Search results for: compressive strength. gold nano clusters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6022

Search results for: compressive strength. gold nano clusters

4192 ADCOR © Muscle Damage Rapid Detection Test Based on Skeletal Troponin I Immunochromatography Reaction

Authors: Muhammad Solikhudin Nafi, Wahyu Afif Mufida, Mita Erna Wati, Fitri Setyani Rokim, M. Al-Rizqi Dharma Fauzi

Abstract:

High dose activity without any pre-exercise will impact Delayed Onset Muscle Soreness (DOMS). DOMS known as delayed pain post-exercise and induce skeletal injury which will decrease athletes’ performances. From now on, post-exercise muscle damage can be detected by measuring skeletal troponin I (sTnI) concentration in serum using ELISA but this method needs more time and cost. To prevent decreased athletes performances, screening need to be done rapidly. We want to introduce our new prototype to detect DOMS acutely. Rapid detection tests are based on immunological reaction between skeletal troponin I antibodies and sTnI in human serum or whole blood. Chemical methods that are used in the manufacture of diagnostic test is lateral flow immunoassay. The material used is rat monoclonal antibody sTnI, colloidal gold, anti-mouse IgG, nitrocellulose membrane, conjugate pad, sample pad, wick and backing card. The procedure are made conjugate (colloidal gold and mAb sTnI) and insert into the conjugate pad, gives spray sTnI mAb and anti-mouse IgG into nitrocellulose membrane, and assemble RDT. RDT had been evaluated by measuring the sensitivity of positive human serum (n = 30) and negative human serum (n = 30). Overall sensitivity value was 93% and specificity value was 90%. ADCOR as the first rapid detection test qualitatively showed antigen-antibody reaction and showed good overall performances for screening of muscle damage. Furthermore, these finding still need more improvements to get best results.

Keywords: DOMS, sTnI, rapid detection test, ELISA

Procedia PDF Downloads 515
4191 A Textile-Based Scaffold for Skin Replacements

Authors: Tim Bolle, Franziska Kreimendahl, Thomas Gries, Stefan Jockenhoevel

Abstract:

The therapeutic treatment of extensive, deep wounds is limited. Autologous split-skin grafts are used as a so-called ‘gold standard’. Most common deficits are the defects at the donor site, the risk of scarring as well as the limited availability and quality of the autologous grafts. The aim of this project is a tissue engineered dermal-epidermal skin replacement to overcome the limitations of the gold standard. A key requirement for the development of such a three-dimensional implant is the formation of a functional capillary-like network inside the implant to ensure a sufficient nutrient and gas supply. Tailored three-dimensional warp knitted spacer fabrics are used to reinforce the mechanically week fibrin gel-based scaffold and further to create a directed in vitro pre-vascularization along the parallel-oriented pile yarns within a co-culture. In this study various three-dimensional warp knitted spacer fabrics were developed in a factorial design to analyze the influence of the machine parameters such as the stitch density and the pattern of the fabric on the scaffold performance and further to determine suitable parameters for a successful fibrin gel-incorporation and a physiological performance of the scaffold. The fabrics were manufactured on a Karl Mayer double-bar raschel machine DR 16 EEC/EAC. A fine machine gauge of E30 was used to ensure a high pile yarn density for sufficient nutrient, gas and waste exchange. In order to ensure a high mechanical stability of the graft, the fabrics were made of biocompatible PVDF yarns. Key parameters such as the pore size, porosity and stress/strain behavior were investigated under standardized, controlled climate conditions. The influence of the input parameters on the mechanical and morphological properties as well as the ability of fibrin gel incorporation into the spacer fabric was analyzed. Subsequently, the pile yarns of the spacer fabrics were colonized with Human Umbilical Vein Endothelial Cells (HUVEC) to analyze the ability of the fabric to further function as a guiding structure for a directed vascularization. The cells were stained with DAPI and investigated using fluorescence microscopy. The analysis revealed that the stitch density and the binding pattern have a strong influence on both the mechanical and morphological properties of the fabric. As expected, the incorporation of the fibrin gel was significantly improved with higher pore sizes and porosities, whereas the mechanical strength decreases. Furthermore, the colonization trials revealed a high cell distribution and density on the pile yarns of the spacer fabrics. For a tailored reinforcing structure, the minimum porosity and pore size needs to be evaluated which still ensures a complete incorporation of the reinforcing structure into the fibrin gel matrix. That will enable a mechanically stable dermal graft with a dense vascular network for a sufficient nutrient and oxygen supply of the cells. The results are promising for subsequent research in the field of reinforcing mechanically weak biological scaffolds and develop functional three-dimensional scaffolds with an oriented pre-vascularization.

Keywords: fibrin-gel, skin replacement, spacer fabric, pre-vascularization

Procedia PDF Downloads 257
4190 Comparison of Effect of Pre-Stressed Strand Diameters Providing Beamm to Column Connection

Authors: Mustafa Kaya

Abstract:

In this study, the effect of pre-stressed strand diameters, providing the beam-to-column connections, was investigated from both experimental, and analytical aspects. In the experimental studies, the strength, stiffness, and energy dissipation capacities of the precast specimens comprising two pre-stressed strand samples of 12.70 mm, and 15.24 mm diameters, were compared with the reference specimen. The precast specimen with strands of 15.24 mm reached 96% of the maximum strength of the reference specimen; the amount of energy dissipated by this specimen until end of the test reached 48% of the amount of energy dissipated by the reference sample, and the stiffness of the same specimen at a 1.5% drift of reached 77% of the stiffness of the reference specimen at this drift. Parallel results were obtained during the analytical studies from the aspects of strength, and behavior, but the initial stiffness of the analytical models was lower than that of the test specimen.

Keywords: precast beam to column connection, moment resisting connection, post tensioned connections, finite element method

Procedia PDF Downloads 552
4189 Nondestructive Prediction and Classification of Gel Strength in Ethanol-Treated Kudzu Starch Gels Using Near-Infrared Spectroscopy

Authors: John-Nelson Ekumah, Selorm Yao-Say Solomon Adade, Mingming Zhong, Yufan Sun, Qiufang Liang, Muhammad Safiullah Virk, Xorlali Nunekpeku, Nana Adwoa Nkuma Johnson, Bridget Ama Kwadzokpui, Xiaofeng Ren

Abstract:

Enhancing starch gel strength and stability is crucial. However, traditional gel property assessment methods are destructive, time-consuming, and resource-intensive. Thus, understanding ethanol treatment effects on kudzu starch gel strength and developing a rapid, nondestructive gel strength assessment method is essential for optimizing the treatment process and ensuring product quality consistency. This study investigated the effects of different ethanol concentrations on the microstructure of kudzu starch gels using a comprehensive microstructural analysis. We also developed a nondestructive method for predicting gel strength and classifying treatment levels using near-infrared (NIR) spectroscopy, and advanced data analytics. Scanning electron microscopy revealed progressive network densification and pore collapse with increasing ethanol concentration, correlating with enhanced mechanical properties. NIR spectroscopy, combined with various variable selection methods (CARS, GA, and UVE) and modeling algorithms (PLS, SVM, and ELM), was employed to develop predictive models for gel strength. The UVE-SVM model demonstrated exceptional performance, with the highest R² values (Rc = 0.9786, Rp = 0.9688) and lowest error rates (RMSEC = 6.1340, RMSEP = 6.0283). Pattern recognition algorithms (PCA, LDA, and KNN) successfully classified gels based on ethanol treatment levels, achieving near-perfect accuracy. This integrated approach provided a multiscale perspective on ethanol-induced starch gel modification, from molecular interactions to macroscopic properties. Our findings demonstrate the potential of NIR spectroscopy, coupled with advanced data analysis, as a powerful tool for rapid, nondestructive quality assessment in starch gel production. This study contributes significantly to the understanding of starch modification processes and opens new avenues for research and industrial applications in food science, pharmaceuticals, and biomaterials.

Keywords: kudzu starch gel, near-infrared spectroscopy, gel strength prediction, support vector machine, pattern recognition algorithms, ethanol treatment

Procedia PDF Downloads 40
4188 Partial Replacement of GGBS in Concrete for Prevention of Natural Resources

Authors: M. Murmu, Govardhan, J. Satya Eswari

Abstract:

Concrete is the most common and widely used building material. Concrete is basically made of aggregates, both fine and coarse, glued by a cement paste which is made of cement and water. Each one of these constituents of concrete has a negative environmental impact and gives rise to different sustainability issues. The current concrete construction practice is unsustainable because, not only it consumes enormous quantities of stones, sand, and drinking water, but also one billion tons a year of cement, which is not an environment friendly material. Preventing the reduction of natural resources and enhancing the usage of waste materials has become a challenge to the scientist and engineers. A number of studies have been conducted concerning the protection of natural resources, prevention of environmental pollution and contribution to the economy by using this waste material. This paper outlines the influence of Ground Granulated Blast furnace Slag (GGBS) as partial replacement of fine aggregate on mechanical properties of concrete. The strength of concrete is determined having OPC binder, replaced the fine aggregate with15%, 30%, 45% respectively. For this purpose, characteristics concrete mix of M25 with partial replacement of cement with GGBS is used and the strength of concrete cubes and cylinder have determined. The strength of concrete specimens has been compared with the reference specimen. Also X-ray diffraction (XRD) and scanning electron microscope (SEM) tests have been performed to examine the hydration products and the microstructure of the tested specimens. A correlation has been established between the developmental strength concrete with and without GGBS through analysis of hydration products and the microstructure.

Keywords: GGBS, sand, concrete, workability

Procedia PDF Downloads 503
4187 Experimental Investigation on the Shear Strength Parameters of Sand-Slag Mixtures

Authors: Ayad Salih Sabbar, Amin Chegenizadeh, Hamid Nikraz

Abstract:

Utilizing waste materials in civil engineering applications has a positive influence on the environment by reducing carbon dioxide emissions and issues associated with waste disposal. Granulated blast furnace slag (GBFS) is a by-product of the iron and steel industry, with millions of tons of slag being annually produced worldwide. Slag has been widely used in structural engineering and for stabilizing clay soils; however, studies on the effect of slag on sandy soils are scarce. This article investigates the effect of slag content on shear strength parameters through direct shear tests and unconsolidated undrained triaxial tests on mixtures of Perth sand and slag. For this purpose, sand-slag mixtures, with slag contents of 2%, 4%, and 6% by weight of samples, were tested with direct shear tests under three normal stress values, namely 100 kPa, 150 kPa, and 200 kPa. Unconsolidated undrained triaxial tests were performed under a single confining pressure of 100 kPa and relative density of 80%. The internal friction angles and shear stresses of the mixtures were determined via the direct shear tests, demonstrating that shear stresses increased with increasing normal stress and the internal friction angles and cohesion increased with increasing slag. There were no significant differences in shear stresses parameters when slag content rose from 4% to 6%. The unconsolidated undrained triaxial tests demonstrated that shear strength increased with increasing slag content.

Keywords: direct shear, shear strength, slag, UU test

Procedia PDF Downloads 480
4186 Tribologycal Design by Molecular Dynamics Simulation- The Influence of Porous Surfaces on Wall Slip and Bulk Shear

Authors: Seyedmajid Mehrnia, Maximilan Kuhr, Peter F. Pelz

Abstract:

Molecular Dynamics (MD) simulation is a proven method to inspect behaviours of lubricant oils in nano-scale gaps. However, most MD simulations on tribology have been performed with atomically smooth walls to determine wall slip and friction properties. This study will investigate the effect of porosity, specifically nano-porous walls, on wall slip properties of hydrocarbon oils confined between two walls in a Couette flow. Different pore geometries will be modelled to investigate the effect on wall slip and bulk shear. In this paper, the Polyalphaolefin (PAO) molecules are confined to a stationary and a moving wall. A hybrid force field consisting of different potential energy functions was employed in this MD simulation. Newton’s law defines how those forces will influence the atoms' movements. The interactions among surface atoms were simulated with an Embedded Atom Method (EAM) potential function which can represent the characteristics of metallic arrangements very strongly. We implemented NERD forcefield for intramolecular potential energy function. Also, Lennard-Jones potential was employed for nonbonded intermolecular interaction.

Keywords: slip length, molecular dynamics, critical shear rate, Couette flow

Procedia PDF Downloads 133
4185 Sensitivity Enhancement of Photonic Crystal Fiber Biosensor

Authors: Mohamed Farhat O. Hameed, Yasamin K. A. Alrayk, A. A Shaalan, S. S. A. Obayya

Abstract:

The surface plasmon resonance (SPR) sensors are widely used due to its high sensitivity with molecular labels free. The commercial SPR sensors depend on the conventional prism-coupled configuration. However, this type of configuration suffers from miniaturization and integration. Therefore, the search for compact, portable and highly sensitive SPR sensors becomes mandatory.In this paper, sensitivity enhancement of a novel photonic crystal fiber biosensoris introduced and studied. The suggested design has microstructure of air holes in the core region surrounded by two large semicircular metallized channels filled with the analyte. The inner surfaces of the two channels are coated by a silver layer followed by a gold layer.The simulation results are obtained using full vectorial finite element methodwith perfect matched layer (PML) boundary conditions. The proposed design depends on bimetallic configuration to enhance the biosensor sensitivity. Additionally, the suggested biosensor can be used for multi-channel/multi-analyte sensing. In this study, the sensor geometrical parameters are studied to maximize the sensitivity for the two polarized modes. The numerical results show that high refractive index sensitivity of 4750 nm/RIU (refractive index unit) and 4300 nm/RIU can be achieved for the quasi (transverse magnetic) TM and quasi (transverse electric) TE modes of the proposed biosensor, respectively. The reportedbiosensor has advantages of integration of microfluidics setup, waveguide and metallic layers into a single structure. As a result, compact biosensor with better integration compared to conventional optical fiber SPR biosensors can be obtained.

Keywords: photonic crystal fibers, gold, silver, surface plasmon, biosensor

Procedia PDF Downloads 380
4184 Lineament Analysis as a Method of Mineral Deposit Exploration

Authors: Dmitry Kukushkin

Abstract:

Lineaments form complex grids on Earth's surface. Currently, one particular object of study for many researchers is the analysis and geological interpretation of maps of lineament density in an attempt to locate various geological structures. But lineament grids are made up of global, regional and local components, and this superimposition of lineament grids of various scales (global, regional, and local) renders this method less effective. Besides, the erosion processes and the erosional resistance of rocks lying on the surface play a significant role in the formation of lineament grids. Therefore, specific lineament density map is characterized by poor contrast (most anomalies do not exceed the average values by more than 30%) and unstable relation with local geological structures. Our method allows to confidently determine the location and boundaries of local geological structures that are likely to contain mineral deposits. Maps of the fields of lineament distortion (residual specific density) created by our method are characterized by high contrast with anomalies exceeding the average by upward of 200%, and stable correlation to local geological structures containing mineral deposits. Our method considers a lineament grid as a general lineaments field – surface manifestation of stress and strain fields of Earth associated with geological structures of global, regional and local scales. Each of these structures has its own field of brittle dislocations that appears on the surface of its lineament field. Our method allows singling out local components by suppressing global and regional components of the general lineaments field. The remaining local lineament field is an indicator of local geological structures.The following are some of the examples of the method application: 1. Srednevilyuiskoye gas condensate field (Yakutia) - a direct proof of the effectiveness of methodology; 2. Structure of Astronomy (Taimyr) - confirmed by the seismic survey; 3. Active gold mine of Kadara (Chita Region) – confirmed by geochemistry; 4. Active gold mine of Davenda (Yakutia) - determined the boundaries of the granite massif that controls mineralization; 5. Object, promising to search for hydrocarbons in the north of Algeria - correlated with the results of geological, geochemical and geophysical surveys. For both Kadara and Davenda, the method demonstrated that the intensive anomalies of the local lineament fields are consistent with the geochemical anomalies and indicate the presence of the gold content at commercial levels. Our method of suppression of global and regional components results in isolating a local lineament field. In early stages of a geological exploration for oil and gas, this allows determining boundaries of various geological structures with very high reliability. Therefore, our method allows optimization of placement of seismic profile and exploratory drilling equipment, and this leads to a reduction of costs of prospecting and exploration of deposits, as well as acceleration of its commissioning.

Keywords: lineaments, mineral exploration, oil and gas, remote sensing

Procedia PDF Downloads 305
4183 Experimental Investigation of the Static and Dynamic Behaviour of Double Lap Joints

Authors: H. I. Beloufa, M. Tarfaoui

Abstract:

For many applications, adhesively bonded assemblies have gained an increasing interest in the industry due to several advantages over welding, riveting and bolting, such as reduction of stress concentrations, lightness, low cost and easy manufacturing. This work is largely concerned to show the effects of the loading rate of the adhesively bonded joints under different speed rates. The tensile tests were conducted at four different rates; static (5mm/min, 50mm/min) and dynamic tests (1m/s, and 10m/s). An attempt was made to determine the damage kinetic and a comparison between the use of aluminium and composite laminate substrates is introduced. Aluminum T6082 and glass/vinylester laminated composite Substrates were used to construct aluminum/aluminum and laminate/laminate specimens. The adhesive used in this study was Araldite 2015. The results showed the effects of the loading rate évolution on the double joint strength. The comparison of the results of static and dynamic tests showed a raise of the strength of the specimens while the load velocity is elevated. In the case of composite substrates double joint lap, the stiffness increased by more than 60% between static and dynamic tests. However, in the case of aluminum substrates, the rigidity improved about 28% from static to moderately high velocity loading. For both aluminum and composite double joint lap, the strength increased by approximately 25% when the tensile velocity is increased from 5 mm/min to 50 mm/min (static tests). Nevertheless, the tensile velocity is extended to 1m/s the strength increased by 13% and 25% respectively for composite and aluminum substrates.

Keywords: adhesive, double lap joints, static and dynamic behavior, tensile tests

Procedia PDF Downloads 198
4182 Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nano Fluid in Single PEMFC Mini Channel

Authors: Irnie Zakaria, W. A. N. W. Mohamed, W. H. Azmi

Abstract:

Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures is used as coolant in mini channel of carbon graphite plate to mimic the PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140.

Keywords: heat transfer, mini channel, nanofluid, PEMFC

Procedia PDF Downloads 339
4181 Concrete Mix Design Using Neural Network

Authors: Rama Shanker, Anil Kumar Sachan

Abstract:

Basic ingredients of concrete are cement, fine aggregate, coarse aggregate and water. To produce a concrete of certain specific properties, optimum proportion of these ingredients are mixed. The important factors which govern the mix design are grade of concrete, type of cement and size, shape and grading of aggregates. Concrete mix design method is based on experimentally evolved empirical relationship between the factors in the choice of mix design. Basic draw backs of this method are that it does not produce desired strength, calculations are cumbersome and a number of tables are to be referred for arriving at trial mix proportion moreover, the variation in attainment of desired strength is uncertain below the target strength and may even fail. To solve this problem, a lot of cubes of standard grades were prepared and attained 28 days strength determined for different combination of cement, fine aggregate, coarse aggregate and water. An artificial neural network (ANN) was prepared using these data. The input of ANN were grade of concrete, type of cement, size, shape and grading of aggregates and output were proportions of various ingredients. With the help of these inputs and outputs, ANN was trained using feed forward back proportion model. Finally trained ANN was validated, it was seen that it gave the result with/ error of maximum 4 to 5%. Hence, specific type of concrete can be prepared from given material properties and proportions of these materials can be quickly evaluated using the proposed ANN.

Keywords: aggregate proportions, artificial neural network, concrete grade, concrete mix design

Procedia PDF Downloads 390
4180 Experimental Studies on Fly Ash-Waste Sludge Mix Reinforced with Geofibres

Authors: Malik Shoeb Ahmad

Abstract:

The aim of the present study is to carry out investigations on Class F fly ash obtained from NTPC thermal power plant, Dadri, U.P. (India) and electroplating waste sludge from Aligarh, U.P. (India) along with geofibre for its subsequent utilization in various geotechnical and highway engineering applications. The experimental studies such as California bearing ratio (CBR) tests were carried out to evaluate the strength of plain fly ash as well as fly ash-waste sludge mix reinforced with geofibre, as the CBR value is the vital parameters used in the design of flexible and rigid pavements. Results of the study show that the strength of the mix is highly dependent on the curing period and the sludge and geofibre content. The CBR values were determined for mix containing fly ash (83.5-93.5%), waste sludge (5-15%) and 1-2% geofibre. However, out of the various combinations of mixes the CBR value of the mix 88.5%FA+10%S+1.5%GF at 28 days of curing was found to be 53.52% when compared with the strength of plain fly ash. It has been observed that the fibre inclusion increases the strength of the plain fly ash and fly ash-waste sludge specimens by changing their brittle to ductile behavior. The TCLP leaching test was also conducted to determine the heavy metal concentration in the optimized mix. The results of TCLP test show that the heavy metal concentration in the mix 88.5%FA+10%S+1.5%G at 28 days of curing reduced substantially from 24 to 98% when compared with the concentration of heavy metals in the waste sludge collected from source. It has also been observed that the pH of the leachate of this mix is between 9-11, which ensures the proper stabilization of the heavy metals present in the mix. Hence, this study will certainly help in mass scale utilization of two industrial wastes viz., electroplating waste and fly ash, which are causing pollution to the environment to a great extent.

Keywords: Dadri fly ash, geofibre, electroplating waste sludge, CBR, TCLP

Procedia PDF Downloads 344
4179 Influence of Alkali Aggregate Reaction Induced Expansion Level on Confinement Efficiency of Carbon Fiber Reinforcement Polymer Wrapping Applied to Damaged Concrete Columns

Authors: Thamer Kubat, Riadh Al-Mahaidi, Ahmad Shayan

Abstract:

The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fibre-reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.

Keywords: carbon fiber reinforced polymer (CFRP), finite element (FE), ATENA, confinement efficiency

Procedia PDF Downloads 78
4178 The Material Behavior in Curved Glulam Beam of Jabon Timber

Authors: Erma Desmaliana, Saptahari Sugiri

Abstract:

Limited availability of solid timber in large dimensions becomes a problem. The demands of timbers in Indonesia is more increasing compared to its supply from natural forest. It is associated with the issues of global warming and environmental preservation. The uses of timbers from HTI (Industrial Planting Forest) and HTR (Society Planting Forest), such as Jabon, is an alternative source that required to solve these problems. Having shorter lifespan is the benefit of HTI/HTR timbers, although they are relatively smaller in dimension and lower in strength. Engineering Wood Product (EWP) such as glulam (glue-laminated) timber, is required to overcome their losses. Glulam is fabricated by gluing the wooden planks that having a thickness of 20 to 45 mm with an adhesive material and a certain pressure. Glulam can be made a curved beam, is one of the advantages, thus making it strength is greater than a straight beam. This paper is aimed to know the material behavior of curved glue-laminated beam of Jabon timber. Preliminary methods was to gain physical and mechanical properties, and glue spread strength of Jabon timber, which following the ASTM D-143 standard test method. Dimension of beams were 50 mm wide, 760 mm span, 50 mm thick, and 50 mm rise. Each layer of Jabon has a thickness of 5 mm and is glued with polyurethane. Cold press will be applied to beam laminated specimens for more than 5 hours. The curved glue-laminated beams specimens will be tested about the bending behavior. This experiments aims to obtain the increasing of load carrying capacity and stiffness of curved glulam beam.

Keywords: curved glulam beam, HTR&HTI, load carrying, strength

Procedia PDF Downloads 299
4177 A 3D Cell-Based Biosensor for Real-Time and Non-Invasive Monitoring of 3D Cell Viability and Drug Screening

Authors: Yuxiang Pan, Yong Qiu, Chenlei Gu, Ping Wang

Abstract:

In the past decade, three-dimensional (3D) tumor cell models have attracted increasing interest in the field of drug screening due to their great advantages in simulating more accurately the heterogeneous tumor behavior in vivo. Drug sensitivity testing based on 3D tumor cell models can provide more reliable in vivo efficacy prediction. The gold standard fluorescence staining is hard to achieve the real-time and label-free monitoring of the viability of 3D tumor cell models. In this study, micro-groove impedance sensor (MGIS) was specially developed for dynamic and non-invasive monitoring of 3D cell viability. 3D tumor cells were trapped in the micro-grooves with opposite gold electrodes for the in-situ impedance measurement. The change of live cell number would cause inversely proportional change to the impedance magnitude of the entire cell/matrigel to construct and reflect the proliferation and apoptosis of 3D cells. It was confirmed that 3D cell viability detected by the MGIS platform is highly consistent with the standard live/dead staining. Furthermore, the accuracy of MGIS platform was demonstrated quantitatively using 3D lung cancer model and sophisticated drug sensitivity testing. In addition, the parameters of micro-groove impedance chip processing and measurement experiments were optimized in details. The results demonstrated that the MGIS and 3D cell-based biosensor and would be a promising platform to improve the efficiency and accuracy of cell-based anti-cancer drug screening in vitro.

Keywords: micro-groove impedance sensor, 3D cell-based biosensors, 3D cell viability, micro-electromechanical systems

Procedia PDF Downloads 129
4176 Development and Structural Performance Evaluation on Slit Circular Shear Panel Damper

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of slit circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. The main parameters considered are: diameter-to-thickness (D/t) ratio and slit length-to-width ratio (l/w). Depending on these parameters three different buckling modes and hysteretic behaviors were found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation, and yielding with buckling and strength degradation which forms pinching at initial displacement. The susceptible location at which the possible crack is initiated is also identified for selected specimens using rupture index.

Keywords: slit circular shear panel damper, hysteresis characteristics, slip length-to-width ratio, D/t ratio, FE analysis

Procedia PDF Downloads 402
4175 Evaluating the Seismic Stress Distribution in the High-Rise Structures Connections with Optimal Bracing System

Authors: H. R. Vosoughifar, Seyedeh Zeinab. Hosseininejad, Nahid Shabazi, Seyed Mohialdin Hosseininejad

Abstract:

In recent years, structure designers advocate further application of energy absorption devices for lateral loads damping. The Un-bonded Braced Frame (UBF) system is one of the efficient damping systems, which is made of a smart combination of steel and concrete or mortar. In this system, steel bears the earthquake-induced axial force as compressive or tension forces without loss of strength. Concrete or mortar around the steel core acts as a constraint for brace and prevents brace buckling during seismic axial load. In this study, the optimal bracing system in the high-rise structures has been evaluated considering the seismic stress distribution in the connections. An actual 18-story structure was modeled using the proper Finite Element (FE) software where braced with UBF, Eccentrically Braced Frames (EBF) and Concentrically Braced Frame (CBF) systems. Nonlinear static pushover and time-history analyses are then performed so that the acquired results demonstrate that the UBF system reduces drift values in the high-rise buildings. Further statistical analyses show that there is a significant difference between the drift values of UBF system compared with those resulted from the EBF and CBF systems. Hence, the seismic stress distribution in the connections of the proposed structure which braced with UBF system was investigated.

Keywords: optimal bracing system, high-rise structure, finite element analysis (FEA), seismic stress

Procedia PDF Downloads 430
4174 To What Extent Does Physical Activity and Standard of Competition Affect Quantitative Ultrasound (QUS) Measurements of Bone in Accordance with Muscular Strength and Anthropometrics in British Young Males?

Authors: Joseph Shanks, Matthew Taylor, Foong Kiew Ooi, Chee Keong Chen

Abstract:

Introduction: Evidences of relationship between bone, muscle and standard of competition among young British population is limited in literature. The current literature recognises the independent and synergistic effects of fat free and fat mass as the stimulus for osteogenesis. This study assessed the extent to which physical activity (PA) and standard of competition (CS) influences quantitative ultrasound (QUS) measurements of bone on a cross-sectional basis accounting for muscular strength and anthropometrics in British young males. Methods: Pre-screening grouped 66 males aged 18-25 years into controls (n=33) and district level athletes (DLAs) (n=33) as well as low (n=21), moderate (n=23) and high (n=22) physical activity categories (PACs). All participants underwent QUS measurements of bone (4 sites, i.e. dominant distal radius (DR), dominant mid-shaft tibia (DT), non-dominant distal radius (NR) and non-dominant mid-shaft tibia (NT)), isokinetic strength tests (dominant and non-dominant knee flexion and extension) and anthropometric measurements. Results: There were no significant differences between any of the groups with respect to QUS measurements of bone at all sites with regards to PACs or CS. Significant higher isokinetic strength values were observed in DLAs than controls (p < 0.05), and higher than low PACs (p < 0.05) at 60o.s-1 of concentric and eccentric measurements. No differences in subcutaneous fat thickness were found between all the groups (CS or PACs). Percentages of body fat were significantly higher (p < .05) in low than high PACs and CS groups. There were significant positive relationships between non dominant radial speed of sound and fat free mass at both DR (r=0.383, p=0.001) and NR (r=0.319, p=0.009) sites in all participants. Conclusion: The present study findings indicated that muscular strength and body fat are closely related to physical activity level and standard of competition. However, bone health status reflected by quantitative ultrasound (QUS) measurements of bone is not related to physical activity level and standard of competition in British young males.

Keywords: bone, muscular strength, physical activity, standard of competition

Procedia PDF Downloads 517
4173 Nonlinear Analysis of Torsionally Loaded Steel Fibred Self-Compacted Concrete Beams Reinforced by GFRP Bars

Authors: Khaled Saad Eldin Mohamed Ragab

Abstract:

This paper investigates analytically the torsion behavior of steel fibered high strength self compacting concrete beams reinforced by GFRP bars. Nonlinear finite element analysis on 12­ beams specimens was achieved by using ANSYS software. The nonlinear finite element analysis program ANSYS is utilized owing to its capabilities to predict either the response of reinforced concrete beams in the post elastic range or the ultimate strength of a reinforced concrete beams produced from steel fiber reinforced self compacting concrete (SFRSCC) and reinforced by GFRP bars. A general description of the finite element method, theoretical modeling of concrete and reinforcement are presented. In order to verify the analytical model used in this research using test results of the experimental data, the finite element analysis were performed. Then, a parametric study of the effect ratio of volume fraction of steel fibers in ordinary strength concrete, the effect ratio of volume fraction of steel fibers in high strength concrete, and the type of reinforcement of stirrups were investigated. A comparison between the experimental results and those predicted by the existing models are presented. Results and conclusions thyat may be useful for designers have been raised and represented.

Keywords: nonlinear analysis, torsionally loaded, self compacting concrete, steel fiber reinforced self compacting concrete (SFRSCC), GFRP bars and sheets

Procedia PDF Downloads 455
4172 An Experimental Investigation on Banana and Pineapple Natural Fibers Reinforced with Polypropylene Composite by Impact Test and SEM Analysis

Authors: D. Karibasavaraja, Ramesh M.R., Sufiyan Ahmed, Noyonika M.R., Sameeksha A. V., Mamatha J., Samiksha S. Urs

Abstract:

This research paper gives an overview of the experimental analysis of natural fibers with polymer composite. The whole world is concerned about conserving the environment. Henceforth, the demand for natural and decomposable materials is increasing. The application of natural fibers is widely used in aerospace for manufacturing aircraft bodies, and ship construction in navy fields. Based on the literature review, researchers and scientists are replacing synthetic fibers with natural fibers. The selection of these fibers mainly depends on lightweight, easily available, and economical and has its own physical and chemical properties and many other properties that make them a fine quality fiber. The pineapple fiber has desirable properties of good mechanical strength, high cellulose content, and fiber length. Hybrid composite was prepared using different proportions of pineapple fiber and banana fiber, and their ratios were varied in 90% polypropylene mixed with 5% banana fiber and 5% pineapple fiber, 85% polypropylene mixed with 7.5% banana fiber and 7.5% pineapple fiber and 80% polypropylene mixed with 10% banana fiber and 10% pineapple fiber. By impact experimental analysis, we concluded that the combination of 90% polypropylene and 5% banana fiber and 5% pineapple fiber exhibits a higher toughness value with mechanical strength. We also conducted scanning electron microscopy (SEM) analysis which showed better fiber orientation bonding between the banana and pineapple fibers with polypropylene composites. The main aim of the present research is to evaluate the properties of pineapple fiber and banana fiber reinforced with hybrid polypropylene composites.

Keywords: toughness, fracture, impact strength, banana fibers, pineapple fibers, tensile strength, SEM analysis

Procedia PDF Downloads 160
4171 Interface Fracture of Sandwich Composite Influenced by Multiwalled Carbon Nanotube

Authors: Alak Kumar Patra, Nilanjan Mitra

Abstract:

Higher strength to weight ratio is the main advantage of sandwich composite structures. Interfacial delamination between the face sheet and core is a major problem in these structures. Many research works are devoted to improve the interfacial fracture toughness of composites majorities of which are on nano and laminated composites. Work on influence of multiwalled carbon nano-tubes (MWCNT) dispersed resin system on interface fracture of glass-epoxy PVC core sandwich composite is extremely limited. Finite element study is followed by experimental investigation on interface fracture toughness of glass-epoxy (G/E) PVC core sandwich composite with and without MWCNT. Results demonstrate an improvement in interface fracture toughness values (Gc) of samples with a certain percentages of MWCNT. In addition, dispersion of MWCNT in epoxy resin through sonication followed by mixing of hardener and vacuum resin infusion (VRI) technology used in this study is an easy and cost effective methodology in comparison to previously adopted other methods limited to laminated composites. The study also identifies the optimum weight percentage of MWCNT addition in the resin system for maximum performance gain in interfacial fracture toughness. The results agree with finite element study, high-resolution transmission electron microscope (HRTEM) analysis and fracture micrograph of field emission scanning electron microscope (FESEM) investigation. Interface fracture toughness (GC) of the DCB sandwich samples is calculated using the compliance calibration (CC) method considering the modification due to shear. Compliance (C) vs. crack length (a) data of modified sandwich DCB specimen is fitted to a power function of crack length. The calculated mean value of the exponent n from the plots of experimental results is 2.22 and is different from the value (n=3) prescribed in ASTM D5528-01for mode 1 fracture toughness of laminate composites (which is the basis for modified compliance calibration method). Differentiating C with respect to crack length (a) and substituting it in the expression GC provides its value. The research demonstrates improvement of 14.4% in peak load carrying capacity and 34.34% in interface fracture toughness GC for samples with 1.5 wt% MWCNT (weight % being taken with respect to weight of resin) in comparison to samples without MWCNT. The paper focuses on significant improvement in experimentally determined interface fracture toughness of sandwich samples with MWCNT over the samples without MWCNT using much simpler method of sonication. Good dispersion of MWCNT was observed in HRTEM with 1.5 wt% MWCNT addition in comparison to other percentages of MWCNT. FESEM studies have also demonstrated good dispersion and fiber bridging of MWCNT in resin system. Ductility is also observed to be higher for samples with MWCNT in comparison to samples without.

Keywords: carbon nanotube, epoxy resin, foam, glass fibers, interfacial fracture, sandwich composite

Procedia PDF Downloads 304
4170 Synthesis of Highly Sensitive Molecular Imprinted Sensor for Selective Determination of Doxycycline in Honey Samples

Authors: Nadia El Alami El Hassani, Soukaina Motia, Benachir Bouchikhi, Nezha El Bari

Abstract:

Doxycycline (DXy) is a cycline antibiotic, most frequently prescribed to treat bacterial infections in veterinary medicine. However, its broad antimicrobial activity and low cost, lead to an intensive use, which can seriously affect human health. Therefore, its spread in the food products has to be monitored. The scope of this work was to synthetize a sensitive and very selective molecularly imprinted polymer (MIP) for DXy detection in honey samples. Firstly, the synthesis of this biosensor was performed by casting a layer of carboxylate polyvinyl chloride (PVC-COOH) on the working surface of a gold screen-printed electrode (Au-SPE) in order to bind covalently the analyte under mild conditions. Secondly, DXy as a template molecule was bounded to the activated carboxylic groups, and the formation of MIP was performed by a biocompatible polymer by the mean of polyacrylamide matrix. Then, DXy was detected by measurements of differential pulse voltammetry (DPV). A non-imprinted polymer (NIP) prepared in the same conditions and without the use of template molecule was also performed. We have noticed that the elaborated biosensor exhibits a high sensitivity and a linear behavior between the regenerated current and the logarithmic concentrations of DXy from 0.1 pg.mL−1 to 1000 pg.mL−1. This technic was successfully applied to determine DXy residues in honey samples with a limit of detection (LOD) of 0.1 pg.mL−1 and an excellent selectivity when compared to the results of oxytetracycline (OXy) as analogous interfering compound. The proposed method is cheap, sensitive, selective, simple, and is applied successfully to detect DXy in honey with the recoveries of 87% and 95%. Considering these advantages, this system provides a further perspective for food quality control in industrial fields.

Keywords: doxycycline, electrochemical sensor, food control, gold nanoparticles, honey, molecular imprinted polymer

Procedia PDF Downloads 317
4169 Comparative Study on the Effect of Compaction Energy and Moisture Content on the Strength Properties of Lateritic Soil

Authors: Ahmad Idris, O.A. Uche, Ado Y Abdulfatah

Abstract:

Lateritic soils are found in abundance and are the most common types of soils used in construction of roads and embankments in Nigeria. Strength properties of the soils depend on the amount of compaction applied and the amount of water available in the soil at the time of compaction. In this study, the influence of the compactive effort and that of the amount of water in the soil in the determination of the shear strength properties of lateritic soil was investigated. Lateritic soil sample was collected from an existing borrow pit in Kano, Nigeria and its basic characteristics were determined and the soil was classified according to AASHTO classification method. The soil was then compacted under various compactive efforts and at wide range of moisture contents. The maximum dry density (MDD) and optimum moisture content (OMC) at each compactive effort was determined. Unconfined undrained triaxial test was carried out to determine the shear strength properties of the soil under various conditions of moisture and energy. Preliminary results obtained indicated that the soil is an A-7-5 soil. The final results obtained shows that as the compaction energy is increased, both the cohesion and friction angle increased irrespective of the moisture content used in the compaction. However, when the amount of water in the soil was increased and compaction effort kept constant, only the cohesion of the soil increases while the friction angle shows no any pattern of variation. It was also found that the highest values for cohesion and friction angle were obtained when the soil was compacted at the highest energy and at OMC.

Keywords: laterite, OMC, compaction energy, moisture content

Procedia PDF Downloads 408
4168 Experimental Investigation of Low Strength Concrete (LSC) Beams Using Carbon Fiber Reinforce Polymer (CFRP) Wrap

Authors: Furqan Farooq, Arslan Akbar, Sana Gul

Abstract:

Inadequate design of seismic structures and use of Low Strength Concrete (LSC) remains the major aspect of structure failure. Parametric investigation (LSC) beams based on experimental work using externally applied Carbon Fiber Reinforce Polymer (CFRP) warp in flexural behavior is studied. The ambition is to know the behavior of beams under loading condition, and its strengthening enhancement after inducing crack is studied, Moreover comparison of results using abacus software is studied. Results show significant enhancement in load carrying capacity, experimental work is compared with abacus software. The research is based on the conclusion that various existing structure but inadequacy in seismic design could increase the load carrying capacity by applying CFRP techniques, which not only strengthened but also provide them to resist even larger potential earthquake by improving its strength as well as ductility.

Keywords: seismic design, carbon fiber, strengthening, ductility

Procedia PDF Downloads 203
4167 Mechanical Properties of Spark Plasma Sintered 2024 AA Reinforced with TiB₂ and Nano Yttrium

Authors: Suresh Vidyasagar Chevuri, D. B. Karunakar Chevuri

Abstract:

The main advantages of 'Metal Matrix Nano Composites (MMNCs)' include excellent mechanical performance, good wear resistance, low creep rate, etc. The method of fabrication of MMNCs is quite a challenge, which includes processing techniques like Spark Plasma Sintering (SPS), etc. The objective of the present work is to fabricate aluminum based MMNCs with the addition of small amounts of yttrium using Spark Plasma Sintering and to evaluate their mechanical and microstructure properties. Samples of 2024 AA with yttrium ranging from 0.1% to 0.5 wt% keeping 1 wt% TiB2 constant are fabricated by Spark Plasma Sintering (SPS). The mechanical property like hardness is determined using Vickers hardness testing machine. The metallurgical characterization of the samples is evaluated by Optical Microscopy (OM), Field Emission Scanning Electron Microscopy (FE-SEM) and X-Ray Diffraction (XRD). Unreinforced 2024 AA sample is also fabricated as a benchmark to compare its properties with that of the composite developed. It is found that the yttrium addition increases the above-mentioned properties to some extent and then decreases gradually when yttrium wt% increases beyond a point between 0.3 and 0.4 wt%. High density is achieved in the samples fabricated by spark plasma sintering when compared to any other fabrication route, and uniform distribution of yttrium is observed.

Keywords: spark plasma sintering, 2024 AA, yttrium addition, microstructure characterization, mechanical properties

Procedia PDF Downloads 226
4166 Factors Influencing Family Resilience and Quality of Life in Pediatric Cancer Patients and Their Caregivers: A Cluster Analysis

Authors: Li Wang, Dan Shu, Shiguang Pang, Lixiu Wang, Bing Xiang Yang, Qian Liu

Abstract:

Background: Cancer is one of the most severe diseases in childhood; long-term treatment and its side effects significantly impact the patient's physical, psychological, social functioning and quality of life while also placing substantial physical and psychological burdens on caregivers and families. Family resilience is crucial for children with cancer, helping them cope better with the disease and supporting the family in facing challenges together. As a family-level variable, family resilience requires information from multiple family members. However, to our best knowledge, there is currently no research investigating family resilience from both the perspectives of pediatric cancer patients and their caregivers. Therefore, this study aims to investigate the family resilience and quality of life of pediatric cancer patients from a patient–caregiver dyadic perspective. Methods: A total of 149 dyads of patients diagnosed with pediatric cancer patients and their principal caregivers were recruited from oncology departments of 4 tertiary hospitals in Wuhan and Taiyuan, China. All participants completed questionnaires that identified their demographic and clinical characteristics as well as assessed their family resilience and quality of life for both the patients and their caregivers. K-means cluster analysis was used to identify different clusters of family resilience based on the reports from patients and caregivers. Multivariate logistic regression and linear regression are used to analyze the factors influencing family resilience and quality of life, as well as the relationship between the two. Results: Three clusters of family resilience were identified: a cluster of high family resilience (HR), a cluster of low family resilience (LR), and a cluster of discrepant family resilience (DR). Most (67.1%) families fell into the cluster with low resilience. Characteristics such as the types of caregivers perceived social support of the patient were different among the three clusters. Compared to the LR group, families where the mother is the caregiver and where the patient has high social support are more likely to be assigned to the HR. The quality of life for caregivers was consistently highest in the HR cluster and lowest in the LR cluster. The patient's quality of life is not related to family resilience. In the linear regression analysis of the patient's quality of life, patients who are the first-born have higher quality of life, while those living with their parents have lower quality of life. The participants' characteristics were not associated with the quality of life for caregivers. Conclusions: In most families, family resilience was low. Families with maternal caregivers and patients receiving high levels of social support are more inclined to be higher levels of family resilience. Family resilience was linked to the quality of life of caregivers of pediatric cancer patients. The clinical implications of this findings suggest that healthcare and social support organizations should prioritize and support the participation of mothers in caregiving responsibilities. Furthermore, they should assist families in accessing social support to enhance family resilience. This study also emphasizes the importance of promoting family resilience for enhancing family health and happiness, as well as improving the quality of life for caregivers.

Keywords: pediatric cancer, cluster analysis, family resilience, quality of life

Procedia PDF Downloads 39
4165 Nano-Bioremediation of Contaminated Industrial Wastewater Using Biosynthesized AgNPs and Their Nano-Composite

Authors: Osama M. Darwesh, Sahar H. Hassan, Abd El-Raheem R. El-Shanshoury, Shawky Z. Sabae

Abstract:

Nanotechnology as multidisciplinary technology is growing rapidly with important applications in several sectors. Also, nanobiotechnology is known for the use of microorganisms for the synthesis of targeted nanoparticles. The present study deals with the green synthesis of silver nanoparticles using aquatic bacteria and the development of a biogenic nanocomposite for environmental applications. Twenty morphologically different colonies were isolated from the collected water samples from eight different locations at the Rosetta branch of the Nile Delta, Egypt. The obtained results illustrated that the most effective bacterial isolate (produced the higher amount of AgNPs after 24 h of incubation time) is isolate R3. Bacillus tequilensis was the strongest extracellular bio-manufactory of AgNPs. Biosynthesized nanoparticles had a spherical shape with a mean diameter of 2.74 to 28.4 nm. The antimicrobial activity of silver nanoparticles against many pathogenic microbes indicated that the produced AgNPs had high activity against all tested multi-antibiotic resistant pathogens. Also, the stabilized prepared AgNPs-SA nanocomposite has greater catalytic activity for the decolourization of some dyes like Methylene blue (MB) and Crystal violet. Such results represent a promising stage for producing eco-friendly, cost-effective, and easy-to-handle devices for the bioremediation of contaminated industrial wastewater.

Keywords: bioremediation, AgNPs, AgNPs-SA nanocomposite, Bacillus tequilensis, nanobiotechnology

Procedia PDF Downloads 69
4164 The Effect of Recycling on Price Volatility of Critical Metals in the EU (2010-2019): An Application of Multivariate GARCH Family Models

Authors: Marc Evenst Jn Jacques, Sophie Bernard

Abstract:

Electrical and electronic applications, as well as rechargeable batteries, are common in any economy. They also contain a number of important and valuable metals. It is critical to investigate the impact of these new materials or volume sources on the metal market dynamics. This paper investigates the impact of responsible recycling within the European region on metal price volatility. As far as we know, no empirical studies have been conducted to assess the role of metal recycling in metal market price volatility. The goal of this paper is to test the claim that metal recycling helps to cushion price volatility. A set of circular economy indicators/variables, namely, 1) annual total trade values of recycled metals, 2) annual volume of scrap traded and 3) circular material use rate, and 4) information about recycling, are used to estimate the volatility of monthly spot prices of regular metals. A combination of the GARCH-MIDAS model for mixed frequency data sampling and a simple GARCH (1,1) model for the same frequency variables was adopted to examine the potential links between each variable and price volatility. We discovered that from 2010 to 2019, except for Nickel, scrap consumption (Millions of tons), Scrap Trade Values, and Recycled Material use rate had no significant impact on the price volatility of standard metals (Aluminum, Lead) and precious metals (Gold and Platinum). Worldwide interest in recycling has no impact on returns or volatility. Specific interest in metal recycling did have a link to the mean return equation for Aluminum, Gold and to the volatility equation for lead and Nickel.

Keywords: recycling, circular economy, price volatility, GARCH, mixed data sampling

Procedia PDF Downloads 57
4163 Target-Triggered DNA Motors and their Applications to Biosensing

Authors: Hongquan Zhang

Abstract:

Inspired by endogenous protein motors, researchers have constructed various synthetic DNA motors based on the specificity and predictability of Watson-Crick base pairing. However, the application of DNA motors to signal amplification and biosensing is limited because of low mobility and difficulty in real-time monitoring of the walking process. The objective of our work was to construct a new type of DNA motor termed target-triggered DNA motors that can walk for hundreds of steps in response to a single target binding event. To improve the mobility and processivity of DNA motors, we used gold nanoparticles (AuNPs) as scaffolds to build high-density, three-dimensional tracks. Hundreds of track strands are conjugated to a single AuNP. To enable DNA motors to respond to specific protein and nucleic acid targets, we adapted the binding-induced DNA assembly into the design of the target-triggered DNA motors. In response to the binding of specific target molecules, DNA motors are activated to autonomously walk along AuNP, which is powered by a nicking endonuclease or DNAzyme-catalyzed cleavage of track strands. Each moving step restores the fluorescence of a dye molecule, enabling monitoring of the operation of DNA motors in real time. The motors can translate a single binding event into the generation of hundreds of oligonucleotides from a single nanoparticle. The motors have been applied to amplify the detection of proteins and nucleic acids in test tubes and live cells. The motors were able to detect low pM concentrations of specific protein and nucleic acid targets in homogeneous solutions without the need for separation. Target-triggered DNA motors are significant for broadening applications of DNA motors to molecular sensing, cell imagining, molecular interaction monitoring, and controlled delivery and release of therapeutics.

Keywords: biosensing, DNA motors, gold nanoparticles, signal amplification

Procedia PDF Downloads 85