Search results for: choice experiments (CE)
3030 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction
Authors: Qais M. Yousef, Yasmeen A. Alshaer
Abstract:
Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.Keywords: artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization
Procedia PDF Downloads 1753029 The Influence of Machine Tool Composite Stiffness to the Surface Waviness When Processing Posture Constantly Switching
Authors: Song Zhiyong, Zhao Bo, Du Li, Wang Wei
Abstract:
Aircraft structures generally have complex surface. Because of constantly switching postures of motion axis, five-axis CNC machine’s composite stiffness changes during CNC machining. It gives rise to different amplitude of vibration of processing system, which further leads to the different effects on surface waviness. In order to provide a solution for this problem, we take the “S” shape test specimen’s CNC machining for the object, through calculate the five axis CNC machine’s composite stiffness and establish vibration model, we analysis of the influence mechanism between vibration amplitude and surface waviness. Through carry out the surface quality measurement experiments, verify the validity and accuracy of the theoretical analysis. This paper’s research results provide a theoretical basis for surface waviness control.Keywords: five axis CNC machine, “S” shape test specimen, composite stiffness, surface waviness
Procedia PDF Downloads 3903028 Global Based Histogram for 3D Object Recognition
Authors: Somar Boubou, Tatsuo Narikiyo, Michihiro Kawanishi
Abstract:
In this work, we address the problem of 3D object recognition with depth sensors such as Kinect or Structure sensor. Compared with traditional approaches based on local descriptors, which depends on local information around the object key points, we propose a global features based descriptor. Proposed descriptor, which we name as Differential Histogram of Normal Vectors (DHONV), is designed particularly to capture the surface geometric characteristics of the 3D objects represented by depth images. We describe the 3D surface of an object in each frame using a 2D spatial histogram capturing the normalized distribution of differential angles of the surface normal vectors. The object recognition experiments on the benchmark RGB-D object dataset and a self-collected dataset show that our proposed descriptor outperforms two others descriptors based on spin-images and histogram of normal vectors with linear-SVM classifier.Keywords: vision in control, robotics, histogram, differential histogram of normal vectors
Procedia PDF Downloads 2793027 Constructed Wetlands: A Sustainable Approach for Waste Water Treatment
Authors: S. Sehar, S. Khan, N. Ali, S. Ahmed
Abstract:
In the last decade, the hunt for cost-effective, eco-friendly and energy sustainable technologies for waste water treatment are gaining much attention due to emerging water crisis and rapidly depleting existing water reservoirs all over the world. In this scenario, constructed wetland being a “green technology” could be a reliable mean for waste water treatment especially in small communities due to cost-effectiveness, ease in management, less energy consumption and sludge production. Therefore, a low cost, lab-scale sub-surface flow hybrid constructed wetland (SS-HCW) was established for domestic waste water treatment.It was observed that not only the presence but also choice of suitable vegetation along with hydraulic retention time (HRT) are key intervening ingredients which directly influence pollutant removals in constructed wetlands. Another important aspect of vegetation is that it may facilitate microbial attachment in rhizosphere, thus promote biofilm formation via microbial interactions. The major factors that influence initial aggregation and subsequent biofilm formation i.e. divalent cations (Ca2+) and extra cellular DNA (eDNA) were also studied in detail. The presence of Ca2+ in constructed wetland demonstrate superior performances in terms of effluent quality, i.e BOD5, COD, TDS, TSS, and PO4- than in absence of Ca2+. Finally, light and scanning electron microscopies coupled with EDS were carried out to get more insights into the mechanics of biofilm formation with or without Ca addition. Therefore, the same strategy can be implemented in other waste water treatment technologies.Keywords: hybrid constructed wetland, biofilm formation, waste water treatment, waste water
Procedia PDF Downloads 4023026 Testing of the Decreasing Bond Strength of Polyvinyl Acetate Adhesive by Low Temperatures
Authors: Pavel Boška, Jan Bomba, Tomáš Beránek, Jiří Procházka
Abstract:
When using wood products bonded by polyvinyl acetate, glues such as windows are the most limiting element of degradation of the glued joint due to weather changes. In addition to moisture and high temperatures, the joint may damage the low temperature below freezing point, where dimensional changes in the material and distortion of the adhesive film occur. During the experiments, the joints were exposed to several degrees of sub-zero temperatures from 0 °C to -40 °C and then to compare how the decreasing temperature affects the strength of the joint. The experiment was performed on wood beech samples (Fagus sylvatica), bonded with PVAc with D3 resistance and the shear strength of bond was measured. The glued and treated samples were tested on a laboratory testing machine, recording the strength of the joint. The statistical results have given us information that the strength of the joint gradually decreases with decreasing temperature, but a noticeable and statistically significant change is achieved only at very low temperatures.Keywords: adhesives, bond strength, low temperatures, polyvinyl acetate
Procedia PDF Downloads 3483025 Socio-Economic Impact of Education on Urban Women in Pakistan
Authors: Muhammad Ali Khan
Abstract:
Education is a word has been derived from Latin word "Educare", means to train. Therefore, the harmonious growth of the potentialities for achieving the qualities desirable and useful in the human society is called education. It is claimed that by educating women we can develop our economy, family health and decrease population growth. To explore the socio-economic impact of education on urban women. A prospective study design was used. Over a period of six months 50 respondents were randomly selected from Hayat Abad, an urban city in the North West of Pakistan. A questionnaire was used to explore marital, educational, occupational, social, economical and political status of urban women. Of the total, 50% (25) were employed, where 56% were married and 44% unmarried. Of the employed participants, 56% were teachers fallowed by social worker 16%. Monthly income was significantly high (p=001) of women with master degree. Understanding between wife and husband was also very significant in women with masters. . 78% of employed women replied that Parda (Hija) should be on choice not imposed. 52% of educated women replied participation in social activates, such as parties, shopping etc. Education has a high impact on urban women because it is directly related to employment, decision of power, economy and social life. Urban women with high education have significant political awareness and empowerment. Improving women educational level in rural areas of Pakistan is the key for economic growth and political empowermentKeywords: women, urban, Pakistan, socio economic
Procedia PDF Downloads 1023024 An Open Loop Distribution Module for Precise and Uniform Drip Fertigation in Soilless Culture
Authors: Juan Ignacio Arango, Andres Diaz, Giacomo Barbieri
Abstract:
In soilless culture, the definition of efficient fertigation strategies is fundamental for the growth of crops. Flexible test-benches able to independently manage groups of crops are key for investigating efficient fertigation practices through experimentation. These test-benches must be able to provide nutrient solution (NS) in a precise, uniform and repeatable way in order to effectively implement and compare different fertigation strategies. This article describes a distribution module for investigating fertigation practices able to control the fertigation dose and frequency. The proposed solution is characterized in terms of precision, uniformity and repeatability since these parameters are fundamental in the implementation of effective experiments for the investigation of fertigation practices. After a calibration process, the implemented system reaches a precision of 1mL, a uniformity of 98.5% at a total cost of 735USD.Keywords: recision horticulture, test-bench, fertigation strategy, automation, flexibility
Procedia PDF Downloads 1393023 Investigation of the Self-Healing Sliding Wear Characteristics of Niti-Based PVD Coatings on Tool Steel
Authors: Soroush Momeni
Abstract:
Excellent damping capacity and superelasticity of the bulk NiTi shape memory alloy (SMA) makes it a suitable material of choice for tools in machining process as well as tribological systems. Although thin film of NiTi SMA has a same damping capacity as NiTi bulk alloys, it has a poor mechanical properties and undesirable tribological performance. This study aims at eliminating these application limitations for NiTi SMA thin films. In order to achieve this goal, NiTi thin films were magnetron sputtered as an interlayer between reactively sputtered hard TiCN coatings and hard work tool steel substrates. The microstructure, composition, crystallographic phases, mechanical and tribological properties of the deposited thin films were analyzed by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), nanoindentation, ball–on-disc, scratch test, and three dimensional (3D) optical microscopy. It was found that under a specific coating architecture, the superelasticity of NiTi inter-layer can be combined with high hardness and wear resistance of TiCN protective layers. The obtained results revealed that the thickness of NiTi interlayers is an important factor controlling mechanical and tribological performance of bi-layer composite coating systems.Keywords: PVD coatings, sliding wear, hardness, tool steel
Procedia PDF Downloads 2853022 Dissolved Gas Analysis Based Regression Rules from Trained ANN for Transformer Fault Diagnosis
Authors: Deepika Bhalla, Raj Kumar Bansal, Hari Om Gupta
Abstract:
Dissolved Gas Analysis (DGA) has been widely used for fault diagnosis in a transformer. Artificial neural networks (ANN) have high accuracy but are regarded as black boxes that are difficult to interpret. For many problems it is desired to extract knowledge from trained neural networks (NN) so that the user can gain a better understanding of the solution arrived by the NN. This paper applies a pedagogical approach for rule extraction from function approximating neural networks (REFANN) with application to incipient fault diagnosis using the concentrations of the dissolved gases within the transformer oil, as the input to the NN. The input space is split into subregions and for each subregion there is a linear equation that is used to predict the type of fault developing within a transformer. The experiments on real data indicate that the approach used can extract simple and useful rules and give fault predictions that match the actual fault and are at times also better than those predicted by the IEC method.Keywords: artificial neural networks, dissolved gas analysis, rules extraction, transformer
Procedia PDF Downloads 5363021 Effect of Pulse Duration and Current to the EDM Process on Allegheny Ludlum D2 Tool Steel
Authors: S. Sulaiman, M. A. Razak, M. R. Ibrahim, A. A. Khan
Abstract:
An experimental work on the effect of different current and pulse duration on performance of EDM process of Allegheny Ludlum D2 Tool Steel (UNS T30402). The effect of varying the machining parameters on the machining responses such as material removal rate (MRR), electrode wear rate (EWR), and surface roughness (Ra) have been investigated. In this study, triangular shape and circular shape of copper was used as an electrode with surface area of 100 mm². The experiments were repeated for three different values of pulse duration (100 µs, 200 µs and 400 µs) with combination of three different values of discharge current (12 A, 16 A and 24 A). It was found that the pulse duration and current have significant effect on MRR, EWR and Ra. An increase in the pulse durations causes an increase in the MRR and Ra, but a decrease in the EWR. Meanwhile, the effect of currents on EDM performance shows that the increasing currents lead to an increase in the MRR, EWR and Ra.Keywords: allegheny ludlum D2 tool steel, current, EDM, surface roughness, pulse duration
Procedia PDF Downloads 3793020 Resilient Manufacturing in Times of Mass Customisation: Using Augmented Reality to Improve Training and Operating Practices of EV’s Battery Assembly
Authors: Lorena Caires Moreira, Marcos Kauffman
Abstract:
This paper outlines the results of experimental research on deploying an emerging augmented reality (AR) system for real-time task assistance of highly customized and high-risk manual operations. The focus is on operators’ training capabilities and the aim is to test if such technologies can support achieving higher levels of knowledge retention and accuracy of task execution to improve health and safety (H and S) levels. The proposed solution is tested and validated using a real-world case study of electric vehicles’ battery module assembly. The experimental results revealed that the proposed AR method improved the training practices by increasing the knowledge retention levels from 40% to 84% and improved the accuracy of task execution from 20% to 71%, compared to the traditional paper-based method. The results of this research can be used as a demonstration of how emerging technologies are advancing the choice of manual, hybrid, or fully automated processes by promoting the connected worker (Industry 5.0) and supporting manufacturing in becoming more resilient in times of constant market changes.Keywords: augmented reality, extended reality, connected worker, XR-assisted operator, manual assembly, industry 5.0, smart training, battery assembly
Procedia PDF Downloads 1283019 Performance Evaluation of an Ontology-Based Arabic Sentiment Analysis
Authors: Salima Behdenna, Fatiha Barigou, Ghalem Belalem
Abstract:
Due to the quick increase in the volume of Arabic opinions posted on various social media, Arabic sentiment analysis has become one of the most important areas of research. Compared to English, there is very little works on Arabic sentiment analysis, in particular aspect-based sentiment analysis (ABSA). In ABSA, aspect extraction is the most important task. In this paper, we propose a semantic aspect-based sentiment analysis approach for standard Arabic reviews to extract explicit aspect terms and identify the polarity of the extracted aspects. The proposed approach was evaluated using HAAD datasets. Experiments showed that the proposed approach achieved a good level of performance compared with baseline results. The F-measure was improved by 19% for the aspect term extraction tasks and 55% aspect term polarity task.Keywords: sentiment analysis, opinion mining, Arabic, aspect level, opinion, polarity
Procedia PDF Downloads 1633018 Unsafe Abortions in India: Questioning the Propitiousness of MTP Act
Authors: Suresh Sharma, Neeti Goutam
Abstract:
In India abortions are legal and with the exceedingly liberal and broadened law that was passed in 1971, “Medical Termination of Pregnancy Act” had opened a new window to Women’s’ freedom and choice over their fertility. This paper would like to focus on the factors responsible for or leading to unsafe abortion as well as such high incidence of abortion in India which can help in understanding the ways in which we can prevent this apathy. To study the intricacies involved in delivering safety to womanhood in terms of safe abortion practice which includes more trained personnel, detailed explanation and consequences of conducting an abortion, fine reporting, awareness regarding family planning measures and not only pressurizing them to sterilize immediately after an abortion but also prior to that informing them and lastly easy accessibility of Contraceptives with a educated and brief information on that. Data has been drawn from various sources such as National Family Household Survey (1, 2, 3), Health Management Information System and Annual Health Survey. To safeguard the interest of women when it comes to complications resulting from unsafe abortions, Reproductive Health laid its strict adherence to it in its guidelines. The Government could induce more measures in terms of family planning measures and increase in the number of skilled medical health force, chiefly in rural areas to prevent the illegality of abortions. But before that fine reporting on the number of abortions performed will give an insight to this very issue only then policies and programs will work much better in favor of women.Keywords: abortion, MTP act, India, women
Procedia PDF Downloads 3583017 Impact of Network Workload between Virtualization Solutions on a Testbed Environment for Cybersecurity Learning
Authors: Kevin Fernagut, Olivier Flauzac, Erick M. G. Robledo, Florent Nolot
Abstract:
The adoption of modern lightweight virtualization often comes with new threats and network vulnerabilities. This paper seeks to assess this with a different approach studying the behavior of a testbed built with tools such as Kernel-Based Virtual Machine (KVM), Linux Containers (LXC) and Docker, by performing stress tests within a platform where students experiment simultaneously with cyber-attacks, and thus observe the impact on the campus network and also find the best solution for cyber-security learning. Interesting outcomes can be found in the literature comparing these technologies. It is, however, difficult to find results of the effects on the global network where experiments are carried out. Our work shows that other physical hosts and the faculty network were impacted while performing these trials. The problems found are discussed, as well as security solutions and the adoption of new network policies.Keywords: containerization, containers, cybersecurity, cyberattacks, isolation, performance, virtualization, virtual machines
Procedia PDF Downloads 1493016 Performance Evaluation and Planning for Road Safety Measures Using Data Envelopment Analysis and Fuzzy Decision Making
Authors: Hamid Reza Behnood, Esmaeel Ayati, Tom Brijs, Mohammadali Pirayesh Neghab
Abstract:
Investment projects in road safety planning can benefit from an effectiveness evaluation regarding their expected safety outcomes. The objective of this study is to develop a decision support system (DSS) to support policymakers in taking the right choice in road safety planning based on the efficiency of previously implemented safety measures in a set of regions in Iran. The measures considered for each region in the study include performance indicators about (1) police operations, (2) treated black spots, (3) freeway and highway facility supplies, (4) speed control cameras, (5) emergency medical services, and (6) road lighting projects. To this end, inefficiency measure is calculated, defined by the proportion of fatality rates in relation to the combined measure of road safety performance indicators (i.e., road safety measures) which should be minimized. The relative inefficiency for each region is modeled by the Data Envelopment Analysis (DEA) technique. In a next step, a fuzzy decision-making system is constructed to convert the information obtained from the DEA analysis into a rule-based system that can be used by policy makers to evaluate the expected outcomes of certain alternative investment strategies in road safety.Keywords: performance indicators, road safety, decision support system, data envelopment analysis, fuzzy reasoning
Procedia PDF Downloads 3533015 Privacy Preserving Data Publishing Based on Sensitivity in Context of Big Data Using Hive
Authors: P. Srinivasa Rao, K. Venkatesh Sharma, G. Sadhya Devi, V. Nagesh
Abstract:
Privacy Preserving Data Publication is the main concern in present days because the data being published through the internet has been increasing day by day. This huge amount of data was named as Big Data by its size. This project deals the privacy preservation in the context of Big Data using a data warehousing solution called hive. We implemented Nearest Similarity Based Clustering (NSB) with Bottom-up generalization to achieve (v,l)-anonymity. (v,l)-Anonymity deals with the sensitivity vulnerabilities and ensures the individual privacy. We also calculate the sensitivity levels by simple comparison method using the index values, by classifying the different levels of sensitivity. The experiments were carried out on the hive environment to verify the efficiency of algorithms with Big Data. This framework also supports the execution of existing algorithms without any changes. The model in the paper outperforms than existing models.Keywords: sensitivity, sensitive level, clustering, Privacy Preserving Data Publication (PPDP), bottom-up generalization, Big Data
Procedia PDF Downloads 2953014 Examining of Tool Wear in Cryogenic Machining of Cobalt-Based Haynes 25 Superalloy
Authors: Murat Sarıkaya, Abdulkadir Güllü
Abstract:
Haynes 25 alloy (also known as L-605 alloy) is cobalt based super alloy which has widely applications such as aerospace industry, turbine and furnace parts, power generators and heat exchangers and petroleum refining components due to its excellent characteristics. However, the workability of this alloy is more difficult compared to normal steels or even stainless. In present work, an experimental investigation was performed under cryogenic cooling to determine cutting tool wear patterns and obtain optimal cutting parameters in turning of cobalt based superalloy Haynes 25. In experiments, uncoated carbide tool was used and cutting speed (V) and feed rate (f) were considered as test parameters. Tool wear (VBmax) were measured for process performance indicators. Analysis of variance (ANOVA) was performed to determine the importance of machining parameters.Keywords: cryogenic machining, difficult-to-cut alloy, tool wear, turning
Procedia PDF Downloads 5923013 Chinese Undergraduates’ Trust in And Usage of Machine Translation: A Survey
Authors: Bi Zhao
Abstract:
Neural network technology has greatly improved the output of machine translation in terms of both fluency and accuracy, which greatly increases its appeal for young users. The present exploratory study aims to find out how the Chinese undergraduates perceive and use machine translation in their daily life. A survey is conducted to collect data from 100 undergraduate students from multiple Chinese universities and with varied academic backgrounds, including arts, business, science, engineering, and medicine. The survey questions inquire about their use (including frequency, scenarios, purposes, and preferences) of and attitudes (including trust, quality assessment, justifications, and ethics) toward machine translation. Interviews and tasks of evaluating machine translation output are also employed in combination with the survey on a sample of selected respondents. The results indicate that Chinese undergraduate students use machine translation on a daily basis for a wide range of purposes in academic, communicative, and entertainment scenarios. Most of them have preferred machine translation tools, but the availability of machine translation tools within a certain scenario, such as the embedded machine translation tool on the webpage, is also the determining factor in their choice. The results also reveal that despite the reportedly limited trust in the accuracy of machine translation output, most students lack the ability to critically analyze and evaluate such output. Furthermore, the evidence is revealed of the inadequate awareness of ethical responsibility as machine translation users among Chinese undergraduate students.Keywords: Chinese undergraduates, machine translation, trust, usage
Procedia PDF Downloads 1393012 Status and Rights of Rohingya Migrants in Bangladesh: A Critical Analysis
Authors: Md Nur Uddin
Abstract:
The Rohingya people are one of the world's most oppressed and persecuted refugee populations, having been stateless for over six generations and still are. In recent years, more than half-million Rohingya Muslims have fled Myanmar (Burma) for neighboring nations. This article discusses the Status and Rights of Rohingya Migrants in Bangladesh, with a focus on the living conditions of this vulnerable population. A lot of information has been studied about Rohingya refugees states that violence in Rakhine state has sent an estimated 615,500 Rohingya across the border into Bangladesh's Cox's Bazar since August 25, 2017. In Cox's Bazar, a total of 33,131 Rohingya refugees are housed in two registered camps, with an additional 854,024 living in informal settlements nearby. The living conditions of Rohingya refugees in overcrowded camps remain dismal. Mental health is bad, cleanliness is poor, malnutrition is common, and physical and sexual abuse is endemic. A coordinated diplomatic effort involving Bangladesh and Myanmar, as well as international mediators such as the Organization of Islamic Countries and the United Nations, is essential to adequately resolve this complex matter. Bangladeshi officials must ensure the safety of the Rohingyas in the camps and use available humanitarian aid to give the refugees basic amenities such as food, shelter, sanitation, and medical treatment. UNHCR officials should keep an eye on the actual repatriation process to ensure that refugees who have expressed a desire to stay in Bangladesh are not deported against their choice.Keywords: international refugee laws, united nations, Rohingya, stateless, humanitarian
Procedia PDF Downloads 1863011 Short and Long Crack Growth Behavior in Ferrite Bainite Dual Phase Steels
Authors: Ashok Kumar, Shiv Brat Singh, Kalyan Kumar Ray
Abstract:
There is growing awareness to design steels against fatigue damage Ferrite martensite dual-phase steels are known to exhibit favourable mechanical properties like good strength, ductility, toughness, continuous yielding, and high work hardening rate. However, dual-phase steels containing bainite as second phase are potential alternatives for ferrite martensite steels for certain applications where good fatigue property is required. Fatigue properties of dual phase steels are popularly assessed by the nature of variation of crack growth rate (da/dN) with stress intensity factor range (∆K), and the magnitude of fatigue threshold (∆Kth) for long cracks. There exists an increased emphasis to understand not only the long crack fatigue behavior but also short crack growth behavior of ferrite bainite dual phase steels. The major objective of this report is to examine the influence of microstructures on the short and long crack growth behavior of a series of developed dual-phase steels with varying amounts of bainite and. Three low carbon steels containing Nb, Cr and Mo as microalloying elements steels were selected for making ferrite-bainite dual-phase microstructures by suitable heat treatments. The heat treatment consisted of austenitizing the steel at 1100°C for 20 min, cooling at different rates in air prior to soaking these in a salt bath at 500°C for one hour, and finally quenching in water. Tensile tests were carried out on 25 mm gauge length specimens with 5 mm diameter using nominal strain rate 0.6x10⁻³ s⁻¹ at room temperature. Fatigue crack growth studies were made on a recently developed specimen configuration using a rotating bending machine. The crack growth was monitored by interrupting the test and observing the specimens under an optical microscope connected to an Image analyzer. The estimated crack lengths (a) at varying number of cycles (N) in different fatigue experiments were analyzed to obtain log da/dN vs. log °∆K curves for determining ∆Kthsc. The microstructural features of these steels have been characterized and their influence on the near threshold crack growth has been examined. This investigation, in brief, involves (i) the estimation of ∆Kthsc and (ii) the examination of the influence of microstructure on short and long crack fatigue threshold. The maximum fatigue threshold values obtained from short crack growth experiments on various specimens of dual-phase steels containing different amounts of bainite are found to increase with increasing bainite content in all the investigated steels. The variations of fatigue behavior of the selected steel samples have been explained with the consideration of varying amounts of the constituent phases and their interactions with the generated microstructures during cyclic loading. Quantitative estimation of the different types of fatigue crack paths indicates that the propensity of a crack to pass through the interfaces depends on the relative amount of the microstructural constituents. The fatigue crack path is found to be predominantly intra-granular except for the ones containing > 70% bainite in which it is predominantly inter-granular.Keywords: bainite, dual phase steel, fatigue crack growth rate, long crack fatigue threshold, short crack fatigue threshold
Procedia PDF Downloads 2043010 An ANN Approach for Detection and Localization of Fatigue Damage in Aircraft Structures
Authors: Reza Rezaeipour Honarmandzad
Abstract:
In this paper we propose an ANN for detection and localization of fatigue damage in aircraft structures. We used network of piezoelectric transducers for Lamb-wave measurements in order to calculate damage indices. Data gathered by the sensors was given to neural network classifier. A set of neural network electors of different architecture cooperates to achieve consensus concerning the state of each monitored path. Sensed signal variations in the ROI, detected by the networks at each path, were used to assess the state of the structure as well as to localize detected damage and to filter out ambient changes. The classifier has been extensively tested on large data sets acquired in the tests of specimens with artificially introduced notches as well as the results of numerous fatigue experiments. Effect of the classifier structure and test data used for training on the results was evaluated.Keywords: ANN, fatigue damage, aircraft structures, piezoelectric transducers, lamb-wave measurements
Procedia PDF Downloads 4173009 Shaking Table Test and Seismic Performance Evaluation of Spring Viscous Damper Cable System
Authors: Asad Naeem, Jinkoo Kim
Abstract:
This research proposes a self-centering passive damping system consisting of a spring viscous damper linked with a preloaded tendon. The seismic performance of the spring viscous damper is evaluated by pseudo-dynamic tests, and the results are used for the formulation of an analytical model of the damper in the structural analysis program. The shaking table tests of a two-story steel frame installed with the proposed damping system are carried out using five different earthquake records. The results from the shaking table tests are verified by numerical simulation of the retrofitted structure. The results obtained from experiments and numerical simulations demonstrate that the proposed damping system with self-centering capability is effective in reducing earthquake-induced displacement and member forces.Keywords: seismic retrofit, spring viscous damper, shaking table test, earthquake resistant structures
Procedia PDF Downloads 1793008 Studying the Effectiveness of Using Narrative Animation on Students’ Understanding of Complex Scientific Concepts
Authors: Atoum Abdullah
Abstract:
The purpose of this research is to determine the extent to which computer animation and narration affect students’ understanding of complex scientific concepts and improve their exam performance, this is compared to traditional lectures that include PowerPoints with texts and static images. A mixed-method design in data collection was used, including quantitative and qualitative data. Quantitative data was collected using a pre and post-test method and a close-ended questionnaire. Qualitative data was collected through an open-ended questionnaire. A pre and posttest strategy was used to measure the level of students’ understanding with and without the use of animation. The test included multiple-choice questions to test factual knowledge, open-ended questions to test conceptual knowledge, and to label the diagram questions to test application knowledge. The results showed that students on average, performed significantly higher on the posttest as compared to the pretest on all areas of acquired knowledge. However, the increase in the posttest score with respect to the acquisition of conceptual and application knowledge was higher compared to the increase in the posttest score with respect to the acquisition of factual knowledge. This result demonstrates that animation is more beneficial when acquiring deeper, conceptual, and cognitive knowledge than when only factual knowledge is acquired.Keywords: animation, narration, science, teaching
Procedia PDF Downloads 1703007 Understanding the Dynamics of Linker Histone Using Mathematical Modeling and FRAP Experiments
Authors: G. Carrero, C. Contreras, M. J. Hendzel
Abstract:
Linker histones or histones H1 are highly mobile nuclear proteins that regulate the organization of chromatin and limit DNA accessibility by binding to the chromatin structure (DNA and associated proteins). It is known that this binding process is driven by both slow (strong binding) and rapid (weak binding) interactions. However, the exact binding mechanism has not been fully described. Moreover, the existing models only account for one type of bound population that does not distinguish explicitly between the weakly and strongly bound proteins. Thus, we propose different systems of reaction-diffusion equations to describe explicitly the rapid and slow interactions during a FRAP (Fluorescence Recovery After Photobleaching) experiment. We perform a model comparison analysis to characterize the binding mechanism of histone H1 and provide new meaningful biophysical information on the kinetics of histone H1.Keywords: FRAP (Fluorescence Recovery After Photobleaching), histone H1, histone H1 binding kinetics, linker histone, reaction-diffusion equation
Procedia PDF Downloads 4413006 Examining the Association between Stigmatizing Attitudes in Nursing Students and Their Desire for a Career in Mental Health Nursing: A Comparative Analysis of Generic and Accelerated Programs in Israel
Authors: Merav Ben Natan, Adam Gharra, Baher Faduos, Abedallah Magadlah, Abedalrahman Biadsy
Abstract:
Introduction: Mental health nursing is often perceived as an unattractive career choice among nursing students, and it remains unclear whether the type of nursing program influences this view. Aim: This cross-sectional study aimed to explore the association between stigmatizing attitudes in nursing students and their desire for a career in mental health nursing, comparing students in generic and accelerated programs. Method: A total of 220 nursing students from generic and accelerated programs in North-Center Israel participated in this cross-sectional study, completing a questionnaire on stigmatizing attitudes and their interest in a mental health nursing career. Results: Nursing students displayed a generally low desire for mental health nursing, influenced by factors such as enrollment in the generic program, previous mental health work experience, and stigmatizing attitudes. Discussion: Students in the generic program, with lower stigmatizing attitudes and prior mental health experience, exhibited a higher inclination towards mental health nursing. Implications for Practice: Prospective mental health nursing professionals may be identified in the generic program, particularly those with prior mental health experience and lower stigmatizing attitudes. Additional studies are required to confirm and broaden their applicability to other contexts.Keywords: nursing students, mental health nursing, stigmatizing attitudes, desire for a career in mental health nursing, generic program
Procedia PDF Downloads 313005 Mean Shift-Based Preprocessing Methodology for Improved 3D Buildings Reconstruction
Authors: Nikolaos Vassilas, Theocharis Tsenoglou, Djamchid Ghazanfarpour
Abstract:
In this work we explore the capability of the mean shift algorithm as a powerful preprocessing tool for improving the quality of spatial data, acquired from airborne scanners, from densely built urban areas. On one hand, high resolution image data corrupted by noise caused by lossy compression techniques are appropriately smoothed while at the same time preserving the optical edges and, on the other, low resolution LiDAR data in the form of normalized Digital Surface Map (nDSM) is upsampled through the joint mean shift algorithm. Experiments on both the edge-preserving smoothing and upsampling capabilities using synthetic RGB-z data show that the mean shift algorithm is superior to bilateral filtering as well as to other classical smoothing and upsampling algorithms. Application of the proposed methodology for 3D reconstruction of buildings of a pilot region of Athens, Greece results in a significant visual improvement of the 3D building block model.Keywords: 3D buildings reconstruction, data fusion, data upsampling, mean shift
Procedia PDF Downloads 3153004 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: Sam Khozama, Ali M. Mayya
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion
Procedia PDF Downloads 1633003 Analytical, Numerical, and Experimental Research Approaches to Influence of Vibrations on Hydroelastic Processes in Centrifugal Pumps
Authors: Dinara F. Gaynutdinova, Vladimir Ya Modorsky, Nikolay A. Shevelev
Abstract:
The problem under research is that of unpredictable modes occurring in two-stage centrifugal hydraulic pump as a result of hydraulic processes caused by vibrations of structural components. Numerical, analytical and experimental approaches are considered. A hypothesis was developed that the problem of unpredictable pressure decrease at the second stage of centrifugal pumps is caused by cavitation effects occurring upon vibration. The problem has been studied experimentally and theoretically as of today. The theoretical study was conducted numerically and analytically. Hydroelastic processes in dynamic “liquid – deformed structure” system were numerically modelled and analysed. Using ANSYS CFX program engineering analysis complex and computing capacity of a supercomputer the cavitation parameters were established to depend on vibration parameters. An influence domain of amplitudes and vibration frequencies on concentration of cavitation bubbles was formulated. The obtained numerical solution was verified using CFM program package developed in PNRPU. The package is based on a differential equation system in hyperbolic and elliptic partial derivatives. The system is solved by using one of finite-difference method options – the particle-in-cell method. The method defines the problem solution algorithm. The obtained numerical solution was verified analytically by model problem calculations with the use of known analytical solutions of in-pipe piston movement and cantilever rod end face impact. An infrastructure consisting of an experimental fast hydro-dynamic processes research installation and a supercomputer connected by a high-speed network, was created to verify the obtained numerical solutions. Physical experiments included measurement, record, processing and analysis of data for fast processes research by using National Instrument signals measurement system and Lab View software. The model chamber end face oscillated during physical experiments and, thus, loaded the hydraulic volume. The loading frequency varied from 0 to 5 kHz. The length of the operating chamber varied from 0.4 to 1.0 m. Additional loads weighed from 2 to 10 kg. The liquid column varied from 0.4 to 1 m high. Liquid pressure history was registered. The experiment showed dependence of forced system oscillation amplitude on loading frequency at various values: operating chamber geometrical dimensions, liquid column height and structure weight. Maximum pressure oscillation (in the basic variant) amplitudes were discovered at loading frequencies of approximately 1,5 kHz. These results match the analytical and numerical solutions in ANSYS and CFM.Keywords: computing experiment, hydroelasticity, physical experiment, vibration
Procedia PDF Downloads 2443002 Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics
Authors: Deon de Jager, Yahya Zweiri, Dimitrios Makris
Abstract:
The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.Keywords: cognitive robotics, semantic memory, episodic memory, maximum entropy principle, particle swarm optimization
Procedia PDF Downloads 1563001 A Genetic Based Algorithm to Generate Random Simple Polygons Using a New Polygon Merge Algorithm
Authors: Ali Nourollah, Mohsen Movahedinejad
Abstract:
In this paper a new algorithm to generate random simple polygons from a given set of points in a two dimensional plane is designed. The proposed algorithm uses a genetic algorithm to generate polygons with few vertices. A new merge algorithm is presented which converts any two polygons into a simple polygon. This algorithm at first changes two polygons into a polygonal chain and then the polygonal chain is converted into a simple polygon. The process of converting a polygonal chain into a simple polygon is based on the removal of intersecting edges. The merge algorithm has the time complexity of O ((r+s) *l) where r and s are the size of merging polygons and l shows the number of intersecting edges removed from the polygonal chain. It will be shown that 1 < l < r+s. The experiments results show that the proposed algorithm has the ability to generate a great number of different simple polygons and has better performance in comparison to celebrated algorithms such as space partitioning and steady growth.Keywords: Divide and conquer, genetic algorithm, merge polygons, Random simple polygon generation.
Procedia PDF Downloads 533