Search results for: artificial intelligence in semiconductor manufacturing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4913

Search results for: artificial intelligence in semiconductor manufacturing

3113 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning

Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah

Abstract:

Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.

Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning

Procedia PDF Downloads 32
3112 Evaluating the Satisfaction of Chinese Consumers toward Influencers at TikTok

Authors: Noriyuki Suyama

Abstract:

The progress and spread of digitalization have led to the provision of a variety of new services. The recent progress in digitization can be attributed to rapid developments in science and technology. First, the research and diffusion of artificial intelligence (AI) has made dramatic progress. Around 2000, the third wave of AI research, which had been underway for about 50 years, arrived. Specifically, machine learning and deep learning were made possible in AI, and the ability of AI to acquire knowledge, define the knowledge, and update its own knowledge in a quantitative manner made the use of big data practical even for commercial PCs. On the other hand, with the spread of social media, information exchange has become more common in our daily lives, and the lending and borrowing of goods and services, in other words, the sharing economy, has become widespread. The scope of this trend is not limited to any industry, and its momentum is growing as the SDGs take root. In addition, the Social Network Service (SNS), a part of social media, has brought about the evolution of the retail business. In the past few years, social network services (SNS) involving users or companies have especially flourished. The People's Republic of China (hereinafter referred to as "China") is a country that is stimulating enormous consumption through its own unique SNS, which is different from the SNS used in developed countries around the world. This paper focuses on the effectiveness and challenges of influencer marketing by focusing on the influence of influencers on users' behavior and satisfaction with Chinese SNSs. Specifically, Conducted was the quantitative survey of Tik Tok users living in China, with the aim of gaining new insights from the analysis and discussions. As a result, we found several important findings and knowledge.

Keywords: customer satisfaction, social networking services, influencer marketing, Chinese consumers’ behavior

Procedia PDF Downloads 89
3111 Integrating Knowledge Distillation of Multiple Strategies

Authors: Min Jindong, Wang Mingxia

Abstract:

With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.

Keywords: object detection, knowledge distillation, convolutional network, model compression

Procedia PDF Downloads 278
3110 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection

Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari

Abstract:

In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.

Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs

Procedia PDF Downloads 364
3109 Efficient Chess Board Representation: A Space-Efficient Protocol

Authors: Raghava Dhanya, Shashank S.

Abstract:

This paper delves into the intersection of chess and computer science, specifically focusing on the efficient representation of chess game states. We propose two methods: the Static Method and the Dynamic Method, each offering unique advantages in terms of space efficiency and computational complexity. The Static Method aims to represent the game state using a fixedlength encoding, allocating 192 bits to capture the positions of all pieces on the board. This method introduces a protocol for ordering and encoding piece positions, ensuring efficient storage and retrieval. However, it faces challenges in representing pieces no longer in play. In contrast, the Dynamic Method adapts to the evolving game state by dynamically adjusting the encoding length based on the number of pieces in play. By incorporating Alive Bits for each piece kind, this method achieves greater flexibility and space efficiency. Additionally, it includes provisions for encoding additional game state information such as castling rights and en passant squares. Our findings demonstrate that the Dynamic Method offers superior space efficiency compared to traditional Forsyth-Edwards Notation (FEN), particularly as the game progresses and pieces are captured. However, it comes with increased complexity in encoding and decoding processes. In conclusion, this study provides insights into optimizing the representation of chess game states, offering potential applications in chess engines, game databases, and artificial intelligence research. The proposed methods offer a balance between space efficiency and computational overhead, paving the way for further advancements in the field.

Keywords: chess, optimisation, encoding, bit manipulation

Procedia PDF Downloads 50
3108 A Personality-Based Behavioral Analysis on eSports

Authors: Halkiopoulos Constantinos, Gkintoni Evgenia, Koutsopoulou Ioanna, Antonopoulou Hera

Abstract:

E-sports and e-gaming have emerged in recent years since the increase in internet use have become universal and e-gamers are the new reality in our homes. The excessive involvement of young adults with e-sports has already been revealed and the adverse consequences have been reported in researches in the past few years, but the issue has not been fully studied yet. The present research is conducted in Greece and studies the psychological profile of video game players and provides information on personality traits, habits and emotional status that affect online gamers’ behaviors in order to help professionals and policy makers address the problem. Three standardized self-report questionnaires were administered to participants who were young male and female adults aged from 19-26 years old. The Profile of Mood States (POMS) scale was used to evaluate people’s perceptions of their everyday life mood; the personality features that can trace back to people’s habits and anticipated reactions were measured by Eysenck Personality Questionnaire (EPQ), and the Trait Emotional Intelligence Questionnaire (TEIQue) was used to measure which cognitive (gamers’ beliefs) and emotional parameters (gamers’ emotional abilities) mainly affected/ predicted gamers’ behaviors and leisure time activities?/ gaming behaviors. Data mining techniques were used to analyze the data, which resulted in machine learning algorithms that were included in the software package R. The research findings attempt to designate the effect of personality traits, emotional status and emotional intelligence influence and correlation with e-sports, gamers’ behaviors and help policy makers and stakeholders take action, shape social policy and prevent the adverse consequences on young adults. The need for further research, prevention and treatment strategies is also addressed.

Keywords: e-sports, e-gamers, personality traits, POMS, emotional intelligence, data mining, R

Procedia PDF Downloads 231
3107 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms

Authors: Bliss Singhal

Abstract:

Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.

Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression

Procedia PDF Downloads 82
3106 Application of Neural Network in Portfolio Product Companies: Integration of Boston Consulting Group Matrix and Ansoff Matrix

Authors: M. Khajezadeh, M. Saied Fallah Niasar, S. Ali Asli, D. Davani Davari, M. Godarzi, Y. Asgari

Abstract:

This study aims to explore the joint application of both Boston and Ansoff matrices in the operational development of the product. We conduct deep analysis, by utilizing the Artificial Neural Network, to predict the position of the product in the market while the company is interested in increasing its share. The data are gathered from two industries, called hygiene and detergent. In doing so, the effort is being made by investigating the behavior of top player companies and, recommend strategic orientations. In conclusion, this combination analysis is appropriate for operational development; as well, it plays an important role in providing the position of the product in the market for both hygiene and detergent industries. More importantly, it will elaborate on the company’s strategies to increase its market share related to a combination of the Boston Consulting Group (BCG) Matrix and Ansoff Matrix.

Keywords: artificial neural network, portfolio analysis, BCG matrix, Ansoff matrix

Procedia PDF Downloads 143
3105 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks

Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin

Abstract:

Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.

Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network

Procedia PDF Downloads 138
3104 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection

Authors: Ashkan Zakaryazad, Ekrem Duman

Abstract:

A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.

Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent

Procedia PDF Downloads 475
3103 Commercial Winding for Superconducting Cables and Magnets

Authors: Glenn Auld Knierim

Abstract:

Automated robotic winding of high-temperature superconductors (HTS) addresses precision, efficiency, and reliability critical to the commercialization of products. Today’s HTS materials are mature and commercially promising but require manufacturing attention. In particular to the exaggerated rectangular cross-section (very thin by very wide), winding precision is critical to address the stress that can crack the fragile ceramic superconductor (SC) layer and destroy the SC properties. Damage potential is highest during peak operations, where winding stress magnifies operational stress. Another challenge is operational parameters such as magnetic field alignment affecting design performance. Winding process performance, including precision, capability for geometric complexity, and efficient repeatability, are required for commercial production of current HTS. Due to winding limitations, current HTS magnets focus on simple pancake configurations. HTS motors, generators, MRI/NMR, fusion, and other projects are awaiting robotic wound solenoid, planar, and spherical magnet configurations. As with conventional power cables, full transposition winding is required for long length alternating current (AC) and pulsed power cables. Robotic production is required for transposition, periodic swapping of cable conductors, and placing into precise positions, which allows power utility required minimized reactance. A full transposition SC cable, in theory, has no transmission length limits for AC and variable transient operation due to no resistance (a problem with conventional cables), negligible reactance (a problem for helical wound HTS cables), and no long length manufacturing issues (a problem with both stamped and twisted stacked HTS cables). The Infinity Physics team is solving manufacturing problems by developing automated manufacturing to produce the first-ever reliable and utility-grade commercial SC cables and magnets. Robotic winding machines combine mechanical and process design, specialized sense and observer, and state-of-the-art optimization and control sequencing to carefully manipulate individual fragile SCs, especially HTS, to shape previously unattainable, complex geometries with electrical geometry equivalent to commercially available conventional conductor devices.

Keywords: automated winding manufacturing, high temperature superconductor, magnet, power cable

Procedia PDF Downloads 140
3102 Additive Manufacturing of Overhangs: From Temporary Supports to Self-Support

Authors: Paulo Mendonca, Nzar Faiq Naqeshbandi

Abstract:

The objective of this study is to propose an interactive design environment that outlines the underlying computational framework to reach self-supporting overhangs. The research demonstrates the digital printability of overhangs taking into consideration factors related to the geometry design, the material used, the applied support, and the printing set-up of slicing and the extruder inclination. Parametric design tools can contribute to the design phase, form-finding, and stability optimization of self-supporting structures while printing in order to hold the components in place until they are sufficiently advanced to support themselves. The challenge is to ensure the stability of the printed parts in the critical inclinations during the whole fabrication process. Facilitating the identification of parameterization will allow to predict and optimize the process. Later, in the light of the previous findings, some guidelines of simulations and physical tests are given to be conducted for estimating the structural and functional performance.

Keywords: additive manufacturing, overhangs, self-support overhangs, printability, parametric tools

Procedia PDF Downloads 122
3101 Thermal Barrier Coated Diesel Engine With Neural Networks Mathematical Modelling

Authors: Hanbey Hazar, Hakan Gul

Abstract:

In this study; piston, exhaust, and suction valves of a diesel engine were coated in 300 mm thickness with Tungsten Carbide (WC) by using the HVOF coating method. Mathematical modeling of a coated and uncoated (standardized) engine was performed by using ANN (Artificial Neural Networks). The purpose was to decrease the number of repetitions of tests and reduce the test cost through mathematical modeling of engines by using ANN. The results obtained from the tests were entered in ANN and therefore engines' values at all speeds were estimated. Results obtained from the tests were compared with those obtained from ANN and they were observed to be compatible. It was also observed that, with thermal barrier coating, hydrocarbon (HC), carbon monoxide (CO), and smoke density values of the diesel engine decreased; but nitrogen oxides (NOx) increased. Furthermore, it was determined that results obtained through mathematical modeling by means of ANN reduced the number of test repetitions. Therefore, it was understood that time, fuel and labor could be saved in this way.

Keywords: Artificial Neural Network, Diesel Engine, Mathematical Modelling, Thermal Barrier Coating

Procedia PDF Downloads 528
3100 Modeling of Digital and Settlement Consolidation of Soil under Oedomete

Authors: Yu-Lin Shen, Ming-Kuen Chang

Abstract:

In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.

Keywords: EMAT, artificial defect, NDT, ultrasonic testing

Procedia PDF Downloads 333
3099 Increase Productivity by Using Work Measurement Technique

Authors: Mohammed Al Awadh

Abstract:

In order for businesses to take advantage of the opportunities for expanded production and trade that have arisen as a result of globalization and increased levels of competition, productivity growth is required. The number of available sources is decreasing with each passing day, which results in an ever-increasing demand. In response to this, there will be an increased demand placed on firms to improve the efficiency with which they utilise their resources. As a scientific method, work and time research techniques have been employed in all manufacturing and service industries to raise the efficiency of use of the factors of production. These approaches focus on work and time. The goal of this research is to improve the productivity of a manufacturing industry's production system by looking at ways to measure work. The work cycles were broken down into more manageable and quantifiable components. On the observation sheet, these aspects were noted down. The operation has been properly analysed in order to identify value-added and non-value-added components, and observations have been recorded for each of the different trails.

Keywords: time study, work measurement, work study, efficiency

Procedia PDF Downloads 69
3098 Control HVAC Parameters by Brain Emotional Learning Based Intelligent Controller (BELBIC)

Authors: Javad Abdi, Azam Famil Khalili

Abstract:

Modeling emotions have attracted much attention in recent years, both in cognitive psychology and design of artificial systems. However, it is a negative factor in decision-making; emotions have shown to be a strong faculty for making fast satisfying decisions. In this paper, we have adapted a computational model based on the limbic system in the mammalian brain for control engineering applications. Learning in this model based on Temporal Difference (TD) Learning, we applied the proposed controller (termed BELBIC) for a simple model of a submarine. The model was supposed to reach the desired depth underwater. Our results demonstrate excellent control action, disturbance handling, and system parameter robustness for TDBELBIC. The proposal method, regarding the present conditions, the system action in the part and the controlling aims, can control the system in a way that these objectives are attained in the least amount of time and the best way.

Keywords: artificial neural networks, temporal difference, brain emotional learning based intelligent controller, heating- ventilating and air conditioning

Procedia PDF Downloads 433
3097 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs

Authors: Osamede Asowata, Christo Pienaar, Johan Bekker

Abstract:

Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.

Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter

Procedia PDF Downloads 127
3096 First Principle study of Electronic Structure of Silicene Doped with Galium

Authors: Mauludi Ariesto Pamungkas, Wafa Maftuhin

Abstract:

Gallium with three outer electrons commonly are used as dopants of silicon to make it P type and N type semiconductor respectively. Silicene, one-atom-thick silicon layer is one of emerging two dimension materials after the success of graphene. The effects of Gallium doping on electronic structure of silicine are investigated by using first principle calculation based on Density Functional Theory (DFT) calculation and norm conserving pseudopotential method implemented in ABINIT code. Bandstructure of Pristine silicene is similar to that of graphene. Effect of Ga doping on bandstructure of silicene depend on the position of Ga adatom on silicene

Keywords: silicene, effects of Gallium doping, Density Functional Theory (DFT), graphene

Procedia PDF Downloads 433
3095 Clustering for Detection of the Population at Risk of Anticholinergic Medication

Authors: A. Shirazibeheshti, T. Radwan, A. Ettefaghian, G. Wilson, C. Luca, Farbod Khanizadeh

Abstract:

Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature, which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on over 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. To further evaluate the performance of the model, any association between the average risk score within each group and other factors such as socioeconomic status (i.e., Index of Multiple Deprivation) and an index of health and disability were investigated. The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings also show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, indicating that females are more at risk from this kind of multiple medications. The risk may be monitored and controlled in well artificial intelligence-equipped healthcare management systems.

Keywords: anticholinergic medicines, clustering, deprivation, socioeconomic status

Procedia PDF Downloads 212
3094 Adhesion Problematic for Novel Non-Crimp Fabric and Surface Modification of Carbon-Fibres Using Oxy-Fluorination

Authors: Iris Käppler, Paul Matthäi, Chokri Cherif

Abstract:

In the scope of application of technical textiles, Non-Crimp Fabrics are increasingly used. In general, NCF exhibit excellent load bearing properties, but caused by the manufacturing process, there are some remaining disadvantages which have to be reduced. Regarding to this, a novel technique of processing NCF was developed substituting the binding-thread by an adhesive. This stitch-free method requires new manufacturing concept as well as new basic methods to prove adhesion of glue at fibres and textiles. To improve adhesion properties and the wettability of carbon-fibres by the adhesive, oxyfluorination was used. The modification of carbon-fibres by oxyfluorination was investigated via scanning electron microscope, X-ray photo electron spectroscopy and single fibre tensiometry. Special tensile tests were developed to determine the maximum force required for detachment.

Keywords: non-crimp fabric, adhesive, stitch-free, high-performance fibre

Procedia PDF Downloads 354
3093 Decision-Making Strategies on Smart Dairy Farms: A Review

Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, G. Corkery, E. Broderick, J. Walsh

Abstract:

Farm management and operations will drastically change due to access to real-time data, real-time forecasting, and tracking of physical items in combination with Internet of Things developments to further automate farm operations. Dairy farms have embraced technological innovations and procured vast amounts of permanent data streams during the past decade; however, the integration of this information to improve the whole farm-based management and decision-making does not exist. It is now imperative to develop a system that can collect, integrate, manage, and analyse on-farm and off-farm data in real-time for practical and relevant environmental and economic actions. The developed systems, based on machine learning and artificial intelligence, need to be connected for useful output, a better understanding of the whole farming issue, and environmental impact. Evolutionary computing can be very effective in finding the optimal combination of sets of some objects and, finally, in strategy determination. The system of the future should be able to manage the dairy farm as well as an experienced dairy farm manager with a team of the best agricultural advisors. All these changes should bring resilience and sustainability to dairy farming as well as improving and maintaining good animal welfare and the quality of dairy products. This review aims to provide an insight into the state-of-the-art of big data applications and evolutionary computing in relation to smart dairy farming and identify the most important research and development challenges to be addressed in the future. Smart dairy farming influences every area of management, and its uptake has become a continuing trend.

Keywords: big data, evolutionary computing, cloud, precision technologies

Procedia PDF Downloads 189
3092 The Effect of Emotional Intelligence on Physiological Stress of Managers

Authors: Mikko Salminen, Simo Järvelä, Niklas Ravaja

Abstract:

One of the central models of emotional intelligence (EI) is that of Mayer and Salovey’s, which includes ability to monitor own feelings and emotions and those of others, ability to discriminate different emotions, and to use this information to guide thinking and actions. There is vast amount of previous research where positive links between EI and, for example, leadership successfulness, work outcomes, work wellbeing and organizational climate have been reported. EI has also a role in the effectiveness of work teams, and the effects of EI are especially prominent in jobs requiring emotional labor. Thus, also the organizational context must be taken into account when considering the effects of EI on work outcomes. Based on previous research, it is suggested that EI can also protect managers from the negative consequences of stress. Stress may have many detrimental effects on the manager’s performance in essential work tasks. Previous studies have highlighted the effects of stress on, not only health, but also, for example, on cognitive tasks such as decision-making, which is important in managerial work. The motivation for the current study came from the notion that, unfortunately, many stressed individuals may not be aware of the circumstance; periods of stress-induced physiological arousal may be prolonged if there is not enough time for recovery. To tackle this problem, physiological stress levels of managers were collected using recording of heart rate variability (HRV). The goal was to use this data to provide the managers with feedback on their stress levels. The managers could access this feedback using a www-based learning environment. In the learning environment, in addition to the feedback on stress level and other collected data, also developmental tasks were provided. For example, those with high stress levels were sent instructions for mindfulness exercises. The current study focuses on the relation between the measured physiological stress levels and EI of the managers. In a pilot study, 33 managers from various fields wore the Firstbeat Bodyguard HRV measurement devices for three consecutive days and nights. From the collected HRV data periods (minutes) of stress and recovery were detected using dedicated software. The effects of EI on HRV-calculated stress indexes were studied using Linear Mixed Models procedure in SPSS. There was a statistically significant effect of total EI, defined as an average score of Schutte’s emotional intelligence test, on the percentage of stress minutes during the whole measurement period (p=.025). More stress minutes were detected on those managers who had lower emotional intelligence. It is suggested, that high EI provided managers with better tools to cope with stress. Managing of own emotions helps the manager in controlling possible negative emotions evoked by, e.g., critical feedback or increasing workload. High EI managers may also be more competent in detecting emotions of others, which would lead to smoother interactions and less conflicts. Given the recent trend to different quantified-self applications, it is suggested that monitoring of bio-signals would prove to be a fruitful direction to further develop new tools for managerial and leadership coaching.

Keywords: emotional intelligence, leadership, heart rate variability, personality, stress

Procedia PDF Downloads 226
3091 AG Loaded WO3 Nanoplates for Photocatalytic Degradation of Sulfanilamide and Bacterial Removal under Visible Light

Authors: W. Y. Zhu, X. L. Yan, Y. Zhou

Abstract:

Sulfonamides (SAs) are extensively used antibiotics; photocatalysis is an effective, way to remove the SAs from water driven by solar energy. Here we used WO3 nanoplates and their Ag heterogeneous as photocatalysts to investigate their photodegradation efficiency against sulfanilamide (SAM) which is the precursor of SAs. Results showed that WO3/Ag composites performed much better than pure WO3 where the highest removal rate was 96.2% can be achieved under visible light irradiation. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO3, and 100% removal efficiency could be achieved in 2 h under visible light irradiation for all WO3/Ag composites. Generally, WO3/Ag composites are very effective photocatalysts with potentials in practical applications which mainly use cheap, clean and green solar energy as energy source.

Keywords: antibacterial, photocatalysis, semiconductor, sulfanilamide

Procedia PDF Downloads 360
3090 Optimizing the Readability of Orthopaedic Trauma Patient Education Materials Using ChatGPT-4

Authors: Oscar Covarrubias, Diane Ghanem, Christopher Murdock, Babar Shafiq

Abstract:

Introduction: ChatGPT is an advanced language AI tool designed to understand and generate human-like text. The aim of this study is to assess the ability of ChatGPT-4 to re-write orthopaedic trauma patient education materials at the recommended 6th-grade level. Methods: Two independent reviewers accessed ChatGPT-4 (chat.openai.com) and gave identical instructions to simplify the readability of provided text to a 6th-grade level. All trauma-related articles by the Orthopaedic Trauma Association (OTA) and American Academy of Orthopaedic Surgeons (AAOS) were sequentially provided. The academic grade level was determined using the Flesh-Kincaid Grade Level (FKGL) and Flesch Reading Ease (FRE). Paired t-tests and Wilcox-rank sum tests were used to compare the FKGL and FRE between the ChatGPT-4 revised and original text. Inter-rater correlation coefficient (ICC) was used to assess variability in ChatGPT-4 generated text between the two reviewers. Results: ChatGPT-4 significantly reduced FKGL and increased FRE scores in the OTA (FKGL: 5.7±0.5 compared to the original 8.2±1.1, FRE: 76.4±5.7 compared to the original 65.5±6.6, p < 0.001) and AAOS articles (FKGL: 5.8±0.8 compared to the original 8.9±0.8, FRE: 76±5.5 compared to the original 56.7±5.9, p < 0.001). On average, 14.6% of OTA and 28.6% of AAOS articles required at least two revisions by ChatGPT-4 to achieve a 6th-grade reading level. ICC demonstrated poor reliability for FKGL (OTA 0.24, AAOS 0.45) and moderate reliability for FRE (OTA 0.61, AAOS 0.73). Conclusion: This study provides a novel, simple and efficient method using language AI to optimize the readability of patient education content which may only require the surgeon’s final proofreading. This method would likely be as effective for other medical specialties.

Keywords: artificial intelligence, AI, chatGPT, patient education, readability, trauma education

Procedia PDF Downloads 72
3089 The Intersection of Art and Technology: Innovations in Visual Communication Design

Authors: Sareh Enjavi

Abstract:

In recent years, the field of visual communication design has seen a significant shift in the way that art is created and consumed, with the advent of new technologies like virtual reality, augmented reality, and artificial intelligence. This paper explores the ways in which technology is changing the landscape of visual communication design, and how designers are incorporating new technological tools into their artistic practices. The primary objective of this research paper is to investigate the ways in which technology is influencing the creative process of designers and artists in the field of visual communication design. The paper also aims to examine the challenges and limitations that arise from the intersection of art and technology in visual communication design, and to identify strategies for overcoming these challenges. Drawing on examples from a range of fields, including advertising, fine art, and digital media, this paper highlights the exciting innovations that are emerging as artists and designers use technology to push the boundaries of traditional artistic expression. The paper argues that embracing technological innovation is essential for the continued evolution of visual communication design. By exploring the intersection of art and technology, designers can create new and exciting visual experiences that engage and inspire audiences in new ways. The research also contributes to the theoretical and methodological understanding of the intersection of art and technology, a topic that has gained significant attention in recent years. Ultimately, this paper emphasizes the importance of embracing innovation and experimentation in the field of visual communication design, and highlights the exciting innovations that are emerging as a result of the intersection of art and technology, and emphasizes the importance of embracing innovation and experimentation in the field of visual communication design.

Keywords: visual communication design, art and technology, virtual reality, interactive art, creative process

Procedia PDF Downloads 118
3088 A Virtual Reality Simulation Tool for Reducing the Risk of Building Content during Earthquakes

Authors: Ali Asgary, Haopeng Zhou, Ghassem Tofighi

Abstract:

Use of virtual (VR), augmented reality (AR), and extended reality technologies for training and education has increased in recent years as more hardware and software tools have become available and accessible to larger groups of users. Similarly, the applications of these technologies in earthquake related training and education are on the rise. Several studies have reported promising results for the use of VR and AR for evacuation behaviour and training under earthquake situations. They simulate the impacts that earthquake has on buildings, buildings’ contents, and how building occupants and users can find safe spots or open paths to outside. Considering that considerable number of earthquake injuries and fatalities are linked to the behaviour, our goal is to use these technologies to reduce the impacts of building contents on people. Building on our artificial intelligence (AI) based indoor earthquake risk assessment application that enables users to use their mobile device to assess the risks associated with building contents during earthquakes, we develop a virtual reality application to demonstrate the behavior of different building contents during earthquakes, their associate moving, spreading, falling, and collapsing risks, and their risk mitigation methods. We integrate realistic seismic models, building contents behavior with and without risk mitigation measures in virtual reality environment. The application can be used for training of architects, interior design experts, and building users to enhance indoor safety of the buildings that can sustain earthquakes. This paper describes and demonstrates the application development background, structure, components, and usage.

Keywords: virtual reality, earthquake damage, building content, indoor risks, earthquake risk mitigation, interior design, unity game engine, oculus

Procedia PDF Downloads 105
3087 Application of Artificial Neural Network Technique for Diagnosing Asthma

Authors: Azadeh Bashiri

Abstract:

Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.

Keywords: asthma, data mining, Artificial Neural Network, intelligent system

Procedia PDF Downloads 273
3086 A Medical Resource Forecasting Model for Emergency Room Patients with Acute Hepatitis

Authors: R. J. Kuo, W. C. Cheng, W. C. Lien, T. J. Yang

Abstract:

Taiwan is a hyper endemic area for the Hepatitis B virus (HBV). The estimated total number of HBsAg carriers in the general population who are more than 20 years old is more than 3 million. Therefore, a case record review is conducted from January 2003 to June 2007 for all patients with a diagnosis of acute hepatitis who were admitted to the Emergency Department (ED) of a well-known teaching hospital. The cost for the use of medical resources is defined as the total medical fee. In this study, principal component analysis (PCA) is firstly employed to reduce the number of dimensions. Support vector regression (SVR) and artificial neural network (ANN) are then used to develop the forecasting model. A total of 117 patients meet the inclusion criteria. 61% patients involved in this study are hepatitis B related. The computational result shows that the proposed PCA-SVR model has superior performance than other compared algorithms. In conclusion, the Child-Pugh score and echogram can both be used to predict the cost of medical resources for patients with acute hepatitis in the ED.

Keywords: acute hepatitis, medical resource cost, artificial neural network, support vector regression

Procedia PDF Downloads 422
3085 Continuous Improvement Programme as a Strategy for Technological Innovation in Developing Nations. Nigeria as a Case Study

Authors: Sefiu Adebowale Adewumi

Abstract:

Continuous improvement programme (CIP) adopts an approach to improve organizational performance with small incremental steps over time. In this approach, it is not the size of each step that is important, but the likelihood that the improvements will be ongoing. Many companies in developing nations are now complementing continuous improvement with innovation, which is the successful exploitation of new ideas. Focus area of CIP in the organization was in relation to the size of the organizations and also in relation to the generic classification of these organizations. Product quality was prevalent in the manufacturing industry while manpower training and retraining and marketing strategy were emphasized for improvement to be made in the service, transport and supply industries. However, focus on innovation in raw materials, process and methods are needed because these are the critical factors that influence product quality in the manufacturing industries.

Keywords: continuous improvement programme, developing countries, generic classfications, technological innovation

Procedia PDF Downloads 189
3084 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa

Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam

Abstract:

Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.

Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines

Procedia PDF Downloads 515