to data formats like audio, image, and video. To investigate the potential of deep learning for Urdu sentiment analysis, we implemented five different deep learning models, including Bidirectional Long Short Term Memory (BiLSTM), Convolutional Neural Network (CNN), Convolutional Neural Network with Bidirectional Long Short Term Memory (CNN-BiLSTM), and Bidirectional Encoder Representation from Transformer (BERT). In this study, we developed a hybrid deep learning model called BiLSTM-Single Layer Multi Filter Convolutional Neural Network (BiLSTM-SLMFCNN) by fusing BiLSTM and CNN architecture. The proposed and baseline techniques are applied on Urdu Customer Support data set and IMDB Urdu movie review data set by using pre-trained Urdu word embedding that are suitable for sentiment analysis at the document level. Results of these techniques are evaluated and our proposed model outperforms all other deep learning techniques for Urdu sentiment analysis. BiLSTM-SLMFCNN outperformed the baseline deep learning models and achieved 83%, 79%, 83% and 94% accuracy on small, medium and large sized IMDB Urdu movie review data set and Urdu Customer Support data set respectively.Keywords: urdu sentiment analysis, deep learning, natural language processing, opinion mining, low-resource language
Procedia PDF Downloads 725311 Empirical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;
Procedia PDF Downloads 825310 ‘Non-Legitimate’ Voices as L2 Models: Towards Becoming a Legitimate L2 Speaker
Authors: M. Rilliard
Abstract:
Based on a Multiliteracies-inspired and sociolinguistically-informed advanced French composition class, this study employed autobiographical narratives from speakers traditionally considered non-legitimate models for L2 teaching purposes of inspiring students to develop an authentic L2 voice and to see themselves as legitimate L2 speakers. Students explored their L2 identities in French through a self-inspired fictional character. Two autobiographical narratives of identity quest by non-traditional French speakers provided them guidance through this process: the novel Le Bleu des Abeilles (2013) and the film Qu’Allah Bénisse la France (2014). Written and French oral productions for different genres, as well as metalinguistic reflections in English, were collected and analyzed. Results indicate that ideas and materials that were relatable to students, namely relatable experiences and relatable language, were most useful to them in developing their L2 voices and achieving authentic and legitimate L2 speakership. These results point towards the benefits of using non-traditional speakers as pedagogical models, as they serve to legitimize students’ sense of their own L2-speakership, which ultimately leads them towards a better, more informed, mastery of the language.Keywords: foreign language classroom, L2 identity, L2 learning and teaching, L2 writing, sociolinguistics
Procedia PDF Downloads 1335309 Playwriting in a German Language Class: How Creativity in a Language Lesson Supports Learning and the Acquisition of Political Agency
Authors: Ioannis Souris
Abstract:
In this paper, we would like to present how we taught German through playwriting and analyze the usefulness of this method for teaching languages and cultivating a sense of political agency in students and teachers alike. Last academic year, we worked at the German Saturday School in Greenwich, London. This school offers Saturday German lessons to children whose parents are German, living in London. The lessons are two hours long, and the children’s level of German varies according to how often or how much German is spoken at home or how often the families visit Germany (as well as other factors which will be discussed in more detail in the paper). The directors of the school provide teachers with learning material and course books, but they strongly encourage individual input on lesson structure and methods of teaching German. The class we taught consisted of six eight-to-nine-year-olds. Midway into the academic year, we ran out of teaching material, and we, therefore, decided to write a play. In the paper, we would like to explore the process we followed in creating or writing this play and how this encouraged the children to collaborate and exercise their skills in writing, storytelling, speaking, and opinion-sharing. We want to examine the impact this project had on the children who wrote and performed the play, the wider community of the Saturday school, and the development of our language teaching practice. We found, for instance, that some students, who were quiet or shy, became very open and outspoken in the process of writing and performing the play. They took the initiative and led the process, putting us, their teachers, in the role of simple observers or facilitators. When we showed the play in front of the school, the other children and teachers, as audience members, also became part of the process as they commented on the plot, language, and characters and gave feedback on further development. In the paper, we will discuss how this teaching project fits into recent developments in the research of creativity and the teaching of languages and how engagement with creative approaches to teaching has the potential to question and subvert traditional notions of ‘lesson’, ‘teacher’, and ‘student’. From the moment a questioning of norms takes place, we inadvertently raise questions about politics, agency, and resistance. We will conclude the paper with a definition of what we mean by ‘political agency’ within the context of our teaching project and education, in general, and why inspiring creativity and imagination within teaching can be considered a political act. Finally, our aim in this paper will be to propose the possibility of analyzing teaching languages through creativity and political agency theories.Keywords: innovation in language teaching and learning, language acquisition and learning, language curriculum development, language education
Procedia PDF Downloads 845308 Learners’ Preferences in Selecting Language Learning Institute (A Study in Iran)
Authors: Hoora Dehghani, Meisam Shahbazi, Reza Zare
Abstract:
During the previous decade, a significant evolution has occurred in the number of private educational centers and, accordingly, the increase in the number of providers and students of these centers around the world. The number of language teaching institutes in Iran that are considered private educational sectors is also growing exponentially as the request for learning foreign languages has extremely increased in recent years. This fact caused competition among the institutions in improving better services tailored to the students’ demands to win the competition. Along with the growth in the industry of education, higher education institutes should apply the marketing-related concepts and view students as customers because students’ outlooks are similar to consumers with education. Studying the influential factors in the selection of an institute has multiple benefits. Firstly, it acknowledges the institutions of the students’ choice factors. Secondly, the institutions use the obtained information to improve their marketing methods. It also helps institutions know students’ outlooks that can be applied to expand the student know-how. Moreover, it provides practical evidence for educational centers to plan useful amenities and programs, and use efficient policies to cater to the market, and also helps them execute the methods that increase students’ feeling of contentment and assurance. Thus, this study explored the influencing factors in the selection of a language learning institute by language learners and examined and compared the importance among the varying age groups and genders. In the first phase of the study, the researchers selected 15 language learners as representative cases within the specified age ranges and genders purposefully and interviewed them to explore the comprising elements in their language institute selection process and analyzed the results qualitatively. In the second phase, the researchers identified elements as specified items of a questionnaire, and 1000 English learners across varying educational contexts rated them. The TOPSIS method was used to analyze the data quantitatively by representing the level of importance of the items for the participants generally and specifically in each subcategory; genders and age groups. The results indicated that the educational quality, teaching method, duration of training course, establishing need-oriented courses, and easy access were the most important elements. On the other hand, offering training in different languages, the specialized education of only one language, the uniform and appropriate appearance of office staff, having native professors to the language of instruction, applying Computer or online tests instead of the usual paper tests respectively as the least important choice factors in selecting a language institute. Besides, some comparisons among different groups’ ratings of choice factors were made, which revealed the differences among different groups' priorities in choosing a language institute.Keywords: choice factors, EFL institute selection, english learning, need analysis, TOPSIS
Procedia PDF Downloads 1645307 Residual Evaluation by Thresholding and Neuro-Fuzzy System: Application to Actuator
Authors: Y. Kourd, D. Lefebvre, N. Guersi
Abstract:
The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. In this paper we propose a method of fault diagnosis based on neuro-fuzzy technique and the choice of a threshold. The validation of this method on a test bench "Actuator Electro DAMADICS Benchmark". In the first phase of the method, we construct a model represents the normal state of the system to fault detection. With residuals analysis generated and the choice of thresholds for signatures table. These signatures provide us with groups of non-detectable faults. In the second phase, we build faulty models to see the flaws in the system that are not located in the first phase.Keywords: residuals analysis, threshold, neuro-fuzzy system, residual evaluation
Procedia PDF Downloads 4465306 Refractometric Optical Sensing by Using Photonics Mach–Zehnder Interferometer
Authors: Gong Zhang, Hong Cai, Bin Dong, Jifang Tao, Aiqun Liu, Dim-Lee Kwong, Yuandong Gu
Abstract:
An on-chip refractive index sensor with high sensitivity and large measurement range is demonstrated in this paper. The sensing structures are based on Mach-Zehnder interferometer configuration, built on the SOI substrate. The wavelength sensitivity of the sensor is estimated to be 3129 nm/RIU. Meanwhile, according to the interference pattern period changes, the measured period sensitivities are 2.9 nm/RIU (TE mode) and 4.21 nm/RIU (TM mode), respectively. As such, the wavelength shift and the period shift can be used for fine index change detection and larger index change detection, respectively. Therefore, the sensor design provides an approach for large index change measurement with high sensitivity.Keywords: Mach-Zehnder interferometer, nanotechnology, refractive index sensing, sensors
Procedia PDF Downloads 4455305 Application of Remote Sensing and GIS in Assessing Land Cover Changes within Granite Quarries around Brits Area, South Africa
Authors: Refilwe Moeletsi
Abstract:
Dimension stone quarrying around Brits and Belfast areas started in the early 1930s and has been growing rapidly since then. Environmental impacts associated with these quarries have not been documented, and hence this study aims at detecting any change in the environment that might have been caused by these activities. Landsat images that were used to assess land use/land cover changes in Brits quarries from 1998 - 2015. A supervised classification using maximum likelihood classifier was applied to classify each image into different land use/land cover types. Classification accuracy was assessed using Google Earth™ as a source of reference data. Post-classification change detection method was used to determine changes. The results revealed significant increase in granite quarries and corresponding decrease in vegetation cover within the study region.Keywords: remote sensing, GIS, change detection, granite quarries
Procedia PDF Downloads 3145304 Scour Damaged Detection of Bridge Piers Using Vibration Analysis - Numerical Study of a Bridge
Authors: Solaine Hachem, Frédéric Bourquin, Dominique Siegert
Abstract:
The brutal collapse of bridges is mainly due to scour. Indeed, the soil erosion in the riverbed around a pier modifies the embedding conditions of the structure, reduces its overall stiffness and threatens its stability. Hence, finding an efficient technique that allows early scour detection becomes mandatory. Vibration analysis is an indirect method for scour detection that relies on real-time monitoring of the bridge. It tends to indicate the presence of a scour based on its consequences on the stability of the structure and its dynamic response. Most of the research in this field has focused on the dynamic behavior of a single pile and has examined the depth of the scour. In this paper, a bridge is fully modeled with all piles and spans and the scour is represented by a reduction in the foundation's stiffnesses. This work aims to identify the vibration modes sensitive to the rigidity’s loss in the foundations so that their variations can be considered as a scour indicator: the decrease in soil-structure interaction rigidity leads to a decrease in the natural frequencies’ values. By using the first-order perturbation method, the expression of sensitivity, which depends only on the selected vibration modes, is established to determine the deficiency of foundations stiffnesses. The solutions are obtained by using the singular value decomposition method for the regularization of the inverse problem. The propagation of uncertainties is also calculated to verify the efficiency of the inverse problem method. Numerical simulations describing different scenarios of scour are investigated on a simplified model of a real composite steel-concrete bridge located in France. The results of the modal analysis show that the modes corresponding to in-plane and out-of-plane piers vibrations are sensitive to the loss of foundation stiffness. While the deck bending modes are not affected by this damage.Keywords: bridge’s piers, inverse problems, modal sensitivity, scour detection, vibration analysis
Procedia PDF Downloads 1055303 Towards a Deconstructive Text: Beyond Language and the Politics of Absences in Samuel Beckett’s Waiting for Godot
Authors: Afia Shahid
Abstract:
The writing of Samuel Beckett is associated with meaning in the meaninglessness and the production of what he calls ‘literature of unword’. The casual escape from the world of words in the form of silences and pauses, in his play Waiting for Godot, urges to ask question of their existence and ultimately leads to investigate the theory behind their use in the play. This paper proposes that these absences (silence and pause) in Beckett’s play force to think ‘beyond’ language. This paper asks how silence and pause in Beckett’s text speak for the emergence of poststructuralist text. It aims to identify the significant features of the philosophy of deconstruction in the play of Beckett to demystify the hostile complicity between literature and philosophy. With the interpretive paradigm of poststructuralism this research focuses on the text as a research data. It attempts to delineate the relationship between poststructuralist theoretical concerns and text of Beckett. Keeping in view the theoretical concerns of Poststructuralist theorist Jacques Derrida, the main concern of the discussion is directed towards the notion of ‘beyond’ language into the absences that are aimed at silencing the existing discourse with the ‘radical irony’ of this anti-formal art that contains its own denial and thus represents the idea of ceaseless questioning and radical contradiction in art and any text. This article asks how text of Beckett vibrates with loud silence and has disrupted language to demonstrate the emptiness of words and thus exploring the limitless void of absences. Beckett’s text resonates with silence and pause that is neither negation nor affirmation rather a poststructuralist’s suspension of reality that is ever changing with the undecidablity of all meanings. Within the theoretical notion of Derrida’s Différance this study interprets silence and pause in Beckett’s art. The silence and pause behave like Derrida’s Différance and have questioned their own existence in the text to deconstruct any definiteness and finality of reality to extend an undecidable threshold of poststructuralists that aims to evade the ‘labyrinth of language’.Keywords: Différance, language, pause, poststructuralism, silence, text
Procedia PDF Downloads 209