Search results for: steel sheet pile
535 316L Passive Film Modification During Pitting Corrosion Process
Authors: Amina Sriba
Abstract:
In this work, interactions between the chemical elements forming the passive film of welded austenitic stainless steel during pitting corrosion are studied. We pay special attention to the chemical elements chromium, molybdenum, iron, nickel, and silicon since they make up the passive film that covers the fusion zone's surface in the welded joint. Molybdenum and chromium are typically the two essential components that control the three crucial stages of pit formation. It was found that while the involvement of chromium is more prominent during the propagation of a pit that has already begun, the enrichment of the molybdenum element in the passive film becomes apparent from the first stage of pit initiation. Additionally, during the pitting corrosion process, there was a noticeable fluctuation in the quantities of the produced oxides and hydroxide species from zone to zone. Regarding the formed hydroxide species, we clearly see that Nickel hydroxides are added to those of Chromium to constitute the outer layer in the passive film of the fusion zone sample, compared to the base metal sample, where only Chromium hydroxide formed on its surface during the pitting corrosion process. This reaction is caused by the preferential dissolution of the austenite phase instead of ferrite in the fusion zone.Keywords: fusion zone, passive film, chemical elements, pit
Procedia PDF Downloads 51534 Effect of Reinforcement Steel Ratio on the Behavior of R. C. Columns Exposed to Fire
Authors: Hatem Ghith
Abstract:
This research paper experimentally investigates the effect of burning by fire flame from one face on the behavior and load carrying capacity for reinforced columns. Residual ultimate load carrying capacity, axial deformation, crack pattern and maximum crack width for column specimens with and without burning were recorded and discussed. Tested six reinforced concrete columns were divided into control specimen and two groups. The first group was exposed to a fire with a different temperature (300, 500, 700 °C) for an hour with reinforcement ratio 0.89% and the second group was exposed to a fire with a temperature 500 °C for an hour with different reinforcement ratio (0.89%, 2.18%, and 3.57%), then all columns were tested under short-term axial loading. From the obtained results, it could be concluded that the fire parameters significantly influence the fire resistance of R.C columns. The fire parameters cause axial deformation and moment on the column due to the eccentricity that generated from the difference in temperature and consequently the compressive stresses of both faces of the columns but the increased reinforcement ratio enhanced the resistance of columns for axial deformation and moment on the column due to the eccentricity.Keywords: columns, reinforcement ratio, strength, time exposure
Procedia PDF Downloads 246533 An Integrated Framework for Wind-Wave Study in Lakes
Authors: Moien Mojabi, Aurelien Hospital, Daniel Potts, Chris Young, Albert Leung
Abstract:
The wave analysis is an integral part of the hydrotechnical assessment carried out during the permitting and design phases for coastal structures, such as marinas. This analysis aims in quantifying: i) the Suitability of the coastal structure design against Small Craft Harbour wave tranquility safety criterion; ii) Potential environmental impacts of the structure (e.g., effect on wave, flow, and sediment transport); iii) Mooring and dock design and iv) Requirements set by regulatory agency’s (e.g., WSA section 11 application). While a complex three-dimensional hydrodynamic modelling approach can be applied on large-scale projects, the need for an efficient and reliable wave analysis method suitable for smaller scale marina projects was identified. As a result, Tetra Tech has developed and applied an integrated analysis framework (hereafter TT approach), which takes the advantage of the state-of-the-art numerical models while preserving the level of simplicity that fits smaller scale projects. The present paper aims to describe the TT approach and highlight the key advantages of using this integrated framework in lake marina projects. The core of this methodology is made by integrating wind, water level, bathymetry, and structure geometry data. To respond to the needs of specific projects, several add-on modules have been added to the core of the TT approach. The main advantages of this method over the simplified analytical approaches are i) Accounting for the proper physics of the lake through the modelling of the entire lake (capturing real lake geometry) instead of a simplified fetch approach; ii) Providing a more realistic representation of the waves by modelling random waves instead of monochromatic waves; iii) Modelling wave-structure interaction (e.g. wave transmission/reflection application for floating structures and piles amongst others); iv) Accounting for wave interaction with the lakebed (e.g. bottom friction, refraction, and breaking); v) Providing the inputs for flow and sediment transport assessment at the project site; vi) Taking in consideration historical and geographical variations of the wind field; and vii) Independence of the scale of the reservoir under study. Overall, in comparison with simplified analytical approaches, this integrated framework provides a more realistic and reliable estimation of wave parameters (and its spatial distribution) in lake marinas, leading to a realistic hydrotechnical assessment accessible to any project size, from the development of a new marina to marina expansion and pile replacement. Tetra Tech has successfully utilized this approach since many years in the Okanagan area.Keywords: wave modelling, wind-wave, extreme value analysis, marina
Procedia PDF Downloads 84532 Aiding Water Flow in Irrigation Technology with a Pedal Operated Manual Pump
Authors: Isaac Ali Kwasu, Aje Tokan
Abstract:
The research was set to design a manually pedal operated water pump to aid water flow technology for irrigation activities for rural farmers. The development was carried out first by a prototype design to guide the fabrication. All items needed for the fabrication were used for the final product. The machine is operated manually by pedaling. This engages all the parts of the machine into active motion. Energy is generated and transfer finally to the pumping unit which is wired with plastic pipes. The pumping unit which is wired with PVC pipes, both linked to the water source and the reservoir respectively. The (rpm) revolution per minute of the machine is approximated at 3130 depending on the pedaling speed of the user. The machine does not have gear arrangement yet can give high (rpm) for effective performance. The pumping performance of the machine is 125 liters in one minute and can sustain small scale irrigation farming activities and to supplement water management system to sustain crop growth.Keywords: pump, development, manual, flywheel, sprocket, pulley, machine, v belt, chain, hub, pipe, steel, mechanism, irrigation, prototype, fabrication
Procedia PDF Downloads 207531 Investigation of Distortion and Impact Strength of 304L Butt Joint Using Different Weld Groove
Authors: A. Sharma, S. S. Sandhu, A. Shahi, A. Kumar
Abstract:
The aim of present investigation was to carry out Finite element modeling of distortion in the case of butt weld. 12mm thick AISI 304L plates were butt welded using three different combinations of groove design namely Double U, Double V and Composite. A full simulation of shielded metal arc welding (SMAW) of nonlinear heat transfer is carried out. Aspects like, temperature-dependent thermal properties of AISI stainless steel above liquid phase, the effect of thermal boundary conditions, were included in the model. Since welding heat dissipation characteristics changed due to variable groove design significant changes in the microhardness tensile strength and impact toughness of the joints were observed. The cumulative distortion was found to be least in double V joint followed by the Composite and Double U-joints. All the joints have joint efficiency more than 100%. CVN value of the Double V-groove weld metal was highest. The experimental results and the FEM results were compared and reveal a very good correlation for distortion and weld groove design for a multipass joint with a standard analogy of 83%.Keywords: AISI 304 L, Butt joint, distortion, FEM, groove design, SMAW
Procedia PDF Downloads 407530 Optimization Analysis of Controlled Cooling Process for H-Shape Steam Beams
Authors: Jiin-Yuh Jang, Yu-Feng Gan
Abstract:
In order to improve the comprehensive mechanical properties of the steel, the cooling rate, and the temperature distribution must be controlled in the cooling process. A three-dimensional numerical model for the prediction of the heat transfer coefficient distribution of H-beam in the controlled cooling process was performed in order to obtain the uniform temperature distribution and minimize the maximum stress and the maximum deformation after the controlled cooling. An algorithm developed with a simplified conjugated-gradient method was used as an optimizer to optimize the heat transfer coefficient distribution. The numerical results showed that, for the case of air cooling 5 seconds followed by water cooling 6 seconds with uniform the heat transfer coefficient, the cooling rate is 15.5 (℃/s), the maximum temperature difference is 85℃, the maximum the stress is 125 MPa, and the maximum deformation is 1.280 mm. After optimize the heat transfer coefficient distribution in control cooling process with the same cooling time, the cooling rate is increased to 20.5 (℃/s), the maximum temperature difference is decreased to 52℃, the maximum stress is decreased to 82MPa and the maximum deformation is decreased to 1.167mm.Keywords: controlled cooling, H-Beam, optimization, thermal stress
Procedia PDF Downloads 371529 Physical Activity Self-Efficacy among Pregnant Women with High Risk for Gestational Diabetes Mellitus: A Cross-Sectional Study
Authors: Xiao Yang, Ji Zhang, Yingli Song, Hui Huang, Jing Zhang, Yan Wang, Rongrong Han, Zhixuan Xiang, Lu Chen, Lingling Gao
Abstract:
Aim and Objectives: To examine physical activity self-efficacy, identify its predictors, and further explore the mechanism of action among the predictors in mainland Chinese pregnant women with high risk for gestational diabetes mellitus (GDM). Background: Physical activity could protect pregnant women from developing GDM. Physical activity self-efficacy was the key predictor of physical activity. Design: A cross-sectional study was conducted from October 2021 to May 2022 in Zhengzhou, China. Methods: 252 eligible pregnant women completed the Pregnancy Physical Activity Self-efficacy Scale, the Social Support for Physical Activity Scale, the Knowledge on Physical Activity Questionnaire, the 7-item Generalized Anxiety Disorder scale, the Edinburgh Postnatal Depression Scale, and a socio-demographic data sheet. Multiple linear regression was applied to explore the predictors of physical activity self-efficacy. Structural equation modeling was used to explore the mechanism of action among the predictors. Results: Chinese pregnant women with a high risk for GDM reported a moderate level of physical activity self-efficacy. The best-fit regression analysis revealed four variables explained 17.5% of the variance in physical activity self-efficacy. Social support for physical activity was the strongest predictor, followed by knowledge of the physical activity, intention to do physical activity, and anxiety symptoms. The model analysis indicated that knowledge of physical activity could release anxiety and depressive symptoms and then increase physical activity self-efficacy. Conclusion: The present study revealed a moderate level of physical activity self-efficacy. Interventions targeting pregnant women with high risk for GDM need to include the predictors of physical activity self-efficacy. Relevance to clinical practice: To facilitate pregnant women with high risk for GDM to engage in physical activity, healthcare professionals may find assess physical activity self-efficacy and intervene as soon as possible on their first antenatal visit. Physical activity intervention programs focused on self-efficacy may be conducted in further research.Keywords: physical activity, gestational diabetes, self-efficacy, predictors
Procedia PDF Downloads 101528 The Influence of Design Complexity of a Building Structure on the Expected Performance
Authors: Ormal Lishi
Abstract:
This research presents a computationally efficient probabilistic method to assess the performance of compartmentation walls with similar Fire Resistance Levels (FRL) but varying complexity. Specifically, a masonry brick wall and a light-steel framed (LSF) wall with comparable insulation performance are analyzed. A Monte Carlo technique, employing Latin Hypercube Sampling (LHS), is utilized to quantify uncertainties and determine the probability of failure for both walls exposed to standard and parametric fires, following ISO 834 and Eurocodes guidelines. Results show that the probability of failure for the brick masonry wall under standard fire exposure is estimated at 4.8%, while the LSF wall is 7.6%. These probabilities decrease to 0.4% and 4.8%, respectively, when subjected to parametric fires. Notably, the complex LSF wall exhibits higher variability in predicting time to failure for specific criteria compared to the less complex brick wall, especially at higher temperatures. The proposed approach highlights the need for Probabilistic Risk Assessment (PRA) to accurately evaluate the reliability and safety levels of complex designs.Keywords: design complexity, probability of failure, monte carlo analysis, compartmentation walls, insulation
Procedia PDF Downloads 64527 Aspects of Environmental Sustainability in the Operation of Onshore Hydrocarbon Pipelines
Authors: Emil Aliyev
Abstract:
The main focus of this conference paper is on the aspects of the environmental sustainability of onshore hydrocarbon pipelines. The latter is notorious for being a source of major environmental contamination and a consumer of vast amounts of natural resources such as water, land, steel, etc. Therefore, the environmentally sustainable operation of pipelines is a concern that requires attention and research. The geographical scope of the paper is confined to onshore hydrocarbon pipelines operated in the Middle East region. The research contains elements of originality as it draws on the author’s field experience and practical implementation of environmental and sustainability solutions in a major Middle East-based pipeline organization. The authors describe some of the most common significant environmental aspects of pipeline operations and provide examples of various approaches and technologies that can be successfully utilized to make pipelines more environmentally sustainable. The author concludes that the operation of onshore hydrocarbon pipelines can be made environmentally sustainable. This can be achieved by adopting a systematic framework, focusing limited resources on significant aspects, integrating a circular economy into day-to-day activities, and having strong management support.Keywords: pipelines, onshore hydrocarbon pipelines, environmental sustainability, significant environmental aspects
Procedia PDF Downloads 92526 Life Cycle Cost Evaluation of Structures Retrofitted with Damped Cable System
Authors: Asad Naeem, Mohamed Nour Eldin, Jinkoo Kim
Abstract:
In this study, the seismic performance and life cycle cost (LCC) are evaluated of the structure retrofitted with the damped cable system (DCS). The DCS is a seismic retrofit system composed of a high-strength steel cable and pressurized viscous dampers. The analysis model of the system is first derived using various link elements in SAP2000, and fragility curves of the structure retrofitted with the DCS and viscous dampers are obtained using incremental dynamic analyses. The analysis results show that the residual displacements of the structure equipped with the DCS are smaller than those of the structure with retrofitted with only conventional viscous dampers, due to the enhanced stiffness/strength and self-centering capability of the damped cable system. The fragility analysis shows that the structure retrofitted with the DCS has the least probability of reaching the specific limit states compared to the bare structure and the structure with viscous damper. It is also observed that the initial cost of the DCS method required for the seismic retrofit is smaller than that of the structure with viscous dampers and that the LCC of the structure equipped with the DCS is smaller than that of the structure with viscous dampers.Keywords: damped cable system, fragility curve, life cycle cost, seismic retrofit, self-centering
Procedia PDF Downloads 551525 Carbon Accounting for Sustainable Design and Manufacturing in the Signage Industry
Authors: Prudvi Paresi, Fatemeh Javidan
Abstract:
In recent years, greenhouse gas, or in particular, carbon emissions, have received special attention from environmentalists and designers due to the fact that they significantly contribute to the temperature rise. The building industry is one of the top seven major industries contributing to embodied carbon emission. Signage systems are an integral part of the building industry and bring completeness to the space-building by providing the required information and guidance. A significant amount of building materials, such as steel, aluminium, acrylic, LED, etc., are utilized in these systems, but very limited information is available on their sustainability and carbon footprint. Therefore, there is an urgent need to assess the emissions associated with the signage industry and for controlling these by adopting different mitigation techniques without sacrificing the efficiency of the project. The present paper investigates the embodied carbon of two case studies in the Australian signage industry within the cradle – gate (A1-A3) and gate–site (A4-A5) stages. A material source-based database is considered to achieve more accuracy. The study identified that aluminium is the major contributor to embodied carbon in the signage industry compared to other constituents. Finally, an attempt is made to suggest strategies for mitigating embodied carbon in this industry.Keywords: carbon accounting, small-scale construction, signage industry, construction materials
Procedia PDF Downloads 117524 Corrosion and Microstructural Properties of Vanadium-Microalloyed High-Manganese Steels
Authors: Temitope Olumide Olugbade
Abstract:
Low resistance and delayed fracture to corrosion, especially in harsh environmental conditions, often limit the wide application of high-manganese (high-Mn) steels. To address this issue, the present work investigates the influence of microalloying on the corrosion properties of high-Mn steels. Microalloyed and base high-Mn steels were synthesized through an arc melting process under an argon atmosphere. To generate different microstructures, the temperature and duration were varied via thermal homogenization treatments. The electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques were used to determine the corrosion properties in 0.6 M NaCl aqueous solution at room temperature. The relationship between the microstructures and corrosion properties was investigated via Scanning Kelvin Probe Microscopy (SKPFM), energy dispersive X-ray spectroscopy (EDX), and Scanning electron microscopy (SEM) techniques. The local corrosion properties were investigated via in situ atomic force spectroscopy (AFM), considering the homogenization treatments. The results indicate that microalloying is a successful technique for enhancing the corrosion behavior of high-Mn steels. Compared to other alloying elements, Vanadium has shown improvement in corrosion properties for both general and local corrosion in chloride environments.Keywords: corrosion, high-manganese steel, homogenization, microalloying, vanadium
Procedia PDF Downloads 94523 Integration of Gravity and Seismic Methods in the Geometric Characterization of a Dune Reservoir: Case of the Zouaraa Basin, NW Tunisia
Authors: Marwa Djebbi, Hakim Gabtni
Abstract:
Gravity is a continuously advancing method that has become a mature technology for geological studies. Increasingly, it has been used to complement and constrain traditional seismic data and even used as the only tool to get information of the sub-surface. In fact, in some regions the seismic data, if available, are of poor quality and hard to be interpreted. Such is the case for the current study area. The Nefza zone is part of the Tellian fold and thrust belt domain in the north west of Tunisia. It is essentially made of a pile of allochthonous units resulting from a major Neogene tectonic event. Its tectonic and stratigraphic developments have always been subject of controversies. Considering the geological and hydrogeological importance of this area, a detailed interdisciplinary study has been conducted integrating geology, seismic and gravity techniques. The interpretation of Gravity data allowed the delimitation of the dune reservoir and the identification of the regional lineaments contouring the area. It revealed the presence of three gravity lows that correspond to the dune of Zouara and Ouchtata separated along with a positive gravity axis espousing the Ain Allega_Aroub Er Roumane axe. The Bouguer gravity map illustrated the compartmentalization of the Zouara dune into two depressions separated by a NW-SE anomaly trend. This constitution was confirmed by the vertical derivative map which showed the individualization of two depressions with slightly different anomaly values. The horizontal gravity gradient magnitude was performed in order to determine the different geological features present in the studied area. The latest indicated the presence of NE-SW parallel folds according to the major Atlasic direction. Also, NW-SE and EW trends were identified. The maxima tracing confirmed this direction by the presence of NE-SW faults, mainly the Ghardimaou_Cap Serrat accident. The quality of the available seismic sections and the absence of borehole data in the region, except few hydraulic wells that been drilled and showing the heterogeneity of the substratum of the dune, required the process of gravity modeling of this challenging area that necessitates to be modeled for the geometrical characterization of the dune reservoir and determine the different stratigraphic series underneath these deposits. For more detailed and accurate results, the scale of study will be reduced in coming research. A more concise method will be elaborated; the 4D microgravity survey. This approach is considered as an expansion of gravity method and its fourth dimension is time. It will allow a continuous and repeated monitoring of fluid movement in the subsurface according to the micro gal (μgall) scale. The gravity effect is a result of a monthly variation of the dynamic groundwater level which correlates with rainfall during different periods.Keywords: 3D gravity modeling, dune reservoir, heterogeneous substratum, seismic interpretation
Procedia PDF Downloads 298522 Models, Resources and Activities of Project Scheduling Problems
Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, José J. Hernández-Flores, Edith Olaco Garcia
Abstract:
The Project Scheduling Problem (PSP) is a generic name given to a whole class of problems in which the best form, time, resources and costs for project scheduling are necessary. The PSP is an application area related to the project management. This paper aims at being a guide to understand PSP by presenting a survey of the general parameters of PSP: the Resources (those elements that realize the activities of a project), and the Activities (set of operations or own tasks of a person or organization); the mathematical models of the main variants of PSP and the algorithms used to solve the variants of the PSP. The project scheduling is an important task in project management. This paper contains mathematical models, resources, activities, and algorithms of project scheduling problems. The project scheduling problem has attracted researchers of the automotive industry, steel manufacturer, medical research, pharmaceutical research, telecommunication, industry, aviation industry, development of the software, manufacturing management, innovation and technology management, construction industry, government project management, financial services, machine scheduling, transportation management, and others. The project managers need to finish a project with the minimum cost and the maximum quality.Keywords: PSP, Combinatorial Optimization Problems, Project Management; Manufacturing Management, Technology Management.
Procedia PDF Downloads 418521 An Investigation on Energy Absorption Capacity of a Composite Metal Foam Developed from Aluminum by Reinforcing with Cermet Hollow Spheres
Authors: Fisseha Zewdie, Naresh Bhatnagar
Abstract:
Lightweight and strong aluminum foam is developed by reinforcing Al-Si-Cu alloy (LM24) with Cermet Hollow Spheres (CHS) as porous creating agents. The foam samples were prepared by mixing the CHS in molten LM24 at 750°C, using gravity and stir casting. The CHSs were fabricated using a blend of silicon carbide and stainless-steel powders using the powder metallurgy technique. It was found that CHS reinforcement greatly enhances the performance of the composite metal foam, making it suitable for high impact loading applications such as crash protection and shock absorption. This study examined the strength, density, energy absorption and possible applications of the new aluminum foam. The results revealed that the LM24 foam reinforced with the CHS has the highest energy absorption of about 88 MJ/m3 among all categories of foam samples tested. Its density was found to be 1.3 g/cm3, while the strength, densification strains and porosity were 420 MPa, 34% and 70%, respectively. Besides, the matrix and reinforcement's microstructure, chemical composition, X-ray diffraction, HRTEM and related micrographic analyses are performed for characterization and verifications.Keywords: composite metal foam, hollow spheres, gravity casting, energy absorption
Procedia PDF Downloads 71520 Numerical Study on Pretensioned Bridge Girder Using Thermal Strain Technique
Authors: Prashant Motwani, Arghadeep Laskar
Abstract:
The transfer of prestress force from prestressing strands to the surrounding concrete is dependent on the bond between the two materials. It is essential to understand the actual bond stress distribution along the transfer length to determine the transfer zone in pre-tensioned concrete. A 3-D nonlinear finite element model has been developed to simulate the transfer of prestress force from steel to concrete in pre-tensioned bridge girders through thermal strain technique using commercially available package ABAQUS. Full-scale bridge girder has been analyzed with thermal strain approach where the damage plasticity constitutive model has been used to model concrete. Parameters such as concrete strain, effective prestress, upward camber and longitudinal stress have been compared with analytical results. The discrepancy between numerical and analytical values was within 20%. The paper also presents a convergence study on mesh density and aspect ratio of the elements to perform the finite element study.Keywords: aspect ratio, bridge girder, centre of gravity of strand, mesh density, finite element model, pretensioned bridge girder
Procedia PDF Downloads 242519 Optimum Design of Tall Tube-Type Building: An Approach to Structural Height Premium
Authors: Ali Kheyroddin, Niloufar Mashhadiali, Frazaneh Kheyroddin
Abstract:
In last decades, tubular systems employed for tall buildings were efficient structural systems. However, increasing the height of a building leads to an increase in structural material corresponding to the loads imposed by lateral loads. Based on this approach, new structural systems are emerging to provide strength and stiffness with the minimum premium for height. In this research, selected tube-type structural systems such as framed tubes, braced tubes, diagrids and hexagrid systems were applied as a single tube, tubular structures combined with braced core and outrigger trusses on a set of 48, 72, and 96-story, respectively, to improve integrated structural systems. This paper investigated structural material consumption by model structures focusing on the premium for height. Compared analytical results indicated that as the height of the building increased, combination of the structural systems caused the framed tube, hexagrid and braced tube system to pay fewer premiums to material tonnage while in diagrid system, combining the structural system reduced insignificantly the steel material consumption.Keywords: braced tube, diagrid, framed tube, hexagrid
Procedia PDF Downloads 289518 Human-Induced Vibration and Degree of Human Comfortability Analysis of Intersection Pedestrian Bridge
Authors: Yaowen Sheng, Jiuxian Liu
Abstract:
In order to analyze the pedestrian bridge dynamic characteristics and degree of comfortability, the finite element method and live load time history method is used to calculate the dynamic response of the bridge. The example bridge’s dynamic characteristics and degree of human comfortability need to be analyzed. The project background is a three-way intersection. The intersection has three side blocks. An intersection bridge is designed to help people cross the streets. The finite element model of the bridge is established by the Midas/Civil software, and the analysis of the model is done. The strength, stiffness, and stability checks are also completed. Apart from the static analysis of the bridge, the dynamic analysis of the bridge is also completed to avoid the problems resulted from vibrations. The results show that the pedestrian bridge has different dynamic characteristics compared to other normal bridges. The degree of human comfortability satisfies the requirements of Chinese and British specifications. The live load time history method can be used to calculate the dynamic response of the bridge.Keywords: pedestrian bridge, steel box girder, human-induced vibration, finite element analysis, degree of human comfortability
Procedia PDF Downloads 157517 Dynamic Analysis and Vibration Response of Thermoplastic Rolling Elements in a Rotor Bearing System
Authors: Nesrine Gaaliche
Abstract:
This study provides a finite element dynamic model for analyzing rolling bearing system vibration response. The vibration responses of polypropylene bearings with and without defects are studied using FE analysis and compared to experimental data. The viscoelastic behavior of thermoplastic is investigated in this work to evaluate the influence of material flexibility and damping viscosity. The vibrations are detected using 3D dynamic analysis. Peak vibrations are more noticeable in an inner ring defect than in an outer ring defect, according to test data. The performance of thermoplastic bearings is compared to that of metal parts using vibration signals. Both the test and numerical results show that Polypropylene bearings exhibit less vibration than steel counterparts. Unlike bearings made from metal, polypropylene bearings absorb vibrations and handle shaft misalignments. Following validation of the overall vibration spectrum data, Von Mises stresses inside the rings are assessed under high loads. Stress is significantly high under the balls, according to the simulation findings. For the test cases, the computational findings correspond closely to the experimental results.Keywords: viscoelastic, FE analysis, polypropylene, bearings
Procedia PDF Downloads 104516 Behavior of Castellated Beam Column Due to Cyclic Loads
Authors: Junus Mara, Herman Parung, Jhony Tanijaya, Rudy Djamaluddin
Abstract:
The purpose of this study is to determine the behavior of beam-column sub-assemblages castella due to cyclic loading. Knowing these behaviors can if be analyzed the effectiveness of the concrete filler to reduce the damage and improve capacity of beam castella. Test beam consists of beam castella fabricated from normal beam (CB), castella beams with concrete filler between the flange (CCB) and normal beam (NB) as a comparison. Results showed castella beam (CB) has the advantage to increase the flexural capacity and energy absorption respectively 100.5% and 74.3%. Besides advantages, castella beam has the disadvantage that lowering partial ductility and full ductility respectively 12.6% and 18.1%, decrease resistance ratio 29.5% and accelerate the degradation rate of stiffness ratio 31.4%. By the concrete filler between the beam flange to improve the ability of castella beam, then the beam castella have the ability to increase the flexural capacity of 184.78 %, 217.1% increase energy absorption, increase ductility partial and full ductility respectively 27.9 % and 26 %, increases resistance ratio 52.5% and slow the rate of degradation of the stiffness ratio 55.1 %.Keywords: steel, castella, column beams, cyclic load
Procedia PDF Downloads 459515 The Effect of Kangaroo Mother Care and Swaddling Method on Venipuncture Pain in Premature Infant: Randomized Clinical Trials
Authors: Faezeh Jahanpour, Shahin Dezhdar, Saeedeh Firouz Bakht, Afshin Ostovar
Abstract:
Objective: The hospitalized premature babies often undergo various painful procedures such as venous sampling. The Kangaroo mother care (KMC) method is one of the pain reduction methods, but as mother’s presence is not always possible, this research was done to compare the effect of swaddling and KMC method on venous sampling pain on premature neonates. Methods: In this randomized clinical trial 90 premature infants selected and randomly alocated into three groups; Group A (swaddling), Group B (the kangaroo care), and group C (the control). From 10 minutes before blood sampling to 2 minutes after that in group A, the infant was wrapped in a thin sheet, and in group B, the infant was under Kangaroo care. In all three groups, the heart rate and arterial oxygen saturation in time intervals of 30 seconds before, during, 30-60-90, and 120 seconds after sampling were measured and recorded. The infant’s face was video recorded since sampling till 2 minutes and the videos were checked by a researcher who was unaware of the kind of intervention and the pain assessment tools for infants (PIPP) for time intervals of 30 seconds were completed. Data analyzed by t-test, Q square, Repeated Measure ANOVA, Kruskal-Wallis, Post-hoc and Bonferroni test. Results: Findings revealed that the pain was reduced to a great extent in swaddling and kangaroo method compared to that in control group. But there was not a significant difference between kangaroo and swaddling care method (P ≥ 0.05). In addition, the findings showed that the heart rate and arterial oxygen saturation was low and stable in swaddling and Kangaroo care method and returned to base status faster, whereas, the changes were severe in control group and did not return to base status even after 120 seconds. Discussion: The results of this study showed that there was not a meaningful difference between swaddling and kangaroo care method on physiological indexes and pain in infants. Therefore, swaddling method can be a good substitute for kangaroo care method in this regard.Keywords: Kangaroo mother care, neonate, pain, premature, swaddling, venipuncture,
Procedia PDF Downloads 215514 Parametric Study of the Structures: Influence of the Shells
Authors: Serikma Mourad, Mezidi Amar
Abstract:
The conception (design) of an earthquake-resistant structure is a complex problem seen the necessity of meeting the requirements of security been imperative by the regulations, and of economy been imperative by the increasing costs of the structures. The resistance of a building in the horizontal actions (shares) is mainly ensured by a mixed brace system; for a concrete building, this system is constituted by frame or shells; or both at the same time. After the earthquake of Boumerdes (May 23; 2003) in Algeria, the studies made by experts, ended in modifications of the Algerian Earthquake-resistant Regulation (AER 99). One of these modifications was to widen the use of shells for the brace system. This modification has create a conflict on the quantities, the positions and the type of the shells at adopt. In the present project, we suggest seeing the effect of the variation of the dimensions, the localization and the conditions of rigidity in extremities of shells. The study will be led on a building (F+5) implanted in zone of seismicity average. To do it, we shall proceed to a classic dynamic study of a structure by using 4 alternatives for shells by varying the lengths and number in order to compare the cost of the structure for 4 dispositions of the shells with a technical-economic study of the brace system by the use of different dispositions of shells and to estimate the quantities of necessary materials (concrete and steel).Keywords: reinforced concrete, mixed brace system, dynamic analysis, beams, shells
Procedia PDF Downloads 325513 Influential Effect of Self-Healing Treatment on Water Absorption and Electrical Resistance of Normal and Light Weight Aggregate Concretes
Authors: B. Tayebani, N. Hosseinibalam, D. Mostofinejad
Abstract:
Interest in using bacteria in cement materials due to its positive influences has been increased. Cement materials such as mortar and concrete basically suffer from higher porosity and water absorption compared to other building materials such as steel materials. Because of the negative side-effects of certain chemical techniques, biological methods have been proposed as a desired and environmentally friendly strategy for reducing concrete porosity and diminishing water absorption. This paper presents the results of an experimental investigation carried out to evaluate the influence of Sporosarcina pasteurii bacteria on the behaviour of two types of concretes (light weight aggregate concrete and normal weight concrete). The resistance of specimens to water penetration by testing water absorption and evaluating the electrical resistance of those concretes was examined and compared. As a conclusion, 20% increase in electrical resistance and 10% reduction in water absorption of lightweight aggregate concrete (LWAC) and for normal concrete the results show 7% decrease in water absorption and almost 10% increase in electrical resistance.Keywords: bacteria, biological method, normal weight concrete, lightweight aggregate concrete, water absorption, electrical resistance
Procedia PDF Downloads 181512 Evaluation of Corrosion Behaviour of Coatings Applied in a High-Strength Low Alloy Steel in Different Climatic Cabinets
Authors: Raquel Bayon, Ainara Lopez-Ortega, Elena Rodriguez, Amaya Igartua
Abstract:
Corrosion is one of the most concerning phenomenon that accelerates material degradation in offshore applications. In order to avoid the premature failure of metallic materials in marine environments, organic coatings have widely been used, due to their elevated corrosion resistance. Thermally-sprayed metals have recently been used in offshore applications, whereas ceramic materials are usually less employed, due to their high cost. The protectiveness of the coatings can be evaluated and categorized in corrosivity categories in accordance with the ISO 12944-6 Standard. According to this standard, for coatings that are supposed to work in marine environments, a C5-M category is required for components working out of the water or partially immersed in the splash zone, and an Im2 category for totally immersed components. C5-M/Im-2 high category would correspond to a durability of more than 20 years without maintenance in accordance with ISO 12944 and NORSOK M501 standards. In this work, the corrosion behavior of three potential coatings used in offshore applications has been evaluated. For this aim, the materials have been subjected to different environmental conditions in several climatic chambers (humidostatic, climatic, immersion, UV and salt-fog). The category of the coatings to each condition has been selected, in accordance with the previously mentioned standard.Keywords: cabinet, coatings, corrosion, offshore
Procedia PDF Downloads 420511 Structural and Microstructural Investigation into Causes of Rail Squat Defects and Their Correlation with White Etching Layers
Authors: A. Al-Juboori, D. Wexler, H. Li, H. Zhu, C. Lu, A. McCusker, J. McLeod, S. Pannila, Z. Wang
Abstract:
Squats are a type railhead defect related to rolling contact fatigue (RCF) damage and are considered serious problem affecting a wide range of railway networks across the world. Squats can lead to partial or complete rail failure. Formation mechanics of squats on the surface of rail steel is still a matter of debate. In this work, structural and microstructural observations from ex-service damaged rail both confirms the phases present in white etching layer (WEL) regions and relationship between cracking in WEL and squat defect formation. XRD synchrotron results obtained from the top surfaces of rail regions containing both WEL and squat defects reveal that these regions contain both martensite and retained austenite. Microstructural analysis of these regions revealed the occurrence cracks extending from WEL down into the rail through the squat region. These findings obtained from field rail specimen support the view that WEL contains regions of austenite and martensitic transformation product, and that cracks in this brittle surface layer propagate deeper into the rail as squats originate and grow.Keywords: squat, white etching layer, rolling contact fatigue, synchrotron diffraction
Procedia PDF Downloads 331510 Evaluation of Cyclic Thermo-Mechanical Responses of an Industrial Gas Turbine Rotor
Authors: Y. Rae, A. Benaarbia, J. Hughes, Wei Sun
Abstract:
This paper describes an elasto-visco-plastic computational modelling method which can be used to assess the cyclic plasticity responses of high temperature structures operating under thermo-mechanical loadings. The material constitutive equation used is an improved unified multi-axial Chaboche-Lemaitre model, which takes into account non-linear kinematic and isotropic hardening. The computational methodology is a three-dimensional framework following an implicit formulation and based on a radial return mapping algorithm. The associated user material (UMAT) code is developed and calibrated across isothermal hold-time low cycle fatigue tests for a typical turbine rotor steel for use in finite element (FE) implementation. The model is applied to a realistic industrial gas turbine rotor, where the study focuses its attention on the deformation heterogeneities and critical high stress areas within the rotor structure. The potential improvements of such FE visco-plastic approach are discussed. An integrated life assessment procedure based on R5 and visco-plasticity modelling, is also briefly addressed.Keywords: unified visco-plasticity, thermo-mechanical, turbine rotor, finite element modelling
Procedia PDF Downloads 130509 Characterization of Structural Elements Concrete Metal Fibre
Authors: Benaouda Hemza
Abstract:
This work on the characterization of structural elements in metal fiber concrete is devoted to the study of recyclability, as reinforcement for concrete, of chips resulting from the machining of steel parts. We are interested in this study to the rheological behavior of fresh chips reinforced concrete and its mechanical behavior at a young age. The evaluation of the workability with the LCL workabilimeter shows that optimal sand gravel ratios (S/G) are S/G=0.8, and S/G=1. The study of the content chips (W%) influence on the workability of the concrete shows that the flow time and the S/G optimum increase with W%. For S/G=1.4, the flow time is practically insensitive to the variation of W%, the concrete behavior is similar to that of self-compacting concrete. Mechanical characterization tests (direct tension, compression, bending, and splitting) show that the mechanical properties of chips concrete are comparable to those of the two selected reference concretes (concrete reinforced with conventional fibers: EUROSTEEL fibers corrugated and DRAMIX fibers). Chips provide a significant increase in strength and some ductility in the post-failure behavior of the concrete. Recycling chips as reinforcement for concrete can be favorably considered.Keywords: fiber concrete, chips, workability, direct tensile test, compression test, bending test, splitting test
Procedia PDF Downloads 455508 Characterization of Structural Elements in Metal Fiber Concrete
Authors: Ammari Abdelhammid
Abstract:
This work on the characterization of structural elements in metal fiber concrete is devoted to the study of recyclability, as reinforcement for concrete, of chips resulting from the machining of steel parts. We're interested in this study to the Rheological behavior of fresh chips reinforced concrete and its mechanical behavior at a young age. The evaluation of the workability with the LCL workabilimeter shows that optimal sand gravel ratios ( S/G) are S/G = 0.8 and S/G = 1. The study of the content chips (W%) influence on the workability of the concrete shows that the flow time and the S/G optimum increase with W%. For S/G = 1.4, the flow time is practically insensitive to the variation of W%, the concrete behavior is similar to that of self-compacting concrete. Mechanical characterization tests (direct tension, compression, bending, and splitting) show that the mechanical properties of chips concrete are comparable to those of the two selected reference concretes (concrete reinforced with conventional fibers: Eurosteel fibers corrugated and Dramix fibers). Chips provide a significant increase in strength and some ductility in the post-failure behavior of the concrete. Recycling chips as reinforcement for concrete can be favorably considered.Keywords: fiber concrete, chips, workability, direct tensile test, compression test, bending test, splitting test
Procedia PDF Downloads 442507 Risk-Sharing Financing of Islamic Banks: Better Shielded against Interest Rate Risk
Authors: Mirzet SeHo, Alaa Alaabed, Mansur Masih
Abstract:
In theory, risk-sharing-based financing (RSF) is considered a corner stone of Islamic finance. It is argued to render Islamic banks more resilient to shocks. In practice, however, this feature of Islamic financial products is almost negligible. Instead, debt-based instruments, with conventional like features, have overwhelmed the nascent industry. In addition, the framework of present-day economic, regulatory and financial reality inevitably exposes Islamic banks in dual banking systems to problems of conventional banks. This includes, but is not limited to, interest rate risk. Empirical evidence has, thus far, confirmed such exposures, despite Islamic banks’ interest-free operations. This study applies system GMM in modeling the determinants of RSF, and finds that RSF is insensitive to changes in interest rates. Hence, our results provide support to the “stability” view of risk-sharing-based financing. This suggests RSF as the way forward for risk management at Islamic banks, in the absence of widely acceptable Shariah compliant hedging instruments. Further support to the stability view is given by evidence of counter-cyclicality. Unlike debt-based lending that inflates artificial asset bubbles through credit expansion during the upswing of business cycles, RSF is negatively related to GDP growth. Our results also imply a significantly strong relationship between risk-sharing deposits and RSF. However, the pass-through of these deposits to RSF is economically low. Only about 40% of risk-sharing deposits are channeled to risk-sharing financing. This raises questions on the validity of the industry’s claim that depositors accustomed to conventional banking shun away from risk sharing and signals potential for better balance sheet management at Islamic banks. Overall, our findings suggest that, on the one hand, Islamic banks can gain ‘independence’ from conventional banks and interest rates through risk-sharing products, the potential for which is enormous. On the other hand, RSF could enable policy makers to improve systemic stability and restrain excessive credit expansion through its countercyclical features.Keywords: Islamic banks, risk-sharing, financing, interest rate, dynamic system GMM
Procedia PDF Downloads 316506 An Investigation on Hybrid Composite Drive Shaft for Automotive Industry
Authors: Gizem Arslan Özgen, Kutay Yücetürk, Metin Tanoğlu, Engin Aktaş
Abstract:
Power transmitted from the engine to the final drive where useful work is applied through a system consisting of a gearbox, clutch, drive shaft and a differential in the rear-wheel-drive automobiles. It is well-known that the steel drive shaft is usually manufactured in two pieces to increase the fundamental bending natural frequency to ensure safe operation conditions. In this work, hybrid one-piece propeller shafts composed of carbon/epoxy and glass/epoxy composites have been designed for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Hybridization of carbon and glass fibers is being studied to optimize the cost/performance requirements. Composites shaft materials with various fiber orientation angles and stacking sequences are being fabricated and analyzed using finite element analysis (FEA).Keywords: composite propeller shaft, hybridization, epoxy matrix, static torque transmission capability, torsional buckling strength, fundamental natural bending frequency.
Procedia PDF Downloads 270